
Module VI

More Process Management:
Process Suspension/Resumption

Process Creation And Termination

Xinu – module 6 1 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Process Manipulation

d An OS needs system calls that can be used to control processes

d Example operations

– Suspend a process (keep it from running)

– Resume a previously-suspended process

– Block a process to receive a message from another process

– Send a message to another process

d The OS uses the process state variable to record the status of the process

Xinu – module 6 2 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Process Suspension
And Resumption

Location Of Process Suspension And Resumption In The Hierarchy

Xinu – module 6 4 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Process Suspension And Resumption

d The idea

– Temporarily “stop” a process

– Allow the process to be resumed later

d Questions

– What happens to the process while it is suspended?

– Can a process be suspended at any time?

– What happens if an attempt is made to resume a process that is not suspended?

Xinu – module 6 5 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Steps In Suspension And Resumption

d Suspending a process simply means prohibiting the process from using the processor

d When suspending, the operating system must

– Save pertinent information about the state of the process, such as where it is
executing, the contents of general purpose registers, etc.

– Set the state variable in the process table entry to indicate that the process is
suspended

d When resuming, the operating system must

– Allow the process to use the processor once again

– Change the state to indicate that process is eligible

Xinu – module 6 6 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A State For Suspended Processes

d A suspended process is not ready, nor is it current

d Therefore, a new process state is needed

d The code uses constant PR_SUSP to indicate that a process is in the suspended state

Xinu – module 6 7 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

State Transitions For Suspension And Resumption

READY CURRENT

resched

resched

SUSPENDED
suspendresume

suspend

d As the diagram shows, only a current or ready process can be suspended

d Only a suspended process can be resumed

d System calls suspend and resume handle the transitions

Xinu – module 6 8 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Suspended Processes

d Where is a process kept when it is suspended?

d Answer:

– Unlike ready processes, there is no list of suspended processes

– However, information about a suspended process remains in the process table

– The process’s stack remains allocated in memory

Xinu – module 6 9 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Suspending One’s Self

d The currently executing process can suspend itself!

d Self-suspension is straightforward: just call

suspend(getpid())

d When suspend is asked to suspend the current process, it

– Finds its entry in the process table, proctab[currpid]

– Sets the state in its process table entry to PR_SUSP, indicating that it should be
suspended

– Calls resched to reschedule to another process

Xinu – module 6 10 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Note About System Calls

d An operating system contains many functions that can be divided into two basic
categories

– Some functions are defined to be system calls, which means that applications can
call them to access services

– Other functions are merely internal functions used by other operating system
functions

d We use the type syscall to distinguish system calls

d Notes

– Xinu does not prohibit applications from making direct calls to internal operating
system functions or referencing operating system variables

– However, good programming practice restricts applications to system calls (e.g., use
getpid() instead of referencing currpid)

Xinu – module 6 11 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Concurrent Execution Of System Calls

d Important concept: multiple processes can attempt to execute a given system call
concurrently

d Concurrent execution can result in problems

– Process A starts to change variables, such as process table entries

– The OS switches to another process, B

– When process B examines variables, they are inconsistent

d Even trivial operations can cause problems when performed concurrently

Xinu – module 6 12 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Preventing Concurrent Execution By Disabling Interrupts

d To prevent other processes from changing global data structures, a system call function
can disable interrupts

d A later section of the course will explain interrupts; for now, it is sufficient to know that
a system call must use two functions related to interrupts

– Function disable is called to turn off hardware interrupts; the function returns a
mask value that specifies whether interrupts were previously disabled or enabled

– Function restore takes as an argument a mask value that was previously obtained
from disable, and sets the hardware interrupt status according to the specified mask

d Basically, a system call uses disable upon being called, and uses restore just before it
returns

d Note that restore must be called before any return

d The next slide illustrates the general structure of a system call

Xinu – module 6 13 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Template For System Calls

syscall function_name(args) {

intmask mask; /* interrupt mask*/

mask = disable(); /* disable interrupts at start of function*/

if (args are incorrect) {
restore(mask); /* restore interrupts before error return*/
return SYSERR;

}

... other processing...

if (an error occurs) {
restore(mask); /* restore interrupts before error return*/
return SYSERR;

}

...more processing...

restore(mask); /* restore interrupts before normal return*/
return appropriate value ;

}
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
22

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
122

Xinu – module 6 14 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Suspend System Call (Part 1)

