
Module XXVII

User Interface

Xinu – module 27 1 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Location Of The User Interface In The Hierarchy

Xinu – module 27 2 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Two Operating System Interfaces

d Operating systems provide two ways to access services

d An interface for applications

– Generically called an API (Application Program Interface)

– Consists of a set of system calls

– We have seen examples

d An interface for human users

– Usually interactive

– Can be a Command Line Interface (CLI) or Graphical User Interface (GUI)

– Gives the system a “personality”

Xinu – module 27 3 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Characteristics Of User Interfaces

d GUI

– Allows users to launch applications

– May include copy-and-paste and drag-and-drop mechanisms

– Relies on applications to handle most tasks

d Command Line Interface

– Makes the file system visible

– Parses textual commands

– Arguments passed to commands can allow the user to specify an arbitrary level of
detail

Xinu – module 27 4 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Command Interpreter (CLI)

d Software that accepts commands entered by users and performs the specified action

d Two implementations of command interpreters have been used

– Early systems and some small embedded systems: the command interpreter is
integrated into the operating system

– Multics/Unix and later systems: the command interpreter consists of an application
that is separate from the operating system

Xinu – module 27 5 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Command Interpreter Built Into OS

d Advantage: because the interpreter understands command syntax and semantics, it can

– Offer command completion capability

– Prompt for required arguments

– Check arguments for correctness

– Warn users about meaningless or dangerous requests

d Disadvantages

– A user is limited to exactly the commands the OS provides

– A user cannot select a non-standard command interpreter

– Adding new commands is difficult and requires recompiling the OS

Xinu – module 27 6 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Command Interpreter Implemented By An Application

d Introduced by MULTICS; popularized by Unix

d The interpreter only handles basic command syntax

d Individual programs must check and interpret arguments

d Advantages

– Each user can choose their own interpreter

– New commands can be added at any time

d Disadvantages

– Nonuniformity among commands and arguments

– No built-in semantic checks (argument errors are reported after a command starts
running)

Xinu – module 27 7 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Example Of A Separate Interpreter: The Unix Shell

d Runs as a standard application process (no special privilege is required)

d Provides per-line processing

d Interprets each line as a command

d Uses the same syntax for scripts as for interactive input

d Offers basic programming language constructs

– Variables

– Sequence of statements

– Definite and indefinite iteration

– Conditional execution

Xinu – module 27 8 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Shell Variables

d Have you used shell variables?

d Do you really understand how they work?

d The basics (from Korn shell)

X="hello"

echo $X

produces a line of output containing the word hello

d Given the above, the command

gcc $X.c

compiles file hello.c

Xinu – module 27 9 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Shell Binding Times

d Now consider a more complex example

d Suppose the current directory contains files

aaa bbb ccc

d What do the following lines mean if typed into a shell?

BEES="b*" # Define variable BEES

ls -l $BEES # This will list file bbb

touch bb # Add another file that starts with b

ls -l $BEES # Will this line list just the file

named bbb, or both bb and bbb?

Xinu – module 27 10 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Another Example Of Binding Times

d The shell

– Has both local and global variables

– Uses the term environment for the set of global variables

d Environment variables

– Import variable definitions from the user’s environment

– Allow a user to export specific variables to the environment

– The environment is passed to each child process that the shell executes

d Note: programs such as make allow environment variables to be accessed

Xinu – module 27 11 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Environment Variable Binding Times

d Suppose a user defines an environment variable QQQ

QQQ=CS354 # Define variable QQQ

export QQQ # Export QQQ to the environment

myscript # Run a shell script as a command

echo $QQQ # Print the value of QQQ

d What will the output be if myscript contains the following lines?

echo $QQQ # Print the current value of QQQ

QQQ=CS503 # Redefine QQQ

export QQQ # Export QQQ to the environment

Xinu – module 27 12 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Environment Variable Binding Times
(continued)

d The answer

– A copy of the environment is kept for each process

– A process inherits a copy from its parent when the process starts

– Changes only affect the local copy (and processes that are created)

d In the example, the output is

CS354

CS354

Xinu – module 27 13 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Basic Unix Shell Evaluation Algorithm

A shell repeats the following steps:

A. Read and parse the next command, dividing it into tokens

B. Perform macro substitution: replace $X with value of string X

C. Perform file name matching (e.g., eliminate “*”)

D. Perform variable assignment (var=string)

E. Search the user’s PATH for the command named by first token

F. Invoke the command, passing remaining tokens as arguments

Xinu – module 27 14 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Data Types In The Unix Shell Language

d The shell supports one data type: string

d Builtin commands handle

– Iteration (while and for)

– Conditional execution (if-then-else)

d Quotes prevent substitution (delay binding)

– Single quotes inhibit interpretation within the string

– Double quotes allow variable substitution within the string

d Each command is executed by a separate process

d A command pipeline connects the output from one process to the input of another

Xinu – module 27 16 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Unix Shell Parsing In Practice

d The shell acts like a compiler

d Compound statements (while, for, if-then-else) can span multiple lines of input

d A long pipeline can span multiple lines as well

d The shell must also handle file redirection

d Consequence: a shell must check for balanced delimiters (e.g., if → fi)

Xinu – module 27 17 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Unix Shell Data Conversions

d Output from a command can be converted to a string

 `command`

d The contents of file can be assigned to a string

 `cat file`

d The contents of a variable can be converted to command input

 echo $string | command

d Literal text can be converted to command input

 command <<!

 ...literal text goes here

 !

Xinu – module 27 18 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Unix Shell: Paths And Command Invocation

d The shell maintains “search path”

– The path specifies a list of directories

– The shell uses the path during command lookup

d To find a file to execute, the shell searches the path one directory at a time

– It prepends the next directory to the command name

– It checks to see if the result is a file

– It stops if the file exists

d Once a file has been found, the shell checks to see that the file is executable

d The current directory (denoted “.”) works like any other directory name in a path

Xinu – module 27 20 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Late And Early Path Binding

d Two forms of path binding have been used: late and early

d Late binding

– Was used in the original Borne shell

– The shell searches directories along the path each time a user enters a command

d Early binding (introduced in BSD Unix’s C shell)

– When started, the shell searches the path and caches the names of files in each
directory

– When a user enters a command, the shell searches the cache to find where the
command resides

Xinu – module 27 21 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Path Binding And Efficiency

d Late binding

– Guarantees that the shell will find a new command immediately after the command
is added to a directory on the path

– Is somewhat inefficient because it reads each directory on the path each time a user
enters a command

d Early binding

– Is more efficient because it avoids searching directories along the path each time a
command is entered

