Xinu—module 6

Module VI

M or e Process M anagement:
Process Suspension/Resumption
Process Creation And Termination

1
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Process M anipulation

e An OS needs system calls that can be used to control processes

e Example operations

Suspend a process (keep it from running)
Resume a previously-suspended process
Block a process to recelve a message from another process

Send a message to another process

e The OS uses the process state variable to record the status of the process

Xinu —module 6 2

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Process Suspension
And Resumption

L ocation Of Process Suspension And Resumption In The Hierarchy

Xinu—module 6 4 2025
Copyright 0 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Process Suspension And Resumption

e Theidea
— Temporarily “stop” a process
— Allow the process to be resumed later
e Questions
— What happens to the process while it is suspended?
— Can a process be suspended at any time?

— What happens if an attempt is made to resume a process that is not suspended?

Xinu—module 6 5 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Steps In Suspension And Resumption

e Suspending a process simply means prohibiting the process from using the processor
e When suspending, the operating system must

— Save pertinent information about the state of the process, such aswhere it is
executing, the contents of general purpose registers, etc.

— Set the state variable in the process table entry to indicate that the process is
suspended

e \When resuming, the operating system must
— Allow the process to use the processor once again

— Change the state to indicate that processis eligible

Xinu—module 6 6 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A State For Suspended Processes

e A suspended process is not ready, nor Is it current
e Therefore, a new process state is needed

e The code uses constant PR_SUSP to indicate that a process is in the suspended state

Xinu—module 6 7 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

State Transitions For Suspension And Resumption

resched

CURRENT

suspend

A

resume /////’—J—§\\\\\\ suspend
N SUSPENDED) /

N

e Asthe diagram shows, only a current or ready process can be suspended
e Only a suspended process can be resumed

e System calls suspend and resume handle the transitions

Xinu—module 6 8 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Suspended Processes

e \Whereis aprocess kept when it is suspended?
e Answer:
— Unlike ready processes, there is no list of suspended processes
— However, information about a suspended process remains in the process table

— The process's stack remains allocated in memory

Xinu—module 6 9 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Suspending One's Self

e The currently executing process can suspend itself!

e Self-suspension is straightforward: just call
suspend(get pi d())

e \When suspend is asked to suspend the current process, it
— Finds its entry in the process table, proctab| currpid]

— Sets the state in its process table entry to PR SUSP, indicating that it should be
suspended

— Calls resched to reschedule to another process

Xinu—module 6 10 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Note About System Calls

An operating system contains many functions that can be divided into two basic
categories

— Some functions are defined to be system calls, which means that applications can
call them to access services

— Other functions are merely internal functions used by other operating system
functions

We use the type syscall to distinguish system calls
Notes

— Xinu does not prohibit applications from making direct calls to internal operating
system functions or referencing operating system variables

— However, good programming practice restricts applications to system calls (e.g., use
getpid() instead of referencing currpid)

Xinu —module 6 11 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Concurrent Execution Of System Calls

e |mportant concept: multiple processes can attempt to execute a given system call
concurrently

e Concurrent execution can result in problems
— Process A gtarts to change variables, such as process table entries
— The OS switches to another process, B
— When process B examines variables, they are inconsi stent

e FEventrivia operations can cause problems when performed concurrently

Xinu —module 6 12 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Preventing Concurrent Execution By Disabling Interrupts

To prevent other processes from changing global data structures, a system call function
can disable interrupts

A later section of the course will explain interrupts; for now, it is sufficient to know that
a system call must use two functions related to interrupts

— Function disable is called to turn off hardware interrupts; the function returns a
mask value that specifies whether interrupts were previously disabled or enabled

— Function restore takes as an argument a mask value that was previously obtained
from disable, and sets the hardware interrupt status according to the specified mask

Basically, a system call uses disable upon being called, and uses restore just before it
returns

Note that restore must be called before any return
The next dide illustrates the general structure of a system call

Xinu —module 6 13 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Template For System Calls

syscal | function_ name(args) {
i nt msk mask; [* interrupt mask* /
mask = di sabl e(); / * disableinterrupts at start of function* /

i f (argsareincorrect)
restore(mask); /* restoreinterrupts before error return* /
return SYSERR;