/* suspend.c - suspend */

#include <xinu.h>

/*--
* suspend - Suspend a process, placing it in hibernation
*--
*/

syscall suspend(
pid32 pid /* ID of process to suspend */

)
{

intmask mask; /* Saved interrupt mask */
struct procent *prptr; /* Ptr to process's table entry */
pri16 prio; /* Priority to return */

mask = disable();
if (isbadpid(pid) || (pid == NULLPROC)) {

restore(mask);
return SYSERR;

}

Xinu – module 6 15 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Suspend System Call (Part 2)

/* Only suspend a process that is current or ready */

prptr = &proctab[pid];
if ((prptr->prstate != PR_CURR) && (prptr->prstate != PR_READY)) {

restore(mask);
return SYSERR;

}
if (prptr->prstate == PR_READY) {

getitem(pid); /* Remove a ready process */
/* from the ready list */

prptr->prstate = PR_SUSP;
} else {

prptr->prstate = PR_SUSP; /* Mark the current process */
resched(); /* suspended and resched. */

}
prio = prptr->prprio;
restore(mask);
return prio;

}

Xinu – module 6 16 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Process Resumption

d The idea: resume execution of previously suspended process

d A detail: resume returns the priority of the resumed process

d Method

– Make the process eligible to use the processor again

– Re-establish the scheduling invariant

d Steps

– Move the suspended process back to the ready list

– Change the state from suspended to ready

– Call resched

d Note: resumption does not guarantee instantaneous execution of the resumed process

Xinu – module 6 17 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Moving A Process To The Ready List

d We will see that several system calls are needed to make a process ready

d To make it easy, Xinu includes an internal function named ready that makes a process
ready

d Ready takes a process ID as an argument

d The steps are

– Change the process’s state to PR_READY

– Insert the process onto the ready list

– Ensure that the scheduling invariant is enforced

Xinu – module 6 18 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

An Internal Function To Make A Process Ready
/* ready.c - ready */

#include <xinu.h>

qid16 readylist; /* Index of ready list */

/*--
* ready - Make a process eligible for CPU service
*--
*/

status ready(
pid32 pid /* ID of process to make ready */

)
{

register struct procent *prptr;

if (isbadpid(pid)) {
return SYSERR;

}

/* Set process state to indicate ready and add to ready list */

prptr = &proctab[pid];
prptr->prstate = PR_READY;
insert(pid, readylist, prptr->prprio);
resched();

return OK;
}

Xinu – module 6 19 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Enforcing The Scheduling Invariant

d When a process is moved to the ready list, the process becomes eligible to use the
processor again

d Recall that when the set of eligible processes changes, the scheduling invariant specifies
that we must check whether a new process should execute

d Consequence: after it moves a process to the ready list, ready must re-establish the
scheduling invariant

d Surprisingly, ready does not check the scheduling invariant explicitly, but instead
simply calls resched

d We can now appreciate the design of resched: if the newly ready process has a lower
priority than the current process, resched returns without switching context and the
current process remains running

Xinu – module 6 20 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Resume System Call (Part 1)

/* resume.c - resume */

#include <xinu.h>

/*--
* resume - Unsuspend a process, making it ready
*--
*/

syscall resume(
pid32 pid /* ID of process to unsuspend */

)
{

intmask mask; /* Saved interrupt mask */
struct procent *prptr; /* Ptr to process's table entry */
pri16 prio; /* Priority to return */

mask = disable();
if (isbadpid(pid)) {

restore(mask);
return SYSERR;

}

Xinu – module 6 21 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Resume System Call (Part 2)

prptr = &proctab[pid];
if (prptr->prstate != PR_SUSP) {

restore(mask);
return SYSERR;

}
prio = prptr->prprio; /* Record priority to return */
ready(pid);
restore(mask);
return 0xffff & prio;

}

d Consider the code for resume and ready

d By calling ready, resume does not need code to insert a process on the ready list, and
by calling resched, ready does not need code to re-establish the scheduling invariant

d The point: choosing OS functions carefully means software at successive levels will be
small and elegant

Xinu – module 6 22 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Keeping Processes On A List

d We have seen that suspended processes are not placed on any list

d Why not?