– Cannot detect new commands added to directories or other changes in directory
contents automatically

– May require a user to enter a rehash command to recreate the cache

Xinu – module 27 22 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Automatic Rehash

d A technique that allows a shell to find changes in directories

d The idea: when a user enters a command and the command is not found in the cache

– The shell does not immediately report the problem to the user

– Instead, the shell automatically triggers rehash to recreate the cache, and retries the
command lookup in the refreshed cache

– If the command is found after the rehash, the shell runs the command

– If the command is not found after the rehash, the shell reports “command not
found” to the user

d Note that automatic rehash makes the path binding somewhat later, but not as late as
the original shell

Xinu – module 27 23 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Question About Automatic Rehash

d Question: does automatic rehash work?

d Answer: it depends.

d Case #1:

– A user adds an executable program, x, to a directory on the path, and no other
directory on the path contains a file named x

– The user tries to run command x

– The shell does not find x in its cache, so the shell invokes rehash

– After rehash runs, x appears in the cache

– Result: automatic rehash works: the shell finds program x and runs it

Xinu – module 27 24 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Question About Automatic Rehash
(continued)

d Case #2:

– A user adds an executable program, y, to the first directory on the path, but a
program named y had previously appeared in another directory along the path

– What happens?

Xinu – module 27 25 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

I/O Redirection

d A user can redirect input or output

d The shell provides separate redirection for

– Standard input

– Standard output

– Standard error

d Syntax is

– Output: > file

– Input: < file

d The syntax for standard error redirection depends on the shell

Xinu – module 27 26 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Synchronization Of Processes

d Background processing

– The shell always creates a process to execute a command; background execution
allows the shell to continue processing concurrently

– The syntax is “&”

d Pipeline

– The output from one process is fed to the input of another

– An arbitrary pipeline is allowed

– The “pipe” between two processes consists of a finite buffer

– The operating system handles process synchronization

Xinu – module 27 27 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Shell Script

d The name given to a file that contains a set of shell commands

d The file must be executable

d A shell script uses the same syntax as an interactive shell (earlier operating systems
used a special syntax for scripts)

d BSD Unix introduced the use of a two-byte magic number consisting of the ASCII
characters #!

d If a file name follows the magic number, the file is taken to be the program to run with
the script as input

 #!/users /me /bin /my_program

Xinu – module 27 28 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Shell Input And A Challenge

d One can invoke a shell script, X, by:

ksh < X

or by naming X as an argument to the shell:

ksh X

d Challenge: create a shell script that behaves differently when invoked in the two ways
shown above

d Note: feel free to use whatever shell you prefer (e.g., bash)

Xinu – module 27 29 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Design Principles For A Command Interface

d Functionality: sufficient for all needs

d Orthogonality: only one way to perform a given task

d Consistency: commands follow a consistent pattern

d Least astonishment: a user should be able to predict results

Xinu – module 27 30 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Design And Implementation
Of An Example Shell

The Xinu Shell

d Is not fancy — it merely illustrates the basics

d Has a fixed set of commands compiled into shell itself

d Interprets each line to be a pipeline of one or more commands

 command [| command]*

d Each command follows a familiar command syntax:

 command_name arg*

d The first command may specify input redirection (<file), and the last command may
specify output redirection (>file) and background execution (&)

d The notation X* means “zero or more of X”, and [X] means “X is optional”

Xinu – module 27 32 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Warning About Xinu Shell

d The Xinu shell is written ad hoc

d The data structures and algorithms are unusual

d The idea is to

– Show a minimal implementation

– Illustrate shell organization without unnecessary complexity

Xinu – module 27 33 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Lexical Tokens In The Xinu Shell

22

Symbolic Name Numeric Input Description
(Token Type) Value Characters22

SH_TOK_AMPER 0 & ampersand
22

SH_TOK_LESS 1 < less-than symbol
22

SH_TOK_GREATER 2 > greater-than symbol
22

SH_TOK_PIPE 3 | pipe symbol
22

SH_TOK_OTHER 4 ' . . . ' quoted string (single-quotes)
22

SH_TOK_OTHER 4 "..." quoted string (double-quotes)
22

SH_TOK_OTHER 4 other sequence of non-whitespace
2211
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

d Only seven lexical tokens are needed and only five types

d A string that starts with one type of quote can contain the other type of quote

"Don't blink!"
Xinu – module 27 34 2025

Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Overall Syntax

pipeline → command [i_redirect] [commands] [o_redirect] [backgnd]

command → name [args]

commands → SH_TOK_PIPE command [commands]

name → SH_TOK_OTHER

args → SH_TOK_OTHER [args]

i_redirect → SH_TOK_LESS SH_TOK_OTHER

o_redirect → SH_TOK_GREATER SH_TOK_OTHER

backgnd → SH_TOK_AMPER

Xinu – module 27 35 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Organization Of Xinu Shell

d The shell is organized like an on-line compiler (i.e., an interpreter) with two main parts

d A lexical analyzer

– Divides an input line into a series of tokens

– Stores each token (the characters that make up the token) along with the type

d A parser

– Checks to ensure the sequence of tokens is valid

– Turns the tokens into a command with arguments

– Executes the command

Xinu – module 27 36 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Lexical Analysis

d Because the Xinu shell only handles one line at a time, the shell

– Reads an entire line

– Calls a lexical analyzer to divide the line into tokens

d The lexical analyzer

– Eliminates whitespace (i.e., blanks and tabs)

– Checks for invalid tokens (e.g., <<file>>)

– Returns the number of tokens found

Xinu – module 27 37 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Token Storage

d Is unusual

d Uses two parallel arrays plus an array of characters (tokbuf)

d Each array has ntok entries for an input line with ntok tokens

d One array (toktyp) tells the type of the token

d Another array (tok) gives the index in tokbuf where the token begins

d Note: each token in tokbuf ends with the null character

Xinu – module 27 38 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Token Storage Example

d Given the input line: date > file &

d The shell stores the tokens by storing an index and a type in two arrays

toktyp tok

d

0

a t e Φ >

5

Φ f

7

i l e Φ &

12

Φ

0

5

7

12

tokbuf

3

2

3

0

tlen = 14

ntok = 4

Xinu – module 27 39 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Approach To Parsing

d Recall: the lexical analyzer divides an entire input line into tokens before the parser
runs

d The parser uses occurrences of the pipe symbol to divide the line into segments that
each consist of a command with arguments, and then handles each segment
independently

d The next slides give more details

Xinu – module 27 40 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Steps The Parser Takes (Part 1)

loop forever {

1.
Read the next input line and call lexan to divide it into tokens.

2.
Divide tokens into segments separated by the pipe symbol, and set each
segment’s input and output devices to the device the shell is using (usually
CONSOLE).