. other processing. . .

i f (anerror occurs) {
restore(mask); /* restoreinterrupts before error return* /
return SYSERR;

. more processing. . .
restore(msk); | * restore interrupts before normal return* /
return appropriate value ;
Xinu—module 6 14 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Suspend System Call (Part 1)

/* suspend.c - suspend */

#1 ncl ude <xi nu. h>

| ® o L L e o
* suspend - Suspend a process, placing it in hibernation
*_ _ e - - —-—_—— Y e Y Y Y L Lo
* |
syscal | suspend(
pi d32 pi d /* 1D of process to suspend
)
{

Xinu—module 6

| nt mask mask;
struct procent *prptr;
pril6 pri o;

mask = di sabl e();

Saved interrupt mask
Ptr to process's table entry
Priority to return

S~ S Y~
* X X

i f (isbadpid(pid) || (pid == NULLPROC)) {

rest or e(mask) ;
return SYSERR;

15
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

*/
*/
*/

2025

Xinu—module 6

The Suspend System Call (Part 2)

/* Only suspend a process that is current or ready */

prptr = &proctab[pid];

if ((prptr->prstate = PR CURR) && (prptr->prstate != PR _READY)) {

rest or e(mask) ;
return SYSERR;

i f (prptr->prstate ==
getiten(pid);
prptr->prstate

} else {
prptr->prstate
resched();

}

prio = prptr->prprio;
rest or e(mask) ;
return prio;

PR _READY) {
/* Renove a ready process
[* fromthe ready I|i st
= PR _SUSP;
= PR _SUSP; Mark the current process

/*
[* suspended and resched.

16
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

*/
*/

*/
*/

2025

Process Resumption

e Theidea resume execution of previously suspended process
e A detall: resume returns the priority of the resumed process
e Method

— Make the process dligible to use the processor again

— Re-establish the scheduling invariant
e 3Steps

— Move the suspended process back to the ready list

— Change the state from suspended to ready

— Call resched

e Note: resumption does not guarantee instantaneous execution of the resumed process

Xinu—module 6 17 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Moving A Process To The Ready List

e We will see that several system calls are needed to make a process ready

e To make it easy, Xinu includes an internal function named ready that makes a process
ready

e Ready takes a process ID as an argument

e The steps are
— Change the process's state to PR_ READY
— Insert the process onto the ready list

— Ensure that the scheduling invariant is enforced

Xinu—module 6 18 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

An Internal Function To Make A Process Ready

/* ready.c - ready */

#1 ncl ude <xi nu. h>

gi d16 readyl i st; /* Index of ready I|i st */
| ® o e e e o o e m— e
* ready - Make a process eligible for CPU service
*/
status ready(
pi d32 pi d /* 1D of process to nake ready */
)
{

regi ster struct procent *prptr;

I f (isbadpid(pid)) {
return SYSERR:
}

/* Set process state to indicate ready and add to ready |ist */

prptr = &proctab[pid];

prptr->prstate = PR READY;

i nsert(pid, readylist, prptr->prprio);
resched();

return OK;
}

Xinu—module 6 19
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Enforcing The Scheduling I nvariant

e \When a process is moved to the ready list, the process becomes eligible to use the
Processor again

e Recall that when the set of eligible processes changes, the scheduling invariant specifies
that we must check whether a new process should execute

e Conseguence: after it moves a process to the ready list, ready must re-establish the
scheduling invariant

e Surprisingly, ready does not check the scheduling invariant explicitly, but instead
simply calls resched

e \We can now appreciate the design of resched: if the newly ready process has a lower
priority than the current process, resched returns without switching context and the
current process remains running

Xinu—module 6 20 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Resume System Call (Part 1)

/[* resune.c - resune */

#i ncl ude

*/
syscal |

<xi nu. h>
| ® o L L e o
me - Unsuspend a process, naking it ready
*_ _ e - - —-—_—— Y e Y Y Y L Lo
resume(
pi d32 pi d /* | D of process to unsuspend
)

