
Module V

Process Management:
Scheduling And

Context Switching

Xinu – module 5 1 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Location Of The Process Manager In The Hierarchy

Xinu – module 5 2 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Review: What Is A Process?

d An abstraction known only to operating system

d The “running” of a program

d Runs concurrently with other processes

Xinu – module 5 3 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Fundamental Principle

d All computation must be done by a process

– No execution can be done by the operating system itself

– No execution can occur “outside” of a process

d Key consequence

– At any time, a process must be running

– An operating system cannot stop running a process unless it switches to another
process

Xinu – module 5 4 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Process Terminology

d Various terms have been used to denote a process

– Job

– Task

– Heavyweight process

– Lightweight process / thread

d Some of the differences are

– Address space allocation and variable sharing

– Longevity

– Whether the process is declared at compile time or created at run time

Xinu – module 5 5 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Lightweight Process

d AKA thread of execution

d Can share data (data and bss segments) with other threads

d Each thread has a private stack segment for

– Local variables

– Function calls

Xinu – module 5 6 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Heavyweight Process

d AKA Process with an uppercase “P”

d Pioneered in Mach and adopted by Linux

d A single address space with one or more threads

d One data segment per Process

d One bss segment per Process

d Each thread is bound to a single Process, and cannot move to another

Xinu – module 5 7 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Illustration Of Two Heavyweight
Processes And Their Threads

Process 1

TEXT1

DATA1 and BSS1

Process 2

TEXT2

DATA2 and BSS2

stack
for

thread
1

stack
for

thread
2

stack
for

thread
3

stack
for

thread
1

d Threads within a Process share text, data, and bss

d No sharing between Processes

d Threads within a Process cannot share stacks

Xinu – module 5 8 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Our Terminology

d The distinctions among task, thread, lightweight process, and heavyweight process are
important to some groups

d For this course, we will use the term “process” unless we are specifically talking about
the facilities in a specific system, such as Unix/Linux

Xinu – module 5 9 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Maintaining Processes

d Remember that a process is

– An OS abstraction unknown to hardware

– Created dynamically

d The pertinent information must be kept by OS

d The OS stores information in a central data structure

d The data structure

– Is called a process table

– Usually part of OS address space that is not accessible to applications

Xinu – module 5 10 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Information Kept In A Process Table

d For each process, the OS must keep the following

– A unique process identifier

– The owner of the process (e.g., a user)

– A scheduling priority

– The location of the code and all data (including the stack)

– The status of the computation

– The current program counter

– The current values for general-purpose registers

Xinu – module 5 11 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Information Kept In A Process Table
(continued)

d If a heavyweight process contains multiple threads, the process table must store
information for each thread

d Commercial systems may keep additional information, such as measurements of the
process used for accounting and billing

Xinu – module 5 12 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Xinu Process Model

d Xinu uses the simplest possible scheme

d Xinu is a single-user system, so there is no ownership

d Xinu uses one global context

d Xinu places all code and data in one global address space with

– No boundary between the OS and applications

– No protection

d Note: a Xinu process can access OS data structures directly, but good programming
practice requires applications to use system calls

Xinu – module 5 13 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Items In A Xinu Process Table

22
Field Purpose22

prstate The current status of the process (e.g., whether
the process is currently executing or waiting)22

prprio The scheduling priority of the process22

prstkptr The saved value of the process’s stack pointer
when the process is not executing22

prstkbase The address of the base of the process’s stack22

prstklen A limit on the maximum size that the process’s
stack can grow22

prname A name assigned to the process that humans
use to identify the process’s purpose

221
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Xinu – module 5 14 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Process State Field

d Used by the OS to manage processes

d Is set by the OS whenever process changes status (e.g., waits for I /O)

d Consists of a small integer value stored in the process table

d Is tested by the OS to determine

– Whether a requested operation is valid for a given process

– The meaning of an operation

Xinu – module 5 15 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Process States In Xinu
222

Constant Meaning222

PR_FREE The entry in the process table is unused
(not really a process state)222

PR_CURR The process is currently executing
222

PR_READY The process is ready to execute222

PR_RECV The process is waiting for a message222

PR_SLEEP The process is waiting for a timer222

PR_SUSP The process is suspended222

PR_WAIT The process is waiting on a semaphore222

PR_RECTIM The process is waiting for a timer
or a message, whichever occurs first

2221
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Xinu – module 5 16 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Constants For Process States

d Each process state is assigned a unique constant

d Definitions of process state Constants

/* Process state constants */

#define PR_FREE 0 /* process table entry is unused */
#define PR_CURR 1 /* process is currently running */
#define PR_READY 2 /* process is on ready queue */
#define PR_RECV 3 /* process waiting for message */
#define PR_SLEEP 4 /* process is sleeping */
#define PR_SUSP 5 /* process is suspended */
#define PR_WAIT 6 /* process is on semaphore queue */
#define PR_RECTIM 7 /* process is receiving with timeout */

d We will understand the purpose of each state as we consider the system design

Xinu – module 5 17 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Scheduling