– Function resume requires the caller to supply an argument that specifies the ID of
the process to be resumed

– We will see that no other operating system functions operate on suspended
processes or handle the entire set of suspended processes

d Consequence: there is no reason to keep a list of suspended processes

d In general: an operating system only places a process on a list if a function needs to
handle an entire set of processes that are in a given state (e.g., the scheduler needs to
find the highest priority ready process)

Xinu – module 6 23 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Summary Of Process Suspension And Resumption

d An OS offers functions that can change a process’s state

d Xinu allows a process to be

– Suspended temporarily

– Resumed later

d A state variable associated with each process records the process’s current status

d When resuming a process, the scheduling invariant must be re-established

Xinu – module 6 24 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Something To Think About

d Resume returns the priority of the resumed process

d The code

– Extracts the priority from the process table entry

– Makes the process ready

– Returns the extracted priority to its caller

d Is the value returned guaranteed to be the priority of the process?

d Remember that in a concurrent environment, other processes can run at any time, and
an arbitrary amount of time can pass between any two instructions

Xinu – module 6 25 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Process Creation And Termination

Process Creation

d Process creation and termination use the memory manager

d Creation

– Allocates a stack for the process being created

– Fills in process table entry

– Fills in the process’s stack to have a valid frame

d Two design decisions arise

– Choose an initial state for the process

– Choose an action for the case where a process “returns” from the top-level function

Xinu – module 6 27 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Xinu Design

d The initial state of a new process

– A process is created in the suspended state

– Consequence: execution can only begin after the process is resumed

d Return from top-level function

– Causes the process to exit (similar to Unix)

– Implementation: place a “pseudo call” on the stack (make it appear that the top-level
function in the process was called)

– Initialize the return address in the pseudo call to INITRET

d Note: INITRET is defined to be function userret

d Function userret causes the current process to exit

Xinu – module 6 28 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Function Userret

/* userret.c - userret */

#include <xinu.h>

/*--
* userret - Called when a process returns from the top-level function
*--
*/

void userret(void)
{

kill(getpid()); /* Force process to exit */
}

Xinu – module 6 29 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Pseudo Call On An Initial Stack

d Seems straightforward

d Is actually extremely tricky

d The trick: arrange the stack as if the new process was stopped in a call to ctxsw

d Several details make it difficult

– Ctxsw runs with interrupts disabled, but a new process should start with interrupts
enabled

– We must store arguments for the new process so that the top-level function receives
them

d We will examine code for process creation after looking at process termination

Xinu – module 6 30 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Process Termination

Killing A Process

d Formally known as process termination

d The action taken depends on the state of the process

– If a process is on a list, it must be removed

– If a process is waiting on a semaphore, the semaphore count must be adjusted

d In Xinu, function kill implements process termination

Xinu – module 6 32 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Implementation Of Kill (Part 1)

/* kill.c - kill */

#include <xinu.h>

/*--
* kill - Kill a process and remove it from the system
*--
*/

syscall kill(
pid32 pid /* ID of process to kill */

)
{

intmask mask; /* Saved interrupt mask */
struct procent *prptr; /* Ptr to process's table entry */
int32 i; /* Index into descriptors */

mask = disable();
if (isbadpid(pid) || (pid == NULLPROC)

|| ((prptr = &proctab[pid])->prstate) == PR_FREE) {
restore(mask);
return SYSERR;

}
send(prptr->prparent, pid);
for (i=0; i<3; i++) {

close(prptr->prdesc[i]);
}

Xinu – module 6 33 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Implementation Of Kill (Part 2)
freestk(prptr->prstkbase, prptr->prstklen);

switch (prptr->prstate) {
case PR_CURR:

prptr->prstate = PR_FREE; /* Suicide */
resched();

case PR_SLEEP:
case PR_RECTIM:

unsleep(pid);
prptr->prstate = PR_FREE;
break;

case PR_WAIT:
semtab[prptr->prsem].scount++;
/* Fall through */

case PR_READY:
getitem(pid); /* Remove from queue */
/* Fall through */

default:
prptr->prstate = PR_FREE;

}

restore(mask);
return OK;

}

Xinu – module 6 34 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Killing The Current Process

d Look carefully at the code

– Step 1: free the process’s stack

– Step 2: perform other actions

d Consider what happens when a current process kills itself: the call to resched occurs
after the process’s stack has been freed

d Why does it work?

d Answer: because in Xinu, even after stack has been freed, the memory is still available
to the process