Xinu—module 6

| nt mask mask;
struct procent *prptr;
pril6 pri o;

mask = di sabl e();

I f (isbadpid(pid)) {
rest or e(mask) ;
return SYSERR;

Saved interrupt mask
Ptr to process's table entry
Priority to return

S~ S Y~
* X X

21
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

*/
*/
*/

2025

The Resume System Call (Part 2)

prptr = &proctab[pid];

i f (prptr->prstate != PR SUSP) {
rest or e(mask) ;
return SYSERR;

}
prio = prptr->prprio; /* Record priority to return */
ready(pid);

rest ore(mask) ;
return Oxffff & prio;

e Consider the code for resume and ready

e By calling ready, resume does not need code to insert a process on the ready list, and
by calling resched, ready does not need code to re-establish the scheduling invariant

e The point: choosing OS functions carefully means software at successive levels will be
small and elegant

Xinu—module 6 22 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Keeping Processes On A List

e \We have seen that suspended processes are not placed on any list
e Why not?

— Function resume requires the caller to supply an argument that specifies the ID of
the process to be resumed

— We will see that no other operating system functions operate on suspended
processes or handle the entire set of suspended processes

e Conseguence: there is no reason to keep alist of suspended processes

e |n general: an operating system only places a process on alist if a function needs to
handle an entire set of processes that are in a given state (e.g., the scheduler needs to
find the highest priority ready process)

Xinu—module 6 23 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Summary Of Process Suspension And Resumption

e An OS offers functions that can change a process's state
e Xinu allows a process to be
— Suspended temporarily
— Resumed later
e A state variable associated with each process records the process's current status

e \When resuming a process, the scheduling invariant must be re-established

Xinu—module 6 24 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Something To Think About

e Resume returns the priority of the resumed process
e The code
— Extracts the priority from the process table entry
— Makes the process ready
— Returns the extracted priority to its caller
e |sthe vaue returned guaranteed to be the priority of the process?

e Remember that in a concurrent environment, other processes can run at any time, and
an arbitrary amount of time can pass between any two instructions

Xinu—module 6 25 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Process Creation And Termination

Process Creation

e Process creation and termination use the memory manager
e (Creation

— Allocates a stack for the process being created

— FHillsin process table entry

— Fillsin the process's stack to have avalid frame
e Two design decisions arise

— Choose an initial state for the process

— Choose an action for the case where a process “returns’ from the top-level function

Xinu —module 6 27 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Xinu Design

e Theinitial state of a new process

— A process is created in the suspended state

— Conseguence: execution can only begin after the process is resumed
e Return from top-level function

— Causes the process to exit (ssmilar to Unix)

— Implementation: place a “pseudo call” on the stack (make it appear that the top-level
function in the process was called)

— Initialize the return address in the pseudo call to INITRET
e Note INITRET is defined to be function userret

e [Function userret causes the current process to exit

Xinu—module 6 28 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Function Userret

[* userret.c - userret */

#1 ncl ude <xi nu. h>

| F e e o e e o e e o e aa

* userret - Called when a process returns fromthe top-1level function

*_ _ e - - —-—_—— Y e Y Y Y L Lo

*/
voi d userret (voi d)
{

kill (getpid()); /* Force process to exit */

}
Xinu—module 6 29 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Pseudo Call On An Initial Stack

e Seems straightforward
e |sactually extremely tricky

e Thetrick: arrange the stack as If the new process was stopped in a call to ctxsw

e Severa details make it difficult

— Ctxsw runs with interrupts disabled, but a new process should start with interrupts
enabled

— We must store arguments for the new process so that the top-level function receives
them

e We will examine code for process creation after looking at process termination

Xinu—module 6 30 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Process Termination

Killing A Process

e Formally known as process termination
e The action taken depends on the state of the process
— If aprocessison alist, it must be removed

— If aprocess is waiting on a semaphore, the semaphore count must be adjusted

e |n Xinu, function kill implements process termination

32 2025

Xinu —module 6
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

[* Kkill.

