Xinu—module 4

Module IV

Lists Of Processes
And List Functions

1

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Queues And Lists

e Keeping track of processes is fundamental throughout an operating system

e Various forms are needed
— FIFO queues of processes waiting for 1/O devices
— Lists of processes kept in priority order for scheduling
— Lists of events ordered by the time they will occur
e QOperations required
— Insert a process onto a list
— Extract the “next” process from alist

— Deéelete an arbitrary process (e.g., if the process is killed)

Xinu —module 4 2 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Lists And Queues In Xinu

e |mportant ideas
— A process is known by an integer process ID

— A list of processes really consists of alist of process IDs

e A single data structure can be used to store many types of process lists

3 2025

Xinu —module 4
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Unified List Storage in Xinu

e All lists are doubly-linked, which means a node points to its predecessor and successor

e Each node stores a key as well as a process ID, even though the key is not used in a
FIFO list

e Each list has a head and tail; the head and tail nodes have the same shape as other
nodes

e Non-FIFO lists are always ordered in descending order according to the key values

e The key value in a head node is the maximum integer used as a key, and the key value
In the tail node Is the minimum integer used as a key

Xinu—module 4 4 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

HEAD

!

Conceptual List Structure

25

previous key process next

|

L maximum key

14

2

TAIL

e The example list contains two processes, 2 and 4

e Process 4 has key 25

e Process 2 has key 14

Xinu—module 4

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

5

!

minimum key J

2025

e |nan empty list, the head and tail nodes are linked

e Having a head and tail eliminates special cases for insertion and deletion

Xinu—module 4

PointersIn An Empty List

HEAD

AN

!

TAIL

maximum key J

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

6

I

AN

L minimum key

2025

Reducing The List Size

e Pointers can mean a large memory footprint, especially on a 64-bit computer
e |mportant concept: a process can appear on at most one list at any time
e Xinu uses two clever techniques to reduce the size of lists

— Relative pointers instead of memory addresses

— An implicit data structure

7 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu—module 4

Xinu List Optimizations

e Listsarestoredin an array

— Each item in the array stores one node of the list

— Relative pointers: the array index is used to identify a node instead of an address
e |mplicit data structure

— Let NPROC be the number of processes in the system

— Assign process IDs 0 through NPROC — 1

— Letith dlement of the array correspond to processi, for 0<i1 < NPROC

— Store heads and tails in same array at positions NPROC and higher

Xinu —module 4 8 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

An lllustration Of An Array Holding The Xinu List Structure

Xinu—module 4

o b~ W N P, O

NPROC-1

Head of example list
T 60

61
Tail of example list —

Copyright O 2025 by Douglas Comer and CRC Press, Inc.

KEY PREV NEXT
\
14 4 61
> each row corresponds
to a single process
25 60 2
conceptual boundary
> P]ai rs of rows form the
MAXKEY _ 4 ead and tail of a list
MINKEY 2 -
/

All rights reserved.

2025

| mplementation

e A single array is used to hold all lists of processes
— Thearray is globa and available throughout the entire OS
— The array is named gueuetab
e [Functions are available to manipulate lists
— Include tests, such as isempty, as well as insertion and deletion operations

— For efficiency, functions are implemented with inline macros when possible

e Example code shown after a discussion of types

Xinu —module 4 10 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

/* queue.h - firstid,
/* Queue structure declarations,

/* Default # of queue entries:

/*

#1 f ndef NQENT
#defi ne NQENT
#endi f

#def i ne EMPTY
#def i ne MAXKEY
#defi ne M NKEY

struct qgentry
I nt 32
gi d16
gi d16
}s

extern struct qgentry

Xinu—module 4

Definitions From queue.h (Part 1)

firstkey,

| senpty, |astkey, nonenpty

constants, and inline functions

1 per process plus 2 for ready list plus

2 for sleep list plus 2 per semaphore

(NPROC + 4 + NSEM + NSEM)

(-1)
Ox7FFFFFFF
0x80000000

{
gkey;
gnext ;

qpr ev;

/*
/*
/*

/*
/*
/*
/*

queuet ab[];

Nul I val ue for gnext or qprev index
Max key that can be stored in queue
M n key that can be stored in queue

One per process plus two per |i st
Key on which the queue is ordered
| ndex of next process or tail

| ndex of previous process or head

11

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

*/

*/

*/
*/

*/
*/
*/

*/
*/
*/
*/

2025

Definitions From queue.h (Part 2)

/* Inline queue mani pul ati on functions */

#defi ne queuehead(q) (9)
#defi ne queuetail (q) ((q) + 1)

#define firstid(q) (queuet ab[queuehead(q)] . gnext)
#define lastid(Qq) (queuet ab[queuetail (q)]. qgprev)
#define i senpty(Q) (firstid(qgq) >= NPROC)

#defi ne nonenpty(q) (firstid(g) < NPROC

#define firstkey(q) (queuetab[firstid(q)]. gkey)
#define | astkey(q) (queuetab[lastid(q)].gkey)

/* Inline to check queue id assunes interrupts are disabled */

#def i ne i sbadgi d(x) (((int32)(x) < NPROO) || (int32)(x) >= NQENT-1)

Xinu—module 4 12 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Code For Insertion And Deletion From A FIFO Queue (Part 1)