3.
Check for background (i.e., & as the last token) and remove the token.

4.
Check for input redirection on the first segment and output redirection on the
last segment, and remember the names of the input and output files, if any.

5.
Look up the command name in each segment.

Xinu – module 27 41 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Steps The Parser Takes (Part 2)

6.
Open the redirected input and output files, if any, and record the device ID
as the first segment input device or the last segment output device.

7.
Create N–1 pipes for N segments, and record the device ID as the output
device for segment i and the input device for segment i+1.

8.
Create a process to run each segment and add arguments.

9.
If running in foreground, wait for the last process to exit (i.e., wait for a
message to arrive with the process ID of the last process in the pipeline).

}

Xinu – module 27 42 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Arguments Passed To A Command

d Like Unix, Xinu only passes two arguments to a command

– An integer count (nargs)

– An array of pointers to argument strings

d Also like Unix, the first argument is the command name

Xinu – module 27 43 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

An Example Of Command Arguments

d Consider the input line date -f illegal

d When a process runs the data command, the process receives two arguments

– An integer count

– An array of pointers to strings

d Illustration of the arguments

argsnargs

3 d a t e Φ

- f Φ

i l l e g a l Φ

Φ

nargs
entries

Xinu – module 27 44 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Command Execution

d Each command is executed by a separate child process (i.e., the shell creates a process
to run the command)

d Input and output

– The first process in a pipeline can have input redirected to a file; the last can have
output redirected to a file

– Processes in the middle of the pipeline receive input from a pipe and send output to
a pipe

Xinu – module 27 45 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Implementation Of
The Xinu Lexical Analyzer

Lexan.c (Part 1)

/* lexan.c - lexan */

#include <xinu.h>

/*--
* lexan - Ad hoc lexical analyzer to divide command line into tokens
*--
*/

int32 lexan (
char *line, /* Input line terminated with */

/* NEWLINE or NULLCH */
int32 len, /* Length of the input line, */

/* including NEWLINE */
char *tokbuf, /* Buffer into which tokens are */

/* stored with a null */
/* following each token */

int32 tok[], /* Array of pointers to the */
/* start of each token */

int32 toktyp[] /* Array that gives the type */
/* of each token */

)
{

Xinu – module 27 47 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Lexan.c (Part 2)

char quote; /* Character for quoted string */
uint32 ntok; /* Number of tokens found */
char *p; /* Pointer that walks along the */

/* input line */
int32 tbindex; /* Index into tokbuf */
char ch; /* Next char from input line */

/* Start at the beginning of the line with no tokens */

ntok = 0;
p = line;
tbindex = 0;

/* While not yet at end of line, get next token */

while ((*p != NULLCH) && (*p != SH_NEWLINE)) {

/* If too many tokens, return error */

if (ntok >= SHELL_MAXTOK) {
return SYSERR;

}

/* Skip white space before token */

while ((*p == SH_BLANK) || (*p == SH_TAB)) {
p++;

}

Xinu – module 27 48 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Lexan.c (Part 3

/* Stop parsing at end of line (or end of string) */

ch = *p;
if ((ch==SH_NEWLINE) || (ch==NULLCH)) {

return ntok;
}

/* Set next entry in tok array to be an index to the */
/* current location in the token buffer */

tok[ntok] = tbindex; /* The start of the token */

/* Set the token type */

switch (ch) {

case SH_AMPER: toktyp[ntok] = SH_TOK_AMPER;
tokbuf[tbindex++] = ch;
tokbuf[tbindex++] = NULLCH;
ntok++;
p++;
continue;

Xinu – module 27 49 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Lexan.c (Part 4)

case SH_PIPE: toktyp[ntok] = SH_TOK_PIPE;
tokbuf[tbindex++] = ch;
tokbuf[tbindex++] = NULLCH;
ntok++;
p++;
continue;

case SH_LESS: toktyp[ntok] = SH_TOK_LESS;
tokbuf[tbindex++] = ch;
tokbuf[tbindex++] = NULLCH;
ntok++;
p++;
continue;

case SH_GREATER: toktyp[ntok] = SH_TOK_GREATER;
tokbuf[tbindex++] = ch;
tokbuf[tbindex++] = NULLCH;
ntok++;
p++;
continue;

default: toktyp[ntok] = SH_TOK_OTHER;
};

Xinu – module 27 50 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Lexan.c (Part 5)

/* Handle quoted string (single or double quote) */

if ((ch==SH_SQUOTE) || (ch==SH_DQUOTE)) {
quote = ch; /* Remember opening quote */

/* Copy quoted string to arg area */

p++; /* Move past starting quote */

while (((ch=*p++) != quote) && (ch != SH_NEWLINE)
&& (ch != NULLCH)) {

tokbuf[tbindex++] = ch;
}
if (ch != quote) { /* String missing end quote */

return SYSERR;
}

/* Finished string - count token and go on */

tokbuf[tbindex++] = NULLCH; /* Terminate token */
ntok++; /* Count string as one token */
continue; /* Go to next token */

}

Xinu – module 27 51 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Lexan.c (Part 6)

/* Handle a token other than a quoted string */

tokbuf[tbindex++] = ch; /* Put first character in buffer*/
p++;

while (((ch = *p) != SH_NEWLINE) && (ch != NULLCH)
&& (ch != SH_LESS) && (ch != SH_GREATER)
&& (ch != SH_BLANK) && (ch != SH_TAB)
&& (ch != SH_AMPER) && (ch != SH_SQUOTE)
&& (ch != SH_DQUOTE)&& (ch != SH_PIPE)) {

tokbuf[tbindex++] = ch;
p++;

}

/* Report error if other token is appended */

if ((ch == SH_SQUOTE) || (ch == SH_DQUOTE)
|| (ch == SH_LESS) || (ch == SH_GREATER)) {
return SYSERR;

}

tokbuf[tbindex++] = NULLCH; /* Terminate the token */

ntok++; /* Count valid token */

}
return ntok;

}

Xinu – module 27 52 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Few Shell Declarations (Part 1)

/* shell.h - Declarations and constants used by the Xinu shell */

/* Size constants */

#define SHELL_BUFLEN TY_IBUFLEN+1 /* Length of input buffer */
#define SHELL_MAXTOK 32 /* Maximum tokens per line */
#define SHELL_CMDSTK 8192 /* Size of stack for process */

/* that executes command */
#define SHELL_ARGLEN (SHELL_BUFLEN+SHELL_MAXTOK) /* Argument area */
#define SHELL_CMDPRIO 20 /* Process priority for command */

