
Module IV

Lists Of Processes
And List Functions

Xinu – module 4 1 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Queues And Lists

d Keeping track of processes is fundamental throughout an operating system

d Various forms are needed

– FIFO queues of processes waiting for I/O devices

– Lists of processes kept in priority order for scheduling

– Lists of events ordered by the time they will occur

d Operations required

– Insert a process onto a list

– Extract the “next” process from a list

– Delete an arbitrary process (e.g., if the process is killed)

Xinu – module 4 2 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Lists And Queues In Xinu

d Important ideas

– A process is known by an integer process ID

– A list of processes really consists of a list of process IDs

d A single data structure can be used to store many types of process lists

Xinu – module 4 3 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Unified List Storage in Xinu

d All lists are doubly-linked, which means a node points to its predecessor and successor

d Each node stores a key as well as a process ID, even though the key is not used in a
FIFO list

d Each list has a head and tail; the head and tail nodes have the same shape as other
nodes

d Non-FIFO lists are always ordered in descending order according to the key values

d The key value in a head node is the maximum integer used as a key, and the key value
in the tail node is the minimum integer used as a key

Xinu – module 4 4 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Conceptual List Structure

– –25 4 14 2

HEAD TAIL

previous key process next

maximum key minimum key

d The example list contains two processes, 2 and 4

d Process 4 has key 25

d Process 2 has key 14

Xinu – module 4 5 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Pointers In An Empty List

– –

HEAD TAIL

maximum key minimum key

d In an empty list, the head and tail nodes are linked

d Having a head and tail eliminates special cases for insertion and deletion

Xinu – module 4 6 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Reducing The List Size

d Pointers can mean a large memory footprint, especially on a 64-bit computer

d Important concept: a process can appear on at most one list at any time

d Xinu uses two clever techniques to reduce the size of lists

– Relative pointers instead of memory addresses

– An implicit data structure

Xinu – module 4 7 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu List Optimizations

d Lists are stored in an array

– Each item in the array stores one node of the list

– Relative pointers: the array index is used to identify a node instead of an address

d Implicit data structure

– Let NPROC be the number of processes in the system

– Assign process IDs 0 through NPROC – 1

– Let ith element of the array correspond to process i, for 0 ≤ i < NPROC

– Store heads and tails in same array at positions NPROC and higher

Xinu – module 4 8 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

An Illustration Of An Array Holding The Xinu List Structure

..

.

.

.

.

..

.

KEY PREV NEXT

0

1

2

3

4

5

60

61

25 60 2

14 4 61

MAXKEY

MINKEY

–

–

4

2

NPROC – 1

each row corresponds
to a single process

pairs of rows form the
head and tail of a list

Head of example list

Tail of example list

conceptual boundary

Xinu – module 4 9 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Implementation

d A single array is used to hold all lists of processes

– The array is global and available throughout the entire OS

– The array is named queuetab

d Functions are available to manipulate lists

– Include tests, such as isempty, as well as insertion and deletion operations

– For efficiency, functions are implemented with inline macros when possible

d Example code shown after a discussion of types

Xinu – module 4 10 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Definitions From queue.h (Part 1)

/* queue.h - firstid, firstkey, isempty, lastkey, nonempty */

/* Queue structure declarations, constants, and inline functions */

/* Default # of queue entries: 1 per process plus 2 for ready list plus */
/* 2 for sleep list plus 2 per semaphore */
#ifndef NQENT
#define NQENT (NPROC + 4 + NSEM + NSEM)
#endif

#define EMPTY (-1) /* Null value for qnext or qprev index */
#define MAXKEY 0x7FFFFFFF /* Max key that can be stored in queue */
#define MINKEY 0x80000000 /* Min key that can be stored in queue */

struct qentry { /* One per process plus two per list */
int32 qkey; /* Key on which the queue is ordered */
qid16 qnext; /* Index of next process or tail */
qid16 qprev; /* Index of previous process or head */

};

extern struct qentry queuetab[];

Xinu – module 4 11 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Definitions From queue.h (Part 2)

/* Inline queue manipulation functions */

#define queuehead(q) (q)

#define queuetail(q) ((q) + 1)

#define firstid(q) (queuetab[queuehead(q)].qnext)

#define lastid(q) (queuetab[queuetail(q)].qprev)

#define isempty(q) (firstid(q) >= NPROC)

#define nonempty(q) (firstid(q) < NPROC)

#define firstkey(q) (queuetab[firstid(q)].qkey)

#define lastkey(q) (queuetab[lastid(q)].qkey)

/* Inline to check queue id assumes interrupts are disabled */

#define isbadqid(x) (((int32)(x) < NPROC) || (int32)(x) >= NQENT-1)

Xinu – module 4 12 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Code For Insertion And Deletion From A FIFO Queue (Part 1)
/* queue.c - enqueue, dequeue */

#include <xinu.h>

struct qentry queuetab[NQENT]; /* Table of process queues */

/*--
* enqueue - Insert a process at the tail of a queue
*--
*/

pid32 enqueue(
pid32 pid, /* ID of process to insert */
qid16 q /* ID of queue to use */