C =

Xinu Implementation Of Kill (Part 1)

kill */

#1 ncl ude <xi nu. h>

*/
syscal |

Xinu—module 6

Kill
pi
)

I nt mask nask;

stru
I nt 3

mask
It (

}

send
f or

}

(
d32 pi d /* | D of process to kill

Saved interrupt mask

S~ S Y~
* X ¥

ct procent *prptr; Ptr to process's table entry

2 | ; | ndex into descriptors

= di sabl e();

| sbadpi d(pid) || (pid == NULLPROC)

|| ((prptr = &proctab[pid])->prstate) == PR FREE) {
rest or e(mask) ;
return SYSERR;

(prptr->prparent, pid);

(1=0; i<3; i++) {
cl ose(prptr->prdesc[i]);

33
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

*/

*/
*/
*/

2025

Xinu Implementation Of Kill (Part 2)

freestk(prptr->prstkbase, prptr->prstklen);

switch (prptr->prstate) {

case PR _CURR:
prptr->prstate = PR _FREE; [* Suicide */
resched();

case PR _SLEEP:

case PR _RECTI M
unsl eep(pi d);
prptr->prstate = PR _FREE;
br eak;

case PR VAIT:
sent ab[prptr->prsenj.scount ++;
/* Fall through */

case PR _READY:
getitenm(pid); /* Renove from queue */
[* Fall thr ough */

def aul t:
prptr->prstate = PR _FREE;
}
rest ore(mask) ;
return OK;
}
Xinu —module 6 34

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Killing The Current Process

e |ook carefully at the code
— Step 1. free the process's stack
— Step 2: perform other actions

e Consider what happens when a current process kills itself: the call to resched occurs
after the process's stack has been freed

e \Why does it work?

e Answer: because in Xinu, even after stack has been freed, the memory is still available
to the process

Xinu—module 6 35 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Xdone Function

e Function xdone is called when the count of user processes reaches zero
e Nothing further will happen — only the null process remains running

e The function prints a warning message for the user

[* xdone.c - xdone */

#1 ncl ude <xi nu. h>

| ® o e e e o o e
* xdone Print system conpletion nessage as | ast process exits
K o o o o e Y e Y e Y e Y Y Y Y e Y e Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y M Y Y Y Y Y e e
*/
voi d xdone(voi d)
{
kprintf("\n\nAll user processes have conpleted.\n\n");
hal t (); /* Halt the processor */
}
Xinu—module 6 36 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Process Creation

The Steps For Process Creation

e Allocate a process table entry
e Allocate a stack
e Place values on the stack as if the top-level function was called (pseudo-call)
e Arrange the saved state on the stack so context switch can switch to the process
e Details depend on
— The hardware and calling conventions
— The way context switch is written

e Consider example code for ARM and x86 processors

Xinu—module 6 38 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Process Creation On ARM (Part 1)

/|* create.c - create, newid */

#1 ncl ude <xi nu. h>

| ocal i nt newpi d() ;
e 5 5 C 5 C 0 C 0 O c O C 0 C 00000 C 000000000000 C 00 0c 000 c0c 0o 0C Do Do Do OO DO S0 c 0 c 0 c00s
* Ccreate - create a process to start running a procedure
*_ _ e - - —-—_—— Y e Y Y Y L Lo
*/
pi d32 creat e(
voi d *procaddr, /* procedure address */
ui nt 32 Sssi ze, /* stack size in bytes */
pri 16 priority, /* process priority >0 */
char *nane, /* nanme (for debuggi ng) */
ui nt 32 nar gs, /* nunber of args that follow */
)
{ . |
I nt mask mask; /[* interrupt mask */
pi d32 pi d; /* stores new process id */
struct procent *prptr; /* pointer to proc. table entry */
i nt 32 I ;
ui nt 32 *a, /* points to |list of args */
ui nt 32 *saddr; /* stack address */
Xinu—module 6 39 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Process Creation On ARM (Part 2)

mask = di sabl e();

I f (ssize < M NSTK) {
ssize = M NSTK;