/* Message constants */

/* Shell banner (assumes VT100) */

#define SHELL_BAN0 "\033[31;1m"
#define SHELL_BAN1 "--"
#define SHELL_BAN2 " __ __ _____ _ _ _ _ "
#define SHELL_BAN3 " \\ \\ / / |__ __| | \\ | | | | | | "
#define SHELL_BAN4 " \\ \\/ / | | | \\| | | | | | "
#define SHELL_BAN5 " / /\\ \\ _| |_ | \\ | | | | | "
#define SHELL_BAN6 " / / \\ \\ | | | | \\ | \\ -- / "
#define SHELL_BAN7 " -- -- ----- - - ---- "
#define SHELL_BAN8 "--"
#define SHELL_BAN9 "\033[0m\n"

Xinu – module 27 53 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Few Shell Declarations (Part 2)

/* Messages shell displays for user */

#define SHELL_PROMPT "xsh $ " /* Command prompt */
#define SHELL_STRTMSG "Welcome to Xinu!\n"/* Welcome message */
#define SHELL_EXITMSG "Shell closed\n"/* Shell exit message */
#define SHELL_SYNERRMSG "Syntax error\n"/* Syntax error message */
#define SHELL_CREATEMSG "Cannot create process\n"/* command error */
#define SHELL_INERRMSG "Cannot open file %s for input\n" /* Input err */
#define SHELL_OUTERRMSG "Cannot open file %s for output\n"/* Output err */

/* Builtin cmd error message */
#define SHELL_BGERRMSG "Cannot redirect I/O or background a builtin\n" */
#define SHELL_PIPEMSG "Cannot create a pipe\n"/* error opening a pipe */

/* Constants used for lexical analysis */

#define SH_NEWLINE '\n' /* New line character */
#define SH_EOF '\04' /* Control-D is EOF */
#define SH_AMPER '&' /* Ampersand character */
#define SH_BLANK ' ' /* Blank character */
#define SH_TAB '\t' /* Tab character */
#define SH_SQUOTE '\” /* Single quote character */
#define SH_DQUOTE '"' /* Double quote character */
#define SH_LESS '<' /* Less-than character */
#define SH_GREATER '>' /* Greater-than character */
#define SH_PIPE '|' /* Pipeline symbol */

Xinu – module 27 54 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Few Shell Declarations (Part 3)

/* Token types */

#define SH_TOK_AMPER 0 /* Ampersand token */
#define SH_TOK_LESS 1 /* Less-than token */
#define SH_TOK_GREATER 2 /* Greater-than token */
#define SH_TOK_PIPE 3 /* Pipeline token */
#define SH_TOK_OTHER 4 /* Token other than those */

/* listed above (e.g., an */
/* alphanumeric string) */

/* Shell return constants */

#define SHELL_OK 0
#define SHELL_ERROR 1
#define SHELL_EXIT -3

/* Structure of an entry in the table of shell commands */

struct cmdent { /* Entry in command table */
char *cname; /* Name of command */
int32 (*cfunc)(int32,char*[]);/* Function for command */

};

extern uint32 ncmd;
extern const struct cmdent cmdtab[];

Xinu – module 27 55 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Slight Detour

d Before looking at shell code, we will

d Consider the constraints on arguments passed to commands

d Examine a clever way to handle arguments

Xinu – module 27 56 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Command Arguments (A Review)

d Recall that

– A newly-created Xinu process can be passed arguments

– The arguments are placed in a pseudo call on the new process stack

– The create function takes a number of arguments, each of which is one word
(integer, pointer, etc)

d Also recall

– A command process receives two arguments, a count and an array of pointers to
strings

Xinu – module 27 57 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Question

d When creating a process to run a command, the shell must pass two values to create

– The count of command-line arguments

– The address of an array of pointers to strings

d Question: where should the shell store

– The array of pointers to strings?

– The actual strings?

Xinu – module 27 58 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Argument Storage With Pipelines And Background Processing

d A pipeline and background processing complicate argument passing

– Multiple commands can execute concurrently

– Each command can have a different set of arguments

– The shell cannot use a single (local or global) variable to store the argument strings
for all commands

d Important idea: storage for command-line arguments should be released when the
process executing the command exits

Xinu – module 27 59 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Storing Command Arguments

d One possibility

– Modify create

– Change the pseudo-call

– Push command-line arguments on the top of new process’s stack first and then push
on the pseudo-call

d Another possibility

– Keep create unmodified

– Place command-line arguments somewhere else

– Ensure storage for the arguments is freed when the process exits

Xinu – module 27 60 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Freeing Storage When A Command Process Exits

d Perhaps we could use separate storage for arguments

– Have the shell call getmem to allocate storage for arguments

– Modify kill to release the storage used for arguments when a process exits

d Perhaps the shell could store arguments somewhere else in the stack of the process that
runs the command

– Kill can remain unmodified

– The stack will be freed automatically when the process exits

Xinu – module 27 61 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Trick Used To Store Command-Line Arguments

d Create a process to run a command

d Before resuming the process, insert the arguments into bottom of the command’s
process stack

– Store both the args array and the actual argument strings

– Use a single contiguous area of the stack

– Added advantage: if a process accidentally overwrites its arguments, no other
process will be affected

d One wrinkle

– Arguments for a new process must be specified when (create) is called

– The location of the args array is not known before calling create

Xinu – module 27 62 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Delayed Argument Binding

d When calling create make the second argument the address of a temporary variable, t

d Add command-line arguments to the bottom of the newly-created stack

d Let the location of the args array be s

d Replace the temporary address with the location of the args array

– Search the new process’s stack for address t

– Replace the address with s

d When the process is resumed, the second argument will point to the args array

Xinu – module 27 63 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Layout Of Xinu Shell Command Arguments At Runtime

argsnargs

3 d a t e Φ

- f Φ

i l l e g a l Φ

Φ

nargs
entries

d After creating a process, the shell

– Computes the size needed for arguments, and copies them into the bottom of the
process’s stack

– Changes the second argument in the pseudo-call to point to the args array in the
bottom of the stack (i.e., the location where the command-line arguments are stored)

– Resumes the process

Xinu – module 27 64 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Addargs.c (Part 1)

/* addargs.c - addargs */

#include <xinu.h>
#include "shprototypes.h"

/*--
* addargs - Add local copy of argv-style arguments to the stack of
* a command process that has been created by the shell
*--
*/

status addargs(
pid32 pid, /* ID of process to use */
int32 ntok, /* Count of arguments */
int32 tok[], /* Array of token indices */
char *tokbuf, /* Array of null-term. tokens */
void *dummy /* Dummy argument that was */