Process Scheduling

d A fundamental part of process management

d Is performed by the OS

d Takes three steps

– Examine processes that are eligible for execution

– Select a process to run

– Switch the processor from the currently executing process to the selected process

Xinu – module 5 19 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Ready And Current States

d When a process is ready to run, but not actually running, the process is placed in the
ready state

d When a process is currently using the processor, the process is placed in the current
state

d On a single core processor, many processes can be in the ready state, but at most one
process can be current

Xinu – module 5 20 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Implementation Of Scheduling

d An OS designer starts with a scheduling policy that specifies which process to select

d The designer then builds a scheduling function that

– Selects a process according to the policy

– Updates the process table states for the current and selected processes

– Calls a context switch function to switch the processor from the current process to
the selected process

Xinu – module 5 21 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Scheduling Policy

d Determines how processes should be selected for execution

d The goal is usually fairness

d The selection may depend on

– The user’s priority

– How many processes the user owns

– The time a given process has been waiting to run

– The priority of the process

d The policy may be complex

d Note: both hierarchical and flat scheduling have been used

Xinu – module 5 22 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Scheduling Policy In Xinu

d Follows a real-time approach

d Each process is assigned a priority

– A non-negative integer value

– Assigned when a process is created

– Can be changed at any time

d The scheduler always chooses to run an eligible process that has highest priority

d The policy is implemented by a system-wide invariant

Xinu – module 5 23 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Xinu Scheduling Invariant

At any time, the processor must be executing a
highest priority eligible process. Among processes
with equal priority, scheduling is round robin.

d The invariant must be enforced whenever

– The set of eligible processes changes

– The priority of any eligible process changes

d Such changes only happen during a system call or an interrupt (i.e., can only happen
when running operating system code)

Xinu – module 5 24 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Implementation Of Scheduling

d A process is eligible if it is either ready to run but not running (i.e., its state is ready) or
currently executing (i.e., its state is current)

d To avoid searching the process table during scheduling

– Keep all ready processes on linked list called a ready list

– Order the ready list in descending order by process priority

– Scheduling is efficient because selection of a highest-priority process can be
performed in constant time merely by selecting the process at the head of the ready
list

Xinu – module 5 25 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu’s High-Speed Scheduling Decision

d Compare the priority of the currently executing process to the priority of first process on
ready list

– If the current process has a higher priority, do nothing (current process continues to
run)

– Otherwise, extract the first process from the ready list and perform a context switch
to switch the processor from the current process to the extracted process

d The current process will be moved back to the ready list if it remains eligible to run

d Note: the current process does not appear on the ready list; instead, the process ID of
the current process is stored in global variable currpid

Xinu – module 5 26 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Deferred Rescheduling

d The idea: temporarily delay rescheduling

d Also delay enforcement of the scheduling invariant

– A call to resched_cntl(DEFER_START) defers rescheduling

– A call to resched_cntl(DEFER_STOP) resumes normal scheduling

d Main purpose: allow a device driver to make multiple processes ready before any of
them run

d We will see an example later

d For now, just understand that the current process will not change during a deferred
rescheduling period; later in the course we will see how deferred rescheduling is used

Xinu – module 5 27 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Scheduler Details

d The scheduler uses an unusual argument paradigm

d Before calling the scheduler

– Global variable currpid gives ID of process that is currently executing

– proctab[currpid].prstate must be set to desired next state for the current process

d If current process remains eligible and has highest priority, the scheduler does nothing
(i.e., merely returns)

d Otherwise, the scheduler moves the current process to the specified state and runs the
highest priority ready process

Xinu – module 5 28 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Round-Robin Scheduling Of Equal-Priority Processes

d When inserting a process on the ready list, insert the process “behind” other processes
with the same priority

d When the scheduler switches context, the first process on ready list will be selected

d Note: the scheduler switches context if the first process on the ready list has priority
equal to the current process

d We will see how the implementation results in round-robin scheduling among equally
high-priority processes without a special case in the code

Xinu – module 5 29 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Scheduler Code (resched Part 1)

/* resched.c - resched, resched_cntl */

#include <xinu.h>

struct defer Defer;

/*--
* resched - Reschedule processor to highest priority eligible process
*--
*/

void resched(void) /* Assumes interrupts are disabled */
{

struct procent *ptold; /* Ptr to table entry for old process */
struct procent *ptnew; /* Ptr to table entry for new process */

/* If rescheduling is deferred, record attempt and return */

if (Defer.ndefers > 0) {
Defer.attempt = TRUE;
return;

