
Module III

An Overview Of the Hardware
And Runtime Environment

Xinu – module 3 1 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Location Of Hardware In The Hierarchy

Xinu – module 3 2 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Hardware Features An OS Uses Directly

d Instruction Set Architecture (ISA) — the instructions the processor offers

d The general-purpose registers

– Used for computation

– Saved and restored during function invocation

d The main memory system

– Consists of an array of bytes

– Holds code as well as data

– Imposes endianness for integers

– May provide address mapping for virtual memory

Xinu – module 3 3 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



General-Purpose Register Example #1 (32-bit Intel x86)

2222222222222222222222222222

Name Use2222222222222222222222222222

EAX Accumulator
2222222222222222222222222222

EBX Base
2222222222222222222222222222

ECX Count
2222222222222222222222222222

EDX Data
2222222222222222222222222222

ESI Source Index
2222222222222222222222222222

EDI Destination Index
2222222222222222222222222222

EBP Base Pointer
2222222222222222222222222222

ESP Stack Pointer
222222222222222222222222222211
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Xinu – module 3 4 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



General-Purpose Register Example #1 (32-bit ARM)

22222222222222222222222222222222222222222222222222222222222

Name Alias Use22222222222222222222222222222222222222222222222222222222222

R0 – R3 a1 – a4 Argument registers
22222222222222222222222222222222222222222222222222222222222

R4 – R11 v1 – v8 Variables and temporaries
22222222222222222222222222222222222222222222222222222222222

R9 sb Static base register
22222222222222222222222222222222222222222222222222222222222

R12 ip Intra procedure call scratch register
22222222222222222222222222222222222222222222222222222222222

R13 sp Stack pointer
22222222222222222222222222222222222222222222222222222222222

R14 lr Link register used for return address
22222222222222222222222222222222222222222222222222222222222

R15 pc Program counter
2222222222222222222222222222222222222222222222222222222222211
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Xinu – module 3 5 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Logical And Physical Organizations Of A Platform

d Logically. a computer consists of a

– Processor

– Memory

– Storage

– I /O devices

d Physically, a computer can consist of

– A Single self-contained circuit board

– Many interconnected circuit boards

– A single chip that contains a processor, memory, and I/O interfaces (called a System
on Chip (SoC)

Xinu – module 3 6 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Illustration Of A Bus Interconnecting Components

system backplane

serial
console
interface

main
memory
(RAM)

onboard
flash

memory
processor

Ethernet
network
interface

USB
host

interface

USB
client

interface

external I/O connections

Xinu – module 3 7 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Buses And Fetch-Store

d A bus only permits two operations

– Fetch (processor supplies an address; the hardware returns the value at that address)

– Store (processor supplies a value and an address; the hardware stores the value at
the specified address)

d Bus operations

– Make perfect sense for values in memory

– Are also used to communicate with I /O devices

Xinu – module 3 8 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Review From Compilers: Calling Conventions

d How the compiler/hardware pushes values on the run-time stack during a function call
(and pops them when the function returns)

d Terminology: some sources use the term activation record to refer to the values on the
stack for a given function call

d Calling conventions differ among architectures (and possibly compilers)

Xinu – module 3 9 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Example Calling Conventions (x86)

EBP

ESP

Saved EAX

Saved ECX

Saved EDX

Argument N

. . .

Argument 2

Argument 1

Return address

Saved EBP

Saved EBX

Saved EDI

Saved ESI

Local variable K

. . .

Local variable 2

Local variable 1

pushed by calling function

pushed by called functionset by the called function
after EBP is saved on the stack

pushed by the call instruction;
removed by the ret instruction

stack pointer just before the
call instruction is executed

Xinu – module 3 10 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Example Calling Conventions (ARM)

Argument K

. . .

Argument 6

Argument 5

Saved r14

Saved r13

Saved r12

Saved r11

Saved r10

Saved r9

Saved r8

Saved r7

Saved r6

Saved r5

Saved r4

Saved CPSR

Local variables
beyond the first

seven, if anysp

pushed by calling function
if needed

pushed by called function

stack pointer just before the
BL instruction is executed

saved value of return address

Xinu – module 3 11 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Interrupt

d A hardware mechanism used by an I /O device to tell the processor that an input or
output operation has completed

d Causes the processor to stop what it is doing and jump to interrupt code for the device

d Steps taken when an interrupt occurs

– The hardware or the operating system saves the state of the running computation

– The processor runs the interrupt code for the device (which must have been placed
in memory before the interrupt occurred)

– When the interrupt code finishes, the OS or hardware must restore the saved state
and resume executing at the point where the interrupt occurred

d The running program remains completely unaware that an interrupt occurred while it
was running (unless it can measure that the computation took a little longer than
expected)

Xinu – module 3 12 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Vectored Interrupts

d We will see that

– Each device on the bus is assigned a unique Interrupt Request Number (IRQ), 1, 2,
3, ...

– When it interrupts, a device sends its IRQ over the bus to the processor

– The hardware uses the IRQ as an index into an array of pointers to functions that
handle interrupts for each of the devices

d Note: some processors adds one or more additional interrupt numbers for exceptions
(e.g., a divide-by-zero exception)

Xinu – module 3 13 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Review Of Storage Layout

d When it compiles a C program, the compiler generates four memory segments

– Text segment (compiled code)

– Data segment (initialized global data values)

– Bss segment (uninitialized global data values)

– Stack segment (to hold the run-time stack of activation records)

text data bss heap stackfree space

etext edata end

lowest address SP

Xinu – module 3 14 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Locations Of Segments

d A compiler includes global variable names that specify segment addresses

– Symbol text occupies the first byte of the text segment

– Symbol etext occupies the first byte beyond the text segment

– Symbol edata occupies the first byte beyond the data segment

– Symbol end occupies the first byte beyond the bss segment

d A programmer can access the names by declaring them extern

extern char text, etext, edata, end;

d Only the addresses are significant; the values are irrelevant

d Note: some assembly languages prepend an underscore to, external names (e.g., _end)

Xinu – module 3 15 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Storage Layout When Xinu Runs

text data bss heap process 1
stack

process 2
stack

process 3
stackfree

text etext edata end

lowest address SP1SP2SP3

d Notes:

– Each process has its own stack for local variables, arguments, and function calls

– The stack for a process is allocated when a process is created and released when the
process exits

– The text, data, bss, and heap are shared among all processes

Xinu – module 3 16 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Single Core Vs. Multicore Systems

d In almost every class, students are eager to learn about multicore systems

d Our approach: we will start by considering a single-core operating system

d Why?

– You will see that single-core systems are complex and difficult to understand

– A multicore operating system is much more complex

– One must understand the principles and operation of a single-core system before
diving into the complexities of a multicore system

d Don’t worry — everything you learn about a single-core system will be important in
understanding multicore systems

Xinu – module 3 17 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Two Observations

The interface that an operating system provides to application programs operates at a
much higher level of abstraction than the underlying hardware.

Because an operating system hides hardware details, it is possible to define a single set
of high-level abstractions that can be implemented on multiple hardware architectures.

Xinu – module 3 18 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Questions?