/* used at creation and must */
/* be replaced by a pointer */
/* to an argument vector */

)
{

intmask mask; /* Saved interrupt mask */
struct procent *prptr; /* Ptr to process' table entry */
uint32 aloc; /* Argument location in process */

/* stack as an integer */
uint32 *argloc; /* Location in process's stack */

/* to place args vector */
char *argstr; /* Location in process's stack */

/* to place arg strings */

Xinu – module 27 65 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Addargs.c (Part 2)

uint32 *search; /* Pointer that searches for */
/* dummy argument on stack */

uint32 *aptr; /* Walks through args array */
int32 i; /* Index into tok array */
int32 len; /* Length of argument strings */
char *first, *last; /* Address of first and last */

/* tokens in tokbuf */

mask = disable();

/* Check argument count and data length */

if (ntok <= 0) {
restore(mask);
return SYSERR;

}

prptr = &proctab[pid];

/* Compute lowest location in the process stack where the */
/* args array will be stored followed by the argument */
/* strings */

aloc = (uint32) (prptr->prstkbase
- prptr->prstklen + sizeof(uint32));

argloc = (uint32*) ((aloc + 3) & ~0x3); /* Round to mult. of 4 */

Xinu – module 27 66 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Addargs.c (Part 3)

/* Compute the first location beyond args array for the strings */

argstr = (char *) (argloc + (ntok+1)); /* +1 for a null ptr */

/* Set each location in the args vector to be the address of */
/* string area plus the offset of this argument */

for (aptr=argloc, i=0; i < ntok; i++) {
*aptr++ = (uint32) (argstr + tok[i]-tok[0]);

}

/* Add a null pointer to the args array */

*aptr++ = (uint32)NULL;

Xinu – module 27 67 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Addargs.c (Part 4)

/* Copy the argument strings from tokbuf into process's stack */
/* just beyond the args vector */

first = &tokbuf[tok[0]];
last = &tokbuf[tok[ntok-1]];
len = last - first + strlen(last) + 1;

memcpy(aptr, first, len);

/* Find the second argument in process's stack */

for (search = (uint32 *)prptr->prstkptr;
search < (uint32 *)prptr->prstkbase; search++) {

/* If found, replace with the address of the args vector*/

if (*search == (uint32)dummy) {
*search = (uint32)argloc;
restore(mask);
return OK;

}
}

/* Argument value not found on the stack - report an error */

restore(mask);
return SYSERR;

}

Xinu – module 27 68 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Shell.c (Part 1)

/* shell.c - shell */

#include <xinu.h>
#include <stdio.h>
#include "shprototypes.h"

/**/
/* Table of Xinu shell commands and the function associated with each */
/**/
const struct cmdent cmdtab[] = {

{"argecho", xsh_argecho},
{"arp", xsh_arp},
{"cat", xsh_cat},
{"clear", xsh_clear},
{"date", xsh_date},
{"devdump", xsh_devdump},
{"echo", xsh_echo},
{"help", xsh_help},
{"ls" , xsh_ls},
{"kill", xsh_kill},
{"memdump", xsh_memdump},
{"memstat", xsh_memstat},
{"ns", xsh_ns},
{"netinfo", xsh_netinfo},
{"ping", xsh_ping},
{"ps", xsh_ps},

Xinu – module 27 69 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Shell.c (Part 2)

{"sleep", xsh_sleep},
{"tee", xsh_tee},
{"udp", xsh_udpdump},
{"udpecho", xsh_udpecho},
{"udpeserver", xsh_udpeserver},
{"uptime", xsh_uptime},
{"?", xsh_help}

};

uint32 ncmd = sizeof(cmdtab) / sizeof(struct cmdent);

/**/
/* */
/* cmdlookup -- return the index in cmdtab of a command name */
/* */
/**/

int32 cmdlookup(char *name) {
int32 indx; /* Index into cmdtab */
int32 len; /* Length of command name */

for (indx=0; indx < ncmd; indx++) {
len = strlen(cmdtab[indx].cname);
if (strncmp(name,cmdtab[indx].cname, len) == 0) {

return indx;
}

}
return SYSERR;

}

Xinu – module 27 70 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Shell.c (Part 3)

/**/
/* shell - Provide an interactive user interface that executes */
/* commands. An input line contains one or more segments */
/* separated by a pipe symbol '|'. Each segment begins with */
/* a command name, and has a set of optional arguments, The */
/* last segment in a pipeline can have output redirected. */
/* The entire pipeline can be run in background by ending the */
/* line with an ampersand, "&". The syntax is: */
/* */
/* seg [pipe seg]* [out_redir] [&] */
/* where: */
/* */
/* pipe is | */
/* */
/* seg is command_name [args*] */
/* */
/* out_redir is > output_file */
/* */
/**/

Xinu – module 27 71 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Shell.c (Part 4)

process shell (
did32 dev /* ID of tty device from which */

) /* to accept commands */
{

char buf[SHELL_BUFLEN]; /* Input line (large enough for */
/* one line from a tty device */

int32 len; /* Length of line read */
char tokbuf[SHELL_BUFLEN + /* Buffer to hold a set of */

SHELL_MAXTOK]; /* contiguous null-terminated */
/* strings of tokens */

int32 tok[SHELL_MAXTOK]; /* Index of each token in */
/* array tokbuf */

int32 toktyp[SHELL_MAXTOK]; /* Type of each token in tokbuf */
int32 ntok; /* Number of tokens on line */
bool8 backgnd; /* Run command in background? */
char *inname; /* File name for input re- */

/* direction on first segment */
did32 indesc; /* Descriptor for redirected */

/* input */
char *outname; /* File name for output re- */

/* direction on last segment */
did32 outdesc; /* Descriptor for redirected */

/* output */
int32 nsegs; /* Number of segments found */

Xinu – module 27 72 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Shell.c (Part 5)

struct segent { /* One segment of the pipeline */
int32 sstart; /* Starting token index */
int32 send; /* Ending token index */
int32 scindex; /* Index in cmdtab of the */

/* command in this segment */
did32 soutdev; /* Output device (pipe, except */

/* for first segment) */
did32 sindev; /* Input device (pipe, except */

/* for the last segment) */
pid32 spid; /* Process ID for this segment */

};
struct segent segtab[SHELL_MAXTOK];/* One entry per segment */
struct segent *segptr; /* Pointer to a segtab entry */
int32 seg; /* Index into segtab */
int32 cindex; /* Index of command returned */