}

/* Point to process table entry for the current (old) process */

ptold = &proctab[currpid];

Xinu – module 5 30 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Scheduler Code (resched Part 2)

if (ptold->prstate == PR_CURR) { /* Process remains eligible */
if (ptold->prprio > firstkey(readylist)) {

return;
}

/* Old process will no longer remain current */

ptold->prstate = PR_READY;
insert(currpid, readylist, ptold->prprio);

}

/* Force context switch to highest priority ready process */

currpid = dequeue(readylist);
ptnew = &proctab[currpid];
ptnew->prstate = PR_CURR;
preempt = QUANTUM; /* Reset time slice for process */
ctxsw(&ptold->prstkptr, &ptnew->prstkptr);

/* Old process returns here when resumed */

return;
}

Xinu – module 5 31 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Scheduler Code (resched Part 3)
/*--
* resched_cntl - Control whether rescheduling is deferred or allowed
*--
*/

status resched_cntl(/* Assumes interrupts are disabled */
int32 defer /* Either DEFER_START or DEFER_STOP */

)
{

switch (defer) {

case DEFER_START: /* Handle a deferral request */

if (Defer.ndefers++ == 0) {
Defer.attempt = FALSE;

}
return OK;

case DEFER_STOP: /* Handle end of deferral */
if (Defer.ndefers <= 0) {

return SYSERR;
}
if ((--Defer.ndefers == 0) && Defer.attempt) {

resched();
}
return OK;

default:
return SYSERR;

}
}

Xinu – module 5 32 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Contents Of resched.h

/* resched.h */

/* Constants and variables related to deferred rescheduling */

#define DEFER_START 1 /* Start deferred rescehduling */
#define DEFER_STOP 2 /* Stop deferred rescehduling */

/* Structure that collects items related to deferred rescheduling */

struct defer {
int32 ndefers; /* Number of outstanding defers */
bool8 attempt; /* Was resched called during the */

/* deferral period? */
};

extern struct defer Defer;

d Note: Defer.ndefers is set to zero when the system boots

Xinu – module 5 33 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Importance/Unimportance Of Process Scheduling

d Facts

– At one time, process scheduling was the primary research topic in operating
systems.

– Extremely complex scheduling algorithms were created to keep processes
proceeding

– By the 1990s, interest in scheduling algorithms had faded

– Now, almost no one uses complex scheduling algorithms

d Why did the topic fade?

d Was the problem completely solved?

d Answer: processors became so fast that processing is no longer a scarce resource

Xinu – module 5 34 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Process State Transitions

d Recall that each process has a “state”

d The state (prstate in the process table) determines

– Whether an operation is valid

– The semantics of each operation

d A transition diagram documents valid operations

Xinu – module 5 35 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Illustration Of Transitions Between The
Current And Ready States

READY CURRENT

resched

resched

d Single function (resched) moves a process in either direction between the two states

Xinu – module 5 36 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Context Switching

Context Switch

d Forms a basic part of the process manager

d Is low-level (i.e., manipulates the underlying hardware directly)

d Must be written in assembly language

d Is only called by the scheduler

d Actually moves the processor from one process to another

Xinu – module 5 38 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Saving State

d Recall: a processor only has one set of general-purpose registers

d The hardware may contain additional registers associated with a process (e.g., the
interrupt mode)

d When switching from one process to another, the operating system must

– Save a copy of all data associated with the current process (including the contents of
the general-purpose registers)

– Pick up all the previously-saved data associated with the new process (including the
contents of the general-purpose registers)

d Xinu uses the process stack to save the state

Xinu – module 5 39 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Illustration Of State Saved On Process Stack

memory

(a)

(b)

(c)

unused

unused

unused

stack space for current process

stack space for ready process b

stack space for ready process a

stack pointer (sp) points here

used

saved state for process b
used

saved state for process a

used

d The stack of each ready process contains saved state

Xinu – module 5 40 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Context Switch Operation

d Arguments specify the locations in the process table where the “old” process’s stack
pointer will be saved and the “new” process’s stack pointer was previously saved

d Push a copy of all information pertinent to the old process on its stack

– Contents of hardware registers

– The program counter (instruction pointer)

– Hardware privilege level and status

– The memory map and address space information

d Save the current stack pointer in the process table entry for the old process

...and then

Xinu – module 5 41 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Context Switch Operation
(continued)

...actually switch to the new process

d Pick up the stack pointer that was saved in the process table entry for the new process
and set the hardware stack pointer (i.e., switch the hardware from the old process’s
stack to the new process’s stack)

d Pop the previously saved information for the new process from its stack and place the
values in the hardware registers

d Resume execution at the place where the new process was last executing (i.e., return
from the context switch to resched)