Xinu – module 6 35 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Xdone Function

d Function xdone is called when the count of user processes reaches zero

d Nothing further will happen — only the null process remains running

d The function prints a warning message for the user

/* xdone.c - xdone */

#include <xinu.h>

/*--
* xdone - Print system completion message as last process exits
*--
*/

void xdone(void)
{

kprintf("\n\nAll user processes have completed.\n\n");
halt(); /* Halt the processor */

}

Xinu – module 6 36 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Process Creation

The Steps For Process Creation

d Allocate a process table entry

d Allocate a stack

d Place values on the stack as if the top-level function was called (pseudo-call)

d Arrange the saved state on the stack so context switch can switch to the process

d Details depend on

– The hardware and calling conventions

– The way context switch is written

d Consider example code for ARM and x86 processors

Xinu – module 6 38 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Process Creation On ARM (Part 1)

/* create.c - create, newpid */

#include <xinu.h>

local int newpid();

/*--
* create - create a process to start running a procedure
*--
*/

pid32 create(
void *procaddr, /* procedure address */
uint32 ssize, /* stack size in bytes */
pri16 priority, /* process priority > 0 */
char *name, /* name (for debugging) */
uint32 nargs, /* number of args that follow */
...

)
{

intmask mask; /* interrupt mask */
pid32 pid; /* stores new process id */
struct procent *prptr; /* pointer to proc. table entry */
int32 i;
uint32 *a; /* points to list of args */
uint32 *saddr; /* stack address */

Xinu – module 6 39 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Process Creation On ARM (Part 2)

mask = disable();
if (ssize < MINSTK) {

ssize = MINSTK;
}
if ((priority < 1) || ((pid=newpid()) == SYSERR) ||

((saddr = (uint32 *)getstk(ssize)) == (uint32 *)SYSERR)) {
restore(mask);
return SYSERR;

}

prcount++;
prptr = &proctab[pid];

/* initialize process table entry for new process */

prptr->prstate = PR_SUSP; /* initial state is suspended */
prptr->prprio = priority;
prptr->prstkbase = (char *)saddr;
prptr->prstklen = ssize;
prptr->prname[PNMLEN-1] = NULLCH;
for (i=0 ; i<PNMLEN-1 && (prptr->prname[i]=name[i])!=NULLCH; i++)

;
prptr->prsem = -1;
prptr->prparent = (pid32)getpid();
prptr->prhasmsg = FALSE;

Xinu – module 6 40 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Process Creation On ARM (Part 3)

/* set up initial device descriptors for the shell */
prptr->prdesc[0] = CONSOLE; /* stdin is CONSOLE device */
prptr->prdesc[1] = CONSOLE; /* stdout is CONSOLE device */
prptr->prdesc[2] = CONSOLE; /* stderr is CONSOLE device */

/* Initialize stack as if the process was called */

*saddr = STACKMAGIC;

/* push arguments */
a = (uint32 *)(&nargs + 1); /* start of args */
a += nargs -1; /* last argument */
for (; nargs > 4 ; nargs--) /* machine dependent; copy args */

*--saddr = *a--; /* onto created process's stack */
*--saddr = (long)procaddr;
for(i = 11; i >= 4; i--)

*--saddr = 0;
for(i = 4; i > 0; i--) {

if(i <= nargs)
*--saddr = *a--;

else
*--saddr = 0;

}
--saddr = (long)INITRET; / push on return address */
--saddr = (long)0x00000053; / CPSR F bit set, */

/* Supervisor mode */
prptr->prstkptr = (char *)saddr;
restore(mask);
return pid;

}

Xinu – module 6 41 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Process Creation On ARM (Part 4)

/*--
* newpid - Obtain a new (free) process ID
*--
*/

local pid32 newpid(void)
{

uint32 i; /* iterate through all processes*/
static pid32 nextpid = 1; /* position in table to try or */

/* one beyond end of table */

/* check all NPROC slots */

for (i = 0; i < NPROC; i++) {
nextpid %= NPROC; /* wrap around to beginning */
if (proctab[nextpid].prstate == PR_FREE) {

return nextpid++;
} else {

nextpid++;
}

}
return (pid32) SYSERR;

}

Xinu – module 6 42 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Process Creation On X86 (Part 1)

/* create.c - create, newpid */

#include <xinu.h>

local int newpid();

/*--
* create - Create a process to start running a function on x86
*--
*/

pid32 create(
void *funcaddr, /* Address of the function */
uint32 ssize, /* Stack size in bytes */
pri16 priority, /* Process priority > 0 */
char *name, /* Name (for debugging) */
uint32 nargs, /* Number of args that follow */
...