/* by cmdlookup */
did32 pipedev; /* Device ID of a pipe device */
int32 i; /* Index into array of tokens */
char *p; /* Pointer to cmd name */
bool8 err; /* Did an error occur? */
int32 msg; /* Message from receive() for */

/* child termination */
int32 tmparg; /* Temporary address used when */

/* creating a child process; */
/* later replaced by addargs */

Xinu – module 27 73 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Shell.c (Part 6)

/* Print shell banner and startup message */

fprintf(dev, "\n\n%s%s\n%s\n%s\n%s\n%s\n%s\n%s\n%s\n%s\n",
SHELL_BAN0,SHELL_BAN1,SHELL_BAN2,SHELL_BAN3,SHELL_BAN4,
SHELL_BAN5,SHELL_BAN6,SHELL_BAN7,SHELL_BAN8,SHELL_BAN9);

fprintf(dev, "%s\n\n", SHELL_STRTMSG);

/* Continually prompt the user, read input, and execute command */

while (TRUE) {

/* Display prompt */

fprintf(dev, SHELL_PROMPT);

/* Read a command */

len = read(dev, buf, sizeof(buf));

/* Exit gracefully on end-of-file */

if (len == EOF) {
break;

}

Xinu – module 27 74 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Shell.c (Part 7)

/* If line only contains 'exit', exit gracefully */

if ((len==5) && (strncmp(buf,"exit\n", 5)==0)) {
break;

}

/* If line contains only NEWLINE, go to next line */

if (len <= 1) {
continue;

}

buf[len] = SH_NEWLINE; /* Terminate line */

/* Parse input line and divide into tokens */

ntok = lexan(buf, len, tokbuf, tok, toktyp);

/* Handle parsing error */

if (ntok == SYSERR) {
fprintf(dev,"%s\n", SHELL_SYNERRMSG);
continue;

}

Xinu – module 27 75 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Shell.c (Part 8)

/* If line is empty, go to next input line */

if (ntok == 0) {
fprintf(dev, "\n");
continue;

}

/* Set default input for first segment and output for */
/* last segment to the device used to call the shell */

/* See if the last token is '&', and set background */

if (toktyp[ntok-1] != SH_TOK_AMPER) {
backgnd = FALSE;

} else {
backgnd = TRUE;
ntok-- ;
if (ntok == 0) {

fprintf(dev, "\n");
continue;

}
}

Xinu – module 27 76 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Shell.c (Part 9)

/* Use the pipe tokens to divide the pipeline into */
/* segments by placing the index of pipe tokens in */
/* successive locations of array segtab. */

nsegs = 0;
segptr = &segtab[nsegs];
segptr->sstart = 0;
for (i=0; i<ntok; i++) {

/* Check for pipe at end of segment */

if (toktyp[i] == SH_TOK_PIPE) {

/* Finish old segment and start new */

segptr->send = i - 1;

/* Check for empty segment */

if (segptr->sstart > segptr->send) {
fprintf(dev,"%s\n", SHELL_SYNERRMSG);
break;

}
/* Move to new segment */
nsegs++;
segptr = &segtab[nsegs];
segptr->sstart = i+1;

}
}

Xinu – module 27 77 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Shell.c (Part 10)

if (i < ntok) {
/* Error occurred, so go to next input */
continue;

}

/* Fill in remaining details for last segment */

segptr->send = ntok - 1;
if (segptr->sstart > segptr->send) {

fprintf(dev,"%s\n", SHELL_SYNERRMSG);
continue;

}
nsegs++;

/* Check for output redirection on last segment */

segptr = &segtab[nsegs - 1];
outname = NULL;
if (((segptr->send-segptr->sstart) > 1) &&

(toktyp[segptr->send-1] == SH_TOK_GREATER)) {
if (toktyp[segptr->send] != SH_TOK_OTHER) {

fprintf(dev,"%s\n", SHELL_SYNERRMSG);
continue;

}
outname = &tokbuf[tok[segptr->send]];
segptr->send -= 2;

}

Xinu – module 27 78 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Shell.c (Part 11)

/* Check for input redirection on first segment */

segptr = &segtab[0];
inname = NULL;
if (((segptr->send-segptr->sstart) > 1) &&

(toktyp[segptr->send-1] == SH_TOK_LESS)) {
if (toktyp[segptr->send] != SH_TOK_OTHER) {

fprintf(dev,"%s\n", SHELL_SYNERRMSG);
continue;

}
inname = &tokbuf[tok[segptr->send]];
segptr->send -= 2;

}

Xinu – module 27 79 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Shell.c (Part 12)

ft C
/* Check that all tokens in each segment are "other" */

err = FALSE;
for (seg = 0; seg < nsegs; seg++) {

segptr = &segtab[seg];
for (i=segptr->sstart; i<= segptr->send; i++) {

if (toktyp[i] != SH_TOK_OTHER) {
fprintf(dev,"%s\n", SHELL_SYNERRMSG);
err = TRUE;
break;

}
}
if (err) {

break;
}

}
if (err) {

continue;
}

Xinu – module 27 80 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Shell.c (Part 13)

/* For each command, look up the name of the command */

for (seg = 0; seg< nsegs; seg++) {
segptr = &segtab[seg];
p = &tokbuf[tok[segptr->sstart]];
cindex = cmdlookup(p);
if (cindex == SYSERR) {

fprintf(dev, "command %s not found\n", p);
break;

}
segptr->scindex = cindex;

}
if (seg < nsegs) {

/* Error occurred, so go to next input */
continue;

}

Xinu – module 27 81 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Shell.c (Part 14)

/* Open files for redirected input and output */

indesc = outdesc = dev;

if (inname != NULL) {
indesc = open(NAMESPACE,inname,"ro");
if (indesc == SYSERR) {

fprintf(dev, SHELL_INERRMSG, inname);
continue;

}
}
segtab[0].sindev = indesc;

if (outname != NULL) {
outdesc = open(NAMESPACE,outname,"w");
if (outdesc == SYSERR) {

fprintf(dev, SHELL_OUTERRMSG, outname);

/* Close input file if it was opened */
if (indesc != dev) {

close(indesc);
}

continue;
}
control(outdesc, F_CTL_TRUNC, 0, 0);

}
segtab[nsegs-1].soutdev = outdesc;

Xinu – module 27 82 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Shell.c (Part 15)

/* Create nsegs-1 pipes (to go "between" the segments) */
err = FALSE;
for (seg = 0; seg < nsegs - 1; seg++) {

segptr = &segtab[seg];
pipedev = open(PIPE,NULLSTR,"rw");
if (pipedev == SYSERR) {

err = TRUE;
fprintf(dev,"Pipe open failed\n");
break;