Xinu – module 5 42 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Context Switch Code (Intel x86 Part 1)

/* ctxsw.S - ctxsw (for x86) */

.text

.globl ctxsw

/*--
* ctxsw - X86 context switch; the call is ctxsw(&old_sp, &new_sp)
*--
*/

ctxsw:
pushl %ebp /* Push ebp onto stack */
movl %esp,%ebp /* Record current SP in ebp */
pushfl /* Push flags onto the stack */
pushal /* Push general regs. on stack */

/* Save old segment registers here, if multiple allowed */

movl 8(%ebp),%eax /* Get mem location in which to */
/* save the old process's SP */

movl %esp,(%eax) /* Save old process's SP */
movl 12(%ebp),%eax /* Get location from which to */

/* restore new process's SP */

Xinu – module 5 43 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Context Switch Code (Intel x86 Part 2)

/* The next instruction switches from the old process's */
/* stack to the new process's stack. */

movl (%eax),%esp /* Pick up new process's SP */

/* Restore new seg. registers here, if multiple allowed */

popal /* Restore general registers */
movl 4(%esp),%ebp /* Pick up ebp before restoring */

/* interrupts */
popfl /* Restore interrupt mask */
add $4,%esp /* Skip saved value of ebp */
ret /* Return to new process */

Xinu – module 5 44 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Context Switch Code (ARM)

/* ctxsw.S - ctxsw (for ARM) */

.text

.globl ctxsw

/*--
* ctxsw - ARM context switch; the call is ctxsw(&old_sp, &new_sp)
*--
*/

ctxsw:
push {r0-r11, lr} /* Push regs 0 - 11 and lr */
push {lr} /* Push return address */
mrs r2, cpsr /* Obtain status from coprocess.*/
push {r2} /* and push onto stack */
str sp, [r0] /* Save old process's SP */
ldr sp, [r1] /* Pick up new process's SP */
pop {r0} /* Use status as argument and */
bl restore /* call restore to restore it */
pop {lr} /* Pick up the return address */
pop {r0-r12} /* Restore other registers */
mov pc, r12 /* Return to the new process */

Xinu – module 5 45 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Puzzle #1

d The Intel x86 is a CISC architecture with powerful instructions that may require many
clock cycles to execute

d ARM is a RISC architecture where each instruction performs one basic operation and
only requires one clock cycle

d Why is the Intel context switch code longer if instructions are more powerful?

Xinu – module 5 46 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Puzzle #2

d Our invariant says that at any time, a process must be executing

d The context switch code moves from one process to another

d Question: which process executes the context switch code?

Xinu – module 5 48 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Puzzle #3

d Our invariant says that at any time, one process must be executing

d Consider a situation in which all user processes are blocked (e.g., waiting for input)

d Which process executes?

Xinu – module 5 50 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Null Process

d Does not compute anything useful

d Is present merely to ensure that at least one process remains ready at all times

d Simplifies scheduling (i.e., there are no special cases)

Xinu – module 5 52 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Code For The Null Process

d The easiest way to code a null process is an infinite loop:

while(1)
; /* Do nothing */

d A loop may not be optimal because fetch-execute consumes power and takes bus cycles
that compete with I/ O devices using the bus

d There are two ways to optimize

– Some processors offer a special pause instruction that stops the processor until an
interrupt occurs

– Other processors have an instruction cache that means fetching the same instructions
repeatedly will not access the bus

Xinu – module 5 53 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Dilemma And A Clever Solution

d Consider saving the instruction pointer

d If ctxsw saves it along with other state information, the instruction pointer will specify
an instruction in the middle of ctxsw

d But then when ctxsw switches back to the process, the process will continue running in
ctxsw

d Solution: instead of saving the actual instruction pointer, save the return address (i.e.,
the address to which ctxsw will return

d result: when a process runs again, it will start immediately after the call to ctxsw (i.e.,
as if ctxsw returned to resched)

Xinu – module 5 54 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Summary

d Process management is a fundamental part of an operating system

d Information about processes is kept in process table

d A state variable associated with each process records the process’s activity

– Currently executing

– Ready, but not executing

– Suspended

– Waiting on a semaphore

– Receiving a message

Xinu – module 5 55 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Summary
(continued)

d Scheduler

– Is a key part of the process manager

– Implements a scheduling policy

– Chooses the next process to execute

– Changes information in the process table

– Calls the context switch to change from one process to another

– Is usually optimized for high speed

Xinu – module 5 56 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Summary
(continued)

d Context switch

– Is a low-level part of a process manager

– Moves the processor from one process to another

– Involves saving and restoring hardware register contents

d The null process

– Is needed so the processor has something to run when all user processes block to
wait for I/O

– Consists of an infinite loop

– Runs at the lowest priority

Xinu – module 5 57 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Questions?

