Module |11

An Oveview Of the Hardware
And Runtime Environment

Xinu—module 3 1 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

L ocation Of Hardware In The Hierarchy

Xinu—module 3 2 2025
Copyright 0 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Hardware Features An OS Uses Directly

e |nstruction Set Architecture (1SA) — the instructions the processor offers
e The general-purpose registers

— Used for computation

— Saved and restored during function invocation
e The main memory system

— Consists of an array of bytes

— Holds code as well as data

— Imposes endianness for integers

— May provide address mapping for virtual memory

Xinu—module 3 3 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

General-Purpose Register Example #1 (32-bit Intel x86)

Name Use

EAX Accumulator

EBX Base

ECX Count

EDX Data

ESI Source Index

EDI Destination Index

EBP Base Pointer

ESP Stack Pointer

Xinu—module 3 4 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu—module 3

General-Purpose Register Example #1 (32-bit ARM)

Name Alias Use
RO - R3 al —ad | Argument registers
R4 -R11 | vl -v8 | Variables and temporaries
R9 sb Static base register
R12 Ip Intra procedure call scratch register
R13 sp Stack pointer
R14 Ir Link register used for return address
R15 pC Program counter

5

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Logical And Physical Organizations Of A Platform

e | ogicaly. acomputer consists of a
— Processor
— Memory
— Storage
— | /O devices
e Physically, a computer can consist of
— A Single self-contained circuit board
— Many interconnected circuit boards

— A single chip that contains a processor, memory, and I/O interfaces (called a System
on Chip (SoC)

Xinu—module 3 6 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Illustration Of A Bus Interconnecting Components

system backplane

onboard main serial Ethernet USB USB
processor flash memory console network host client
memory (RAM) interface interface interface interface
N J
Y

external 1/O connections

Xinu—module 3 7 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Buses And Fetch-Store

e A bus only permits two operations
— Fetch (processor supplies an address; the hardware returns the value at that address)

— Sore (processor supplies a value and an address; the hardware stores the value at
the specified address)

e Bus operations
— Make perfect sense for values in memory

— Are aso used to communicate with 1 /O devices

Xinu—module 3 8 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Review From Compilers: Calling Conventions

e How the compiler/hardware pushes values on the run-time stack during a function call
(and pops them when the function returns)

e Terminology: some sources use the term activation record to refer to the values on the
stack for a given function call

e Calling conventions differ among architectures (and possibly compilers)

9 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu—module 3

Example Calling Conventions (x86)

Saved EAX

Saved ECX

Saved EDX

Argument N > pushed by calling function

Argument 2

stack pointer just before the
cal instruction is executed — Argument 1

pushed by the call instruction;
Return address - removed by the ret instruction

EBP — Saved EBP

Saved EBX

Saved EDI

: Saved ESI

set by the called function :
after EBP is saved on the stack _ > Ppushed by called function
Local variable K

Local variable 2

ESP —— Local variable 1

Xinu—module 3 10 2025
Copyright 0 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Example Calling Conventions (ARM)

Argument K

pushedetéy calling function

~ 1f need
Argument 6

stack pointer just before the
BL instruction is executed — = Argument 5

J\.

saved value of return address ——» Saved rl14

Saved r13

Saved rl2

Saved rll

Saved r10

Saved r9

Saved r8 > pushed by called function

Saved r7

Saved r6

Saved r5

Saved r4

Saved CPSR

Local variables
beyond the first
seven, if any

Sp———»

Xinu—module 3 11 2025
Copyright 0 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

| nter rupt

e A hardware mechanism used by an | /O device to tell the processor that an input or
output operation has completed

e Causes the processor to stop what it is doing and jump to interrupt code for the device
e Steps taken when an interrupt occurs
— The hardware or the operating system saves the state of the running computation

— The processor runs the interrupt code for the device (which must have been placed
In memory before the interrupt occurred)

— When the interrupt code finishes, the OS or hardware must restore the saved state
and resume executing at the point where the interrupt occurred

e The running program remains completely unaware that an interrupt occurred while it
was running (unless it can measure that the computation took a little longer than
expected)

Xinu—module 3 12 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Vectored Interrupts

e Wewill seethat

— Each device on the bus is assigned a unique Interrupt Request Number (IRQ), 1, 2,
3, ...

— When it interrupts, a device sends its IRQ over the bus to the processor

— The hardware uses the IRQ as an index into an array of pointers to functions that
handle interrupts for each of the devices

e Note: some processors adds one or more additional interrupt numbers for exceptions
(e.g., adivide-by-zero exception)

Xinu—module 3 13 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

e When it compiles a C program, the compiler generates four memory segments

Review Of Storage L ayout

— Text segment (compiled code)

Data segment (initialized global data values)

Bss segment (uninitialized global data values)

— Stack segment (to hold the run-time stack of activation records)

Xinu—module 3

|owest address

|

etext

edata end

text

data

bss heap —/ free space

-

stack

14
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

L ocations Of Segments

e A compiler includes global variable names that specify segment addresses
— Symbol text occupies the first byte of the text segment
— Symbol etext occupies the first byte beyond the text segment
— Symbol edata occupies the first byte beyond the data segment
— Symbol end occupies the first byte beyond the bss segment

e A programmer can access the names by declaring them extern

extern char text, etext, edata, end,
e Only the addresses are significant; the values are irrelevant

e Note some assembly languages prepend an underscore to, external names (e.g., _end)

Xinu—module 3 15 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Storage L ayout When Xinu Runs

lowest address P, P, P,
llext etext edata end l l l
text data bss heap free process 3 process 2 process 1
stack stack stack

e Notes:

— Each process has its own stack for local variables, arguments, and function calls

— The stack for a process is allocated when a process is created and released when the

Process exits

— The text, data, bss, and heap are shared among all processes

Xinu—module 3

16
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Single Core Vs. Multicore Systems

In almost every class, students are eager to learn about multicore systems

Our approach: we will start by considering a single-core operating system

Why?

— You will seethat single-core systems are complex and difficult to understand
— A multicore operating system is much more complex

— One must understand the principles and operation of a single-core system before
diving into the complexities of a multicore system

Don’t worry — everything you learn about a single-core system will be important in
understanding multicore systems

Xinu—module 3 17 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Two Observations

The interface that an operating system provides to application programs operates at a
much higher level of abstraction than the underlying hardware.

Because an operating system hides hardware details, it Is possible to define a single set
of high-level abstractions that can be implemented on multiple hardware architectures.

Xinu—module 3 18 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Ouestions?