}

if ((priority <1) || ((pid=newid()) == SYSERR) ||
((saddr = (uint32 *)getstk(ssize)) == (uint32 *)SYSERR)) {
rest or e(mask) ;
return SYSERR;

}

prcount ++;
prptr = &proctab[pid];

/[* initialize process table entry for new process */

prptr->prstate = PR_SUSP; /* initial state i s suspended */
prptr->prprio = priority;

prptr->prstkbase = (char *)saddr;

prptr->prstklen = ssize;

prptr->prnanme[PNMLEN- 1] = NULLCH;

for (1=0 ; 1<PNMLEN-1 && (prptr->prnane[i]=nane[i])!=NULLCH; i ++)

prptr->p}sen1: -1;
prptr->prparent = (pid32)getpid();
prptr->prhasnsg = FALSE;
Xinu—module 6 40 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

}

Xinu—module 6

Process Creation On ARM (Part 3)

/* set up initial device descriptors for the shell

pr ptr->prdesc] 0]
prptr->prdesc| 1]
prptr->prdesc| 2]

= CONSOLE; [* stdin s CONSOLE device
= CONSOLE; [* stdout is CONSOLE devi ce
= CONSOLE; /|* stderr is CONSOLE devi ce

/* Initialize stack as if the process was call ed
*saddr = STACKMAG C;
/* push argunents */

a = (uint32 *)(&nargs + 1); /* start of args
a += nargs -1; /* 1l ast argunent
for (; nargs > 4 ; nargs--) /* machi ne dependent; copy args
*--saddr = *a--; /* onto created process's stack
*--saddr = (1ong) procaddr;
for(i = 11; 1 >=4; i--)
*--saddr = O;
for(i =4; i >0; 1--) {
i f (I <= nargs)
*--saddr = *a--;
el se
*--saddr = 0O;
--saddr = (long) !l N TRET; / push on return address
--saddr = (1 ong)0x00000053; / CPSR F bit set,
/* Supervisor node
Kk

prptr->prst

return pid;

ptr = (char *)saddr;
rest or e(mask) ;

41
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

*/
*/
*/
*/

*/

*/
*/
*/
*/

*/
*/
*/

2025

Process Creation On ARM (Part 4)

| ® o e e e o o e
* newpid - Cbtain a new (free) process ID
T

| ocal pi d32 newpi d(voi d)

{

uint32 i; /* iterate through all processes*/
static pid32 nextpid = 1; /* position in table to try or */
/* one beyond end of table */
/* check all NPROC slots */
for (i = 0; i < NPRCC;, i1++) {
next pid % NPROC, /* wrap around to begi nning */
i f (proctab[nextpid].prstate == PR FREE) {
return nextpid++;
} else {
next pi d++;
) }
return (pid32) SYSERR,
}
Xinu—module 6 42

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

[* creat

e.c - Cr

eate, newpid */

#1 ncl ude <xi nu. h>

| ocal i nt newpi d() ;
e 5 5 C 5 C 0 C 0 O c O C 0 C 00000 C 000000000000 C 00 0c 000 c0c 0o 0C Do Do Do OO DO S0 c 0 c 0 c00s
* create - Create a process to start running a function on x86
*_ _ e - - —-—_—— Y e Y Y Y L Lo
*/
pi d32 creat e(
voi d *funcaddr, /* Address of the function
ui nt 32 Sssi ze, /* Stack size in bytes
pri 16 priority, /* Process priority >0
char *nane, /* Nanme (for debuggi ng)
ui nt 32 nar gs, /* Nunber of args that foll ow
)
{ |
ui nt 32 savsp, *pushsp;
| nt mask mask; /* I nterrupt mask
pi d32 pi d; /* Stores new process id
struct procent *prptr; /* Pointer to proc. table entry
| nt 32 |
ui nt 32 *a, /* Points to list of args
ui nt 32 *saddr; /* Stack address

Xinu—module 6

Process Creation On X86 (Part 1)

43
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

*/
*/
*/
*/
*/

*/
*/
*/

*/
*/

2025

Process Creation On X86 (Part 2)

mask = di sabl e();