}
segptr->soutdev = pipedev;
segtab[seg+1].sindev= pipedev;

}
if (err) {

/* Close previously opened pipes */
for(seg--; seg >= 0; seg--) {

close(segtab[seg].soutdev);
}
/* Close previously opened infile */
if (indesc != dev) {

close(indesc);
}
/* Close previously opened outfile */
if (outdesc != dev) {

close(outdesc);
}
continue;

}

Xinu – module 27 83 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Shell.c (Part 16)

/* Spawn a process for each segment */
int32 ntokens;
err = FALSE;
for (seg = 0; (seg<nsegs) && !err; seg++) {

segptr = &segtab[seg];
ntokens = segptr->send - segptr->sstart +1;
segptr->spid = create(cmdtab[segptr->scindex].cfunc,

SHELL_CMDSTK, SHELL_CMDPRIO,
cmdtab[segptr->scindex].cname, 2,
ntokens, &tmparg);

/* If creation fails, report the error */
if (segptr->spid == SYSERR) {

fprintf(dev, SHELL_CREATEMSG);
err = TRUE;
continue;

}
/* If adding arguments fails,report the error */
if (addargs(segptr->spid,ntokens,&tok[segptr->sstart],

tokbuf, &tmparg)== SYSERR) {
fprintf(dev, SHELL_CREATEMSG);
err = TRUE;
break;

}
}

Xinu – module 27 84 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Shell.c (Part 17)

if (err) {
/* Undo processes created before the error */
for(seg-- ; seg >= 0; seg--) {

kill(segtab[seg].spid);
}

}

/* Redirect input and output for each process */
for (seg=0; seg< nsegs; seg++) {

segptr = &segtab[seg];
proctab[segptr->spid].prdesc[0] = segptr->sindev;
proctab[segptr->spid].prdesc[1] = segptr->soutdev;

}

msg = recvclr();

/* Resume each process in the pipeline (the shell will */
/* remain running because it has higher priority) */

for (seg = 0; seg < nsegs; seg++) {
resume(segtab[seg].spid);

}

Xinu – module 27 85 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Shell.c (Part 18)

/* Either block to wait for the last process in the */
/* pipeline to finish or allow the pipeline to run */
/* in background */

pid32 tmppid = segtab[nsegs-1].spid; /* Last seg. pid */

if (! backgnd) {
msg = receive();
while (msg != tmppid) {

msg = receive();
}

}
}

/* Terminate the shell process by returning from the top level */

fprintf(dev,SHELL_EXITMSG);
return OK;

}

Xinu – module 27 86 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

An Example Shell Command (sleep Part 1)

/* xsh_sleep.c - xsh_sleep */

#include <xinu.h>
#include <stdio.h>
#include <string.h>

/*--
* xsh_sleep - Shell command to delay for a specified number of seconds
*--
*/

shellcmd xsh_sleep(int nargs, char *args[])
{

int32 delay; /* Delay in seconds */
char *chptr; /* Walks through argument */
char ch; /* Next character of argument */

/* For argument '--help', emit help about the 'sleep' command */

if (nargs == 2 && strncmp(args[1], "--help", 7) == 0) {
printf("Use: %s\n\n", args[0]);
printf("Description:\n");
printf("\tDelay for a specified number of seconds\n");
printf("Options:\n");
printf("\t--help\t display this help and exit\n");
return 0;

}

Xinu – module 27 87 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

An Example Shell Command (sleep Part 2)

/* Check for valid number of arguments */

if (nargs > 2) {
fprintf(stderr, "%s: too many arguments\n", args[0]);
fprintf(stderr, "Try '%s --help' for more information\n",

args[0]);
return 1;

}

if (nargs != 2) {
fprintf(stderr, "%s: argument in error\n", args[0]);
fprintf(stderr, "Try '%s --help' for more information\n",

args[0]);
return 1;

}

chptr = args[1];
ch = *chptr++;
delay = 0;
while (ch != NULLCH) {

if ((ch < '0') || (ch > '9')) {
fprintf(stderr, "%s: nondigit in argument\n",

args[0]);
return 1;

}
delay = 10*delay + (ch - '0');
ch = *chptr++;

}
sleep(delay);
return 0;

}

Xinu – module 27 88 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Mice And
Windowing Systems

A Mouse (Or Trackpad)

d A pointing device invented as a companion to a bit-mapped display

d Operates as an I/O device

d The hardware

– Detects movement

– Reports motion in 2-dimensions

d The hardware interface is surprising

Xinu – module 27 90 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Mouse Hardware

d A mouse contains

– Two motion detectors

* Arranged at right angles

* Labeled X and Y

– Two A-to-D converters

– 1 to 3 buttons

– Scroll wheel(s) or touch controls for scrolling

Xinu – module 27 91 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Communication Between A Mouse And A Computer

d Can use a variety of physical hardware connections

– Traditional serial port (RS232)

– Serial communication over USB

– Serial communication over Bluetooth

d Uses the same interface as a keyboard

– Individual characters

– Sends or receives one character at a time

Xinu – module 27 92 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Two-Way Mouse Communication

d Is unexpectedly sophisticated

d A mouse uses two-way interaction

d A mouse can

– Accept commands from the computer

– Respond to queries from the computer

– Transmit data to the computer asynchronously

Xinu – module 27 93 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Mouse Modes

d Two basic modes are used

– Polling mode

– Streaming mode

d A given system may support both modes and allow the windowing system and/or
individual applications to choose

Xinu – module 27 94 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Polling Mode

d A processor sends a request for information

d The mouse responds by reporting

– Motion since last request

– The status of the buttons

d Typically polling is only used

– By low-end embedded systems

– To reset after communication has been temporarily lost

Xinu – module 27 95 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Streaming Mode

d A processor

– Specifies the resolution and scaling to be used for motion detection

– Sends one request to start the stream

d The mouse transmits new information

– When movement exceeds a predetermined threshold

– When a button is pressed or released

– When the thumbwheel moves

Xinu – module 27 96 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Mouse Communications Interface

d Communication with a mouse is

– Asynchronous (can occur at any time)

– Full duplex (both directions operate independently)

– Performed with 8-bit bytes, not just printable characters

d Consequence: a mouse may send a report at the same time a computer sends a
command to the mouse

Xinu – module 27 97 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Mouse Communications Interface
(continued)

d Each message occupies multiple 8-bit bytes

d Example: each report sent by a mouse

– Consists of one message with multiple fields

– Each field in the message is a fixed length

– The format is known as a mouse packet

d Notes

– Although we use the term packet, the serial hardware only transfers individual bytes