)
{

qid16 tail, prev; /* Tail & previous node indexes */

if (isbadqid(q) || isbadpid(pid)) {
return SYSERR;

}

tail = queuetail(q);
prev = queuetab[tail].qprev;

queuetab[pid].qnext = tail; /* Insert just before tail node */
queuetab[pid].qprev = prev;
queuetab[prev].qnext = pid;
queuetab[tail].qprev = pid;
return pid;

}

Xinu – module 4 13 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Code For Insertion And Deletion From A FIFO Queue (Part 2)

/*--
* dequeue - Remove and return the first process on a list
*--
*/

pid32 dequeue(
qid16 q /* ID of queue to use */

)
{

pid32 pid; /* ID of process removed */

if (isbadqid(q)) {
return SYSERR;

} else if (isempty(q)) {
return EMPTY;

}

pid = getfirst(q);
queuetab[pid].qprev = EMPTY;
queuetab[pid].qnext = EMPTY;
return pid;

}

Xinu – module 4 14 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Code For Insertion In An Ordered List (Part 1)

/* insert.c - insert */

#include <xinu.h>

/*--
* insert - Insert a process into a queue in descending key order
*--
*/

status insert(
pid32 pid, /* ID of process to insert */
qid16 q, /* ID of queue to use */
int32 key /* Key for the inserted process */

)
{

qid16 curr; /* Runs through items in a queue*/
qid16 prev; /* Holds previous node index */

if (isbadqid(q) || isbadpid(pid)) {
return SYSERR;

}

curr = firstid(q);
while (queuetab[curr].qkey >= key) {

curr = queuetab[curr].qnext;
}

Xinu – module 4 15 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Code For Insertion In An Ordered List (Part 2)

/* Insert process between curr node and previous node */

prev = queuetab[curr].qprev; /* Get index of previous node */
queuetab[pid].qnext = curr;
queuetab[pid].qprev = prev;
queuetab[pid].qkey = key;
queuetab[prev].qnext = pid;
queuetab[curr].qprev = pid;
return OK;

}

Xinu – module 4 16 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Accessing An Item In A List (Part 1)

/* getitem.c - getfirst, getlast, getitem */

#include <xinu.h>

/*--
* getfirst - Remove a process from the front of a queue
*--
*/

pid32 getfirst(
qid16 q /* ID of queue from which to */

) /* Remove a process (assumed */
/* valid with no check) */

{
pid32 head;

if (isempty(q)) {
return EMPTY;

}

head = queuehead(q);
return getitem(queuetab[head].qnext);

}

Xinu – module 4 17 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Accessing An Item In A List (Part 2)

/*--
* getlast - Remove a process from end of queue
*--
*/

pid32 getlast(
qid16 q /* ID of queue from which to */

) /* Remove a process (assumed */
/* valid with no check) */

{
pid32 tail;

if (isempty(q)) {
return EMPTY;

}

tail = queuetail(q);
return getitem(queuetab[tail].qprev);

}

Xinu – module 4 18 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Accessing An Item In A List (Part 3)

/*--
* getitem - Remove a process from an arbitrary point in a queue
*--
*/

pid32 getitem(
pid32 pid /* ID of process to remove */

)
{

pid32 prev, next;

next = queuetab[pid].qnext; /* Following node in list */
prev = queuetab[pid].qprev; /* Previous node in list */
queuetab[prev].qnext = next;
queuetab[next].qprev = prev;
return pid;

}

Xinu – module 4 19 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Allocating A New List

/* excerpt from newqueue.c */

qid16 newqueue(void)
{

static qid16 nextqid=NPROC; /* Next list in queuetab to use */
qid16 q; /* ID of allocated queue */

q = nextqid;
if (q >= NQENT) { /* Check for table overflow */

return SYSERR;
}

nextqid += 2; /* Increment index for next call*/

/* Initialize head and tail nodes to form an empty queue */

queuetab[queuehead(q)].qnext = queuetail(q);
queuetab[queuehead(q)].qprev = EMPTY;
queuetab[queuehead(q)].qkey = MAXKEY;
queuetab[queuetail(q)].qnext = EMPTY;
queuetab[queuetail(q)].qprev = queuehead(q);
queuetab[queuetail(q)].qkey = MINKEY;
return q;

}

Xinu – module 4 20 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Summary

d An operating system supplies a set of services

d System calls provide interface between OS and application

d Concurrency is fundamental concept

– Between I /O devices and processor

– Between multiple computations

d A process is OS abstraction for concurrency; it does not appear in the code

d A process differs from program or function

d You will learn how to design and implement system software that supports concurrent
processing

Xinu – module 4 21 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Summary
(continued)

d An OS has well-understood internal components

d Complexity arises from interactions among components

d A multilevel approach helps organize system structure

d OS design involves inventing policies and mechanisms that enforce overall goals

d Xinu includes a compact list structure that uses relative pointers and an implicit data
structure to reduce size

d Xinu type names specify both purpose and data size

Xinu – module 4 22 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Questions?