I f (ssize < M NSTK) {
ssize = M NSTK;

}

|

f ((priority <1) || ((pid=newpid()) == SYSERR) ||
((saddr = (uint32 *)getstk(ssize)) == (uint32 *)SYSERR)) {
rest or e(mask) ;
return SYSERR;

}

prcount ++;
prptr = &proctab[pid];

/[* Initialize process table entry for new process */
prptr->prstate = PR _SUSP; /* Initial state i s suspended */
prptr->prprio = priority;

prptr->prstkbase = (char *)saddr;

prptr->prstklen = ssize;

prptr->prnane[PNMLEN- 1] = NULLCH,;

for (i=0; i1<PNMLEN-1 && (prptr->prnane[i]=nanme[i])!=NULLCH;, i ++)

prptr->p}sen1: -1;
prptr->prparent = (pid32)getpid();
prptr->prhasnsg = FALSE;
Xinu—module 6 44 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu—module 6

Process Creation On X86 (Part 3)

/* Set up stdin, stdout, and stderr descriptors for the shell */
prptr->prdesc[0] = CONSCLE;
prptr->prdesc[1l] = CONSCLE;
prptr->prdesc[2] = CONSOLE;
/* Initialize stack as if the process was call ed */

*saddr = STACKMAG C,
savsp = (uint32)saddr;

/* Push argunents */

a = (uint32 *)(&nargs + 1); /* Start of args */
a += nargs -1; /* Last argunent */
for (; nargs > 0 ; nargs--) /* Machi ne dependent; copy args */

*--saddr = *a--; /* onto created process's stack*/
--saddr = (long) I N TRET; / Push on return address */

45
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

}

Xinu—module 6

Process Creation On X86 (Part 4)

/* The followi ng entries on the stack nust nmatch what ctxsw */

[* expects a saved process state to contain: ret address, */

[* ebp, interrupt mask, flags, registers, and an old SP */

--saddr = (long)funcaddr; / Make the stack ook like it's*/
[* hal f-way through a call to */
/* ctxsw that "returns" to the*/
/* new process */

--saddr = savsp; /[This will be register ebp */
/* for process exit */

savsp = (uint32) saddr; /[* Start of frame for ctxsw */

--saddr = 0x00000200; / New process runs with */
/* I nterrupts enabl ed */

/* Basically, the follow ng enulates an x86 "pushal" instruction*/

--saddr = O; / Y%eax */

--saddr = O; / Y%ecx */

--saddr = O; [Y%edx */

--saddr = 0O; [Y%ebx */

--saddr = O; / %sp; value filled in below */

pushsp = saddr; /* Remenber this |ocation */

--saddr = savsp; / % bp (while finishing ctxsw) */

--saddr = 0O; [Y%esi */

--saddr = O; [Y%edi */

*pushsp = (unsigned | ong) (prptr->prstkptr = (char *)saddr);
rest or e(mask) ;
return pid;

46
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Process Creation On X86 (Part 5)

| ® o e e e o o e
* newpid - Cbtain a new (free) process ID
T

| ocal pi d32 newpi d(voi d)

{

uint32 i; /* lterate through all processes*/
static pid32 nextpid = 1; /* Position in table to try or */
[* one beyond end of table */
/* Check all NPROC slots */
for (i = 0; i < NPROC; i++) {
next pid % NPROC, /* Wap around to begi nning */
i f (proctab[nextpid].prstate == PR FREE) {
return nextpid++;
} else {
next pi d++;
) }
return (pid32) SYSERR,
}
Xinu—module 6 47

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

An Assessment Of Process Creation

e Process creation code is among the most difficult pieces of code to understand
e One must know

— The hardware architecture

— The function calling conventions

— The way ctxsw chooses to save state

— How interrupts are handled

e Asyou struggle to understand it, imagine trying to write such code

Xinu —module 6 48 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Create Added To The State Transition Diagram

resched

CURRENT
suspend
resume //////’—l_ﬁ\\\\\\ suspend
N SUSPENDED)= /
create
Xinu—module 6 49 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Ouestions?