– The values in fields are interpreted according to current parameter settings

Xinu – module 27 98 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

An Example Mouse Packet (USB 3-Button Mouse)

BUT1BUT2BUT3device-specific

X motion since last report

Y motion since last report

device-specific

device-specific

device-specific

device-specific

device-specific

d Each mouse packet is eight 8-bit bytes

d BUT1, BUT2, and BUT3 give button status

d Device specific fields depend on the vendor and model

d Example device-specific information: X or Y overflow

Xinu – module 27 99 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Mouse Parameters

d Are set by the computer

d Determine

– How motion is measured and scaled

– How the mouse uses thresholds to decide when to send reports

d Users may be able to specify preferences

Xinu – module 27 100 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Typical Mouse Parameters

d Samples per second

– Selectable from 10, 20, 30, ... 200 samples per second

– The standard is 100 samples per second

d Tracking can be

– Linear (e.g., 2:1)

– Non-linear (e.g., exponential)

d Resolution (the precision with which to measure)

– Example: 4 counts per millimeter

d The point: a seemingly simple device, a mouse, is quite complex

Xinu – module 27 101 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Memory Mapped Display Screens

d A screen is divided into pixels

d Most displays are memory mapped, which means

– A portion of the memory address space is reserved for each display

– The operating system writes values to the display memory to change pixels on the
screen

– The display hardware repeatedly scans the display memory and updates the screen
accordingly

d A modern graphics card keeps the display memory on the card and includes hardware
that scans the display memory and updates the display faster than possible with normal
DRAM

Xinu – module 27 102 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Display Hardware

d Early screens were black-and-white

– One bit in the display memory corresponded to one pixel on the screen

– The early displays were known as bit-mapped screens

d Current screens display color

– One or more bytes of display memory correspond to a pixel on the screen

– Color displays are sometimes called byte-mapped, but the term bit-mapped persists

Xinu – module 27 103 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Color Specification

d The hardware uses three primary colors: red, green, blue (RGB)

d Originally, the colors came from phosphors illuminated by an electron beam; modern
displays use LEDs to produce the colors

d Think back to elementary school art class

– Everyone learns that the primary colors are red, blue, and yellow

– Other colors can be made by mixing primary colors

– Example: yellow plus blue produces green

d Questions

– Was the art teacher incorrect?

– Why don’t computer displays use the same primary colors

Xinu – module 27 104 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Color Specification
(continued)

d Answer:

– Art classes use reflective colors

– Computer screens use generated color

d A major difference

– Artists draw on white paper, so the absence of color is white (less color results in a
lighter shade)

– On a computer, the absence of color is black (less color results in a darker shade)

Xinu – module 27 105 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Combining Colors

d On a display, all colors result from a combination of 0% to 100% of red, green, and
blue

d RGB colors combine in interesting and unexpected ways

– Example 100% red + 100% green + 0% blue gives yellow

– Recall that adding less of a color makes a darker shade (closer to black), so starting
with full blue and reducing the amount will make a darker blue

d In practice

– An integer value is used for each color instead of a floating point percentage

– Typically, the value for each color occupies one byte and ranges from 0 to 255

– A total of 16,777,216 colors are possible

Xinu – module 27 106 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Extending Colors

d Additional colors can be provided two ways

– Increase the number of bits (or bytes) per pixel

– Use color map technology

d Color map technology

– Observe that a given image or set of images do not contain many colors

– Build mapping hardware that stores an array of multi-byte colors

– Use an RGB value as an index into the array

– Change the array when changing to a set of images with new colors

Xinu – module 27 107 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Windowing Systems

d Windows are an operating system abstraction handled by software

d Most window systems allow windows to be

– Created/destroyed at any time

– Moved/resized/iconified

d A typical implementation

– Each window is a rectangular region on screen (but other shapes have been tried)

– A window must be created before it can be used

– The OS presents an application with a separate coordinate space for each window,
where (0,0) is a corner of the window

Xinu – module 27 108 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Window Display Parameters

d Many details are involved

– Background/foreground colors

– A title for the window

– The location of scroll bars

– Borders and labels

d The details are controlled by a piece of software known as a window manager

d In Unix systems, each user can choose their own window manager

d Allowing users to choose a window manager means each user can see windows
displayed in their preferred style, but means users may not all see the same display

Xinu – module 27 109 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Cursor Movement

d The goal

– A cursor should appear on the screen at all times

– The cursor on the screen should track the mouse/touchpad movement

d Unfortunately

– Mouse hardware is not directly linked to video hardware

d Consequence: software must

– Update the cursor when the mouse moves (i.e., a mouse packet arrives)

– Map the new position to the correct window so mouse clicks can be forwarded to
the process that owns the window

Xinu – module 27 110 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Cursor Update Algorithm

d When the cursor moves, the window manager must

– Undo the cursor at old position by repainting the original display values

– Determine the new position for the cursor, P

– Save video memory at position P for a later “undo” operation

– Use cursor color to paint cursor at position P

Xinu – module 27 111 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Optimizing Cursor Update

d A cursor update is required at each mouse interrupt

d Switching context to a window manager process introduces significant delay

d Delay makes cursor motion jerky

d To avoid long delays and achieve smooth cursor motion, the system must perform
cursor update in the lower-half of device driver as part of interrupt processing

d The downside: if the processor becomes overloaded, interrupt processing can be delayed
or missed, which means the cursor on the screen may lag mouse movements or some
mouse movements may be missed

d Good news: unlike early computers, modern computers have fast, multicore processors
that make lost interrupts unlikely

Xinu – module 27 112 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Summary

d Operating system support two styles of user interface

– Graphical User Interface

– Command-line interpreter

d The Unix shell

– Runs as a separate application

– Provides a miniature programming language

– Supports concurrency and data pipelining

– Limits variables to strings

– Uses quotes to delay binding

– Provides conversions between strings and command input/output

Xinu – module 27 113 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Summary
(continued)

d A mouse

– Is surprisingly complex

– Uses a two-way communication system and delivers “packets”

d A computer display

– Has primary colors red, green, and blue that add to generate all possible colors
rather than the red, yellow, and blue primary colors used in art class to reflect color

– Uses a memory-mapped approach where a processor writes bytes in a display
memory and display hardware constantly scans the memory and updates the display

– For a color display, the hardware display memory stores three values for each pixel
that correspond to red, green, and blue

Xinu – module 27 114 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Summary
(continued)

d Windowing systems

– Are a software abstraction

– Window manager handles details

d Cursor update

– Is performed by software

– Is often handled at interrupt time

Xinu – module 27 115 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Questions?