)
{

uint32 savsp, *pushsp;
intmask mask; /* Interrupt mask */
pid32 pid; /* Stores new process id */
struct procent *prptr; /* Pointer to proc. table entry */
int32 i;
uint32 *a; /* Points to list of args */
uint32 *saddr; /* Stack address */

Xinu – module 6 43 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Process Creation On X86 (Part 2)

mask = disable();
if (ssize < MINSTK) {

ssize = MINSTK;
}
if ((priority < 1) || ((pid=newpid()) == SYSERR) ||

((saddr = (uint32 *)getstk(ssize)) == (uint32 *)SYSERR)) {
restore(mask);
return SYSERR;

}

prcount++;
prptr = &proctab[pid];

/* Initialize process table entry for new process */
prptr->prstate = PR_SUSP; /* Initial state is suspended */
prptr->prprio = priority;
prptr->prstkbase = (char *)saddr;
prptr->prstklen = ssize;
prptr->prname[PNMLEN-1] = NULLCH;
for (i=0 ; i<PNMLEN-1 && (prptr->prname[i]=name[i])!=NULLCH; i++)

;
prptr->prsem = -1;
prptr->prparent = (pid32)getpid();
prptr->prhasmsg = FALSE;

Xinu – module 6 44 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Process Creation On X86 (Part 3)

/* Set up stdin, stdout, and stderr descriptors for the shell */
prptr->prdesc[0] = CONSOLE;
prptr->prdesc[1] = CONSOLE;
prptr->prdesc[2] = CONSOLE;

/* Initialize stack as if the process was called */

*saddr = STACKMAGIC;
savsp = (uint32)saddr;

/* Push arguments */
a = (uint32 *)(&nargs + 1); /* Start of args */
a += nargs -1; /* Last argument */
for (; nargs > 0 ; nargs--) /* Machine dependent; copy args */

*--saddr = *a--; /* onto created process's stack*/
--saddr = (long)INITRET; / Push on return address */

Xinu – module 6 45 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Process Creation On X86 (Part 4)

/* The following entries on the stack must match what ctxsw */
/* expects a saved process state to contain: ret address, */
/* ebp, interrupt mask, flags, registers, and an old SP */

--saddr = (long)funcaddr; / Make the stack look like it's*/
/* half-way through a call to */
/* ctxsw that "returns" to the*/
/* new process */

--saddr = savsp; / This will be register ebp */
/* for process exit */

savsp = (uint32) saddr; /* Start of frame for ctxsw */
--saddr = 0x00000200; / New process runs with */

/* interrupts enabled */

/* Basically, the following emulates an x86 "pushal" instruction*/

--saddr = 0; / %eax */
--saddr = 0; / %ecx */
--saddr = 0; / %edx */
--saddr = 0; / %ebx */
--saddr = 0; / %esp; value filled in below */
pushsp = saddr; /* Remember this location */
--saddr = savsp; / %ebp (while finishing ctxsw) */
--saddr = 0; / %esi */
--saddr = 0; / %edi */
*pushsp = (unsigned long) (prptr->prstkptr = (char *)saddr);
restore(mask);
return pid;

}
Xinu – module 6 46 2025

Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Process Creation On X86 (Part 5)

/*--
* newpid - Obtain a new (free) process ID
*--
*/

local pid32 newpid(void)
{

uint32 i; /* Iterate through all processes*/
static pid32 nextpid = 1; /* Position in table to try or */

/* one beyond end of table */

/* Check all NPROC slots */

for (i = 0; i < NPROC; i++) {
nextpid %= NPROC; /* Wrap around to beginning */
if (proctab[nextpid].prstate == PR_FREE) {

return nextpid++;
} else {

nextpid++;
}

}
return (pid32) SYSERR;

}

Xinu – module 6 47 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

An Assessment Of Process Creation

d Process creation code is among the most difficult pieces of code to understand

d One must know

– The hardware architecture

– The function calling conventions

– The way ctxsw chooses to save state

– How interrupts are handled

d As you struggle to understand it, imagine trying to write such code

Xinu – module 6 48 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Create Added To The State Transition Diagram

READY CURRENT

resched

resched

SUSPENDED
suspendresume

suspend

create

Xinu – module 6 49 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Questions?