/* queue.c - enqueue, dequeue */
#i ncl ude <xi nu. h>

struct qgentry gqueuet ab[NQENT] ; /* Tabl e of process queues */
| % o e e o e e o e -
* enqueue - Insert a process at the tail of a queue
K
pi d32 enqueue(
pi d32 pi d, /* I D of process to insert */
gi d16 q /* 1D of queue to use */
{)
gi d16 tail, prev; /* Tail & previous node indexes */
i f (isbadqgid(q) || isbadpid(pid)) {
return SYSERR,
}
tail = queuetail (q);
prev = queuetab[tail]. gprev;
queuet ab[pid] . gnext = tail; /* Insert just before tail node */
queuet ab[pi d] . gprev = prev;
gqueuet ab[prev] . gnext = pid;
queuetab[tail].qgprev = pid;
return pid,
}
Xinu —module 4 13 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Code For Insertion And Deletion From A FIFO Queue (Part 2)

| ® o e e e o o e
* dequeue - Renpbve and return the first process on a |ist
T

pi d32 dequeue(

gi d16 q /* 1D of queue to use */
:)
pi d32 pi d; /* 1D of process renoved */
I f (isbadqgid(q)) {
return SYSERR,
} else if (isempty(q)) {
return EMPTY;
}
pid = getfirst(q);
queuet ab[pi d] . gprev = EMPTY;
gqueuet ab[pi d] . gnext = EMPTY;
return pid;
}
Xinu —module 4 14 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Code For Insertion In An Ordered List (Part 1)

[* insert.c - insert

#1 ncl ude <xi nu. h>

*/

| ® o L L e o
* insert - Insert a process into a queue in descendi ng key order
*_ _ e - - —-—_—— Y e Y Y Y L Lo
*/
status insert(
pi d32 pi d, /* | D of process to insert */
gi d16 q, /* 1D of queue to use */
i nt 32 key /* Key for the inserted process */
{)
gi d16 curr; /* Runs through itens in a queue*/
gi d16 prev; /* Hol ds previous node index */
i f (isbadqgid(q) || i1sbadpid(pid)) {
return SYSERR;
}

curr = firstid(q);
whi |l e (queuet ab[curr]. gkey >= key) {

}

Xinu—module 4

curr

= queuet ab[curr]. gnext;

15
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Xinu—module 4

Code For Insertion In An Ordered List (Part 2)

/* Insert process between curr node and previ ous node */

prev = queuetab[curr].gprev; /* Get index of previous node

gueuet ab[pi d] . gnext
gqueuet ab[pi d] . gpr ev
gqueuet ab[pi d] . gkey =
gqueuet ab[prev] . gnext
queuet ab[curr]. qprev
return CK;

curr;
prev;

key;

pi d;
pi d;

16
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

*/

2025

Accessing An Item In A List (Part 1)

/* getitemc - getfirst, getlast, getitem?*/

#1 ncl ude <xi nu. h>

| ® o o e e L L e e e o eea
* getfirst - Renpbve a process fromthe front of a queue
K L o o e e o e o e e e e e e e Y e Y e Y e Y Y Y Y L Lo
*/
pi d32 getfirst(
gi d16 q /* 1D of queue fromwhich to
) /* Renpbve a process (assuned
/* valid with no check)
{
pi d32 head,;
1T (isenpty(q)) {
return EMPTY;
}
head = queuehead(q);
return getiten(queuetab[head]. gnext);
}
Xinu—module 4 17

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Accessing An Item In A List (Part 2)

| ® o e e e o o e
* getlast - Renpbve a process fromend of queue
T
pi d32 get | ast (
gi d16 q /[* I D of queue fromwhich to */
) /* Renpbve a process (assuned */
/* valid with no check) */
{
pi d32 tail;
1 (isenpty(q)) {
return EMPTY,
}
tail = queuetail (q);
return getitem queuetabftail].gprev);
}

Xinu—module 4

18
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Accessing An Item In A List (Part 3)

| ® o e e e o o e
* getitem - Renpbve a process froman arbitrary point in a queue
T

pi d32 getiten(

pi d32 pi d /* 1D of process to renove */
)
{ |
pi d32 prev, next;
next = queuet ab[pi d] . gnext; /* Followi ng node in |ist */
prev = queuet ab[pid]. qprev; /* Previous node in |ist */
gueuet ab[prev]. gnext = next;
gqueuet ab[next].gprev = prev;
return pid;
}
Xinu —module 4 19 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Allocating A New List

/* excerpt from newqueue.c */

gi d16
{

Xinu—module 4

newgueue(voi d)

static qi dl6 next qi d=NPRCC; /* Next list in queuetab to use */

gi d16 q; /* 1D of allocated queue */

g = nextqid;

i f (g >= NQENT) { /* Check for table overflow */
return SYSERR;

}

nextqgid += 2; /* Increnent index for next call*/

/* Initialize head and tail nodes to forman enpty queue */

gueuet ab[queuehead(q)] . qnext = queuetail (q);
gqueuet ab[queuehead(q)]. gprev = EMPTY;

gqueuet ab[queuehead(q)] . gkey = MAXKEY,
gqueuet ab[queuetai |l (q)]. gnext = EMPTY;

gqueuet ab[queuetail (q)] . gprev = queuehead(q);
gqueuet ab[queuetail (q)]. gkey = M NKEY;

return q;

20
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Summary

e An operating system supplies a set of services
e System calls provide interface between OS and application
e Concurrency Is fundamental concept
— Between | /O devices and processor
— Between multiple computations
e A process is OS abstraction for concurrency; it does not appear in the code
e A process differs from program or function

e You will learn how to design and implement system software that supports concurrent
processing

Xinu—module 4 21 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Summary
(continued)

e An OS has well-understood internal components

e Complexity arises from interactions among components

e A multilevel approach helps organize system structure

e (OS design involves inventing policies and mechanisms that enforce overall goals

e Xinu includes a compact list structure that uses relative pointers and an implicit data
structure to reduce size

e Xinu type names specify both purpose and data size

Xinu—module 4 22 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Ouestions?

