Xinu —module 26

Module XXVI

A Pipe M echanism
(Bounded Buffer)

1

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Bounded Buffer

e A basicidea

e Fixed-size buffer used to transfer data between processes
— One process sends bytes of data in the buffer
— Another process extracts the data

e The buffer mechanism includes process synchronization
— The sender is blocked if the buffer is full
— Therecelver is blocked if the buffer is empty

e Note: this module explains how an operating system can offer a bounded buffer
mechanism, and the next module shows how a shell uses such a mechanism

Xinu —module 26 2 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Unix Pipe M echanism

e A pipe consists of a bounded buffer integrated into the 1/0O subsystem

e QOperations
— Create a pipe and receive two file descriptors: one for input and one for output
— Wkite data into the descriptor used for input
— Read data from the descriptor used for output

— Close the input descriptor to send end-of-file and once all data has been read, close
the output descriptor to deallocate the pipe

Xinu —module 26 3 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Xinu Pipe Mechanism

e Also integrates pipes into the 1/O subsystem

e Only uses one device descriptor per pipe

e Both the sending and receiving processes must each close the descriptor before the pipe

IS deall ocated

Unlike Unix, the Xinu pipe mechanism only uses
one device descriptor for each pipe. The system
requires the descriptor to be closed twice, once
after the sending process finishes sending data,

and a second time after the receiving process
reaches end-of-file.

Xinu —module 26 4
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Pipe Devices In Xinu

e A single primary pipe device named PIPE

e A set of pipe pseudo-devices (PIPEO, PIPEL, PIPEZ2,...) with one of the pseudo-devices
allocated whenever a pipe Is created

Xinu —module 26 5 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

/* pipe.h */

[* Definitions for

#i f ndef Pl PE_BUF_SI ZE
#define Pl PE_BUF_SI ZE

#endi f

Pipe Definitions

a pi pe device */

/* Default size of a pipe buffer */

/* state constants for a pipe pseudo device */

#defi ne Pl PE _FREE
#defi ne PI PE_OPEN

#defi ne Pl PE_EOF

struct pipechlk
i nt 32
byt e
I nt 32
i nt 32
Si d32
Si d32
di d32
I nt 32

}s
extern struct

Xinu —module 26

/[* Entry is not currently used */
/* Entry is open for reading and witing*/
/* Entry has been closed for wites, but*/

/* remains open for reading until all */

/* chars have been read and EOF has */

/* returned */
{
pst at e; /* State of this pipe device */
pbuf [Pl PE BUF_SI ZE]; /* Buffer for the pipe */
phead; /* I ndex of next byte in pbuf to read */
ptail; /* I ndex of next byte in pbuf to wite */
ppsem /* Producer semaphore for the pipe */
pcsem /* Consuner senmaphore for the pipe */
pdevi d; /* Device ID of this pseudo device */
pavai l ; /* Avail abl e characters during drain */

pi pecbl k pi petab[];

6

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

State Transitions For A Pipe Pseudo-Device

PIPE_OPEN PIPE_EOF

e The PIPE_EOF state indicates that one process has closed the pipe

e When a second close occurs, the pseudo-device returns to the PIPE+ FREE state,
meaning it has been deallocated

Xinu —module 26 7 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Synchronizing Access To The Pipe

e A Xinu pipe appears to be a classic producer-consumer situation where access can be
controlled by two semaphores (i.e., producer and consumer)

e However, two special cases arise

— Case 1. the normal case in which the producer process calls close before all data has
been read

— Case 2: an abnormal case there the recelving process is terminated before the
producer process finishes sending data (if the buffer is full, the producer may be
blocked waiting for space in the buffer)

Xinu —module 26 8 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Handling Special Cases

e Each function that deposits or extracts data from a pipe checks the state of the pipe
when it begins

e The pipe functions cannot use the count of a semaphore to specify the number of bytes
In the buffer because the receiving process may make the count —1 if it blocks on an

empty buffer

e S0, instead of using semaphore count, the control block contains an integer, pavail, that
counts available bytes

Keeping a count of data bytes separate from the
semaphore count allows the pipe code to signal a
semaphore on end-of-file without changing the
count of data bytes.

Xinu —module 26 9 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

[* pipe_

Initializing A Pipe Pseudo-Device

init.c - pipe_init */

#i ncl ude <xi nu. h>

struct

pi pecbl k pi pet ab[Npi p];

*
devcal |

Xinu —module 26

pipe_init (
)

struct dentry *devptr

struct pipecblk *piptr;

/* Pointer to pipe control

pi ptr = &pi petab[devptr->dvm nor];

pi ptr->pstate
pi ptr->pdevid
return OK;

Pl PE_FREE;
devptr->dvnum

10
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

/[* Entry in device swtch table */

bl ock*/

2025

Opening The PIPE Device To Create A Pipe (Part 1)

/* pi peopen.c - pipeopen */

#i ncl ude <xi nu. h>

| ® o e e e e o o e e e e e e e e e e e e e e e e e ee e -
* pipeopen - open one of the pipe pseudo devices
*
*/
devcal I pi pe_open(
struct dentry *devptr, /[* Entry in device switch table */
char *buff, /* Not used */
| nt 32 count /* Not used */
)
{
struct pipecbl k *piptr; /* Pointer to pipe control block*/
I nt | ; /* Wal ks through control blocks */
Xinu —module 26 11 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Opening The PIPE Device To Create A Pipe (Part 2)

/* Find a pipe pseudo device that is avail able */

for (i=0; i<Npip; i++) {
pi ptr = &pipetab[i];

I f (piptr->pstate == PI PE_FREE) {
br eak;
}

}

if (i >= Npip) {
return SYSERR
}

pi ptr->pstate = Pl PE_OPEN;

pi ptr->pcsem = sencreate(0);

pi ptr->ppsem = sencreat e(Pl PE_ BUF_SI ZE) ;
pi ptr->phead pi ptr->ptail = O;

pi ptr->pavail = 0;

return piptr->pdevid;

Xinu —module 26 12 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Extracting Data From A Pipe

e The special cases make extracting data surprisingly complex

e Asan example, consider pipe getc that must use the state of the pipe to decide how to
extract the next byte

e |[f the pipeisin state PIPE_EOF, the code checks pavail to determine whether bytes
remain in the buffer

e A separate section of code handles the case where the pipe is open

Xinu —module 26 13 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Extracting A Byte From A Pipe (pipe _getc.c Part 1)

/* pipe_getc.c - pipe_getc */

#i ncl ude <xi nu. h>

*/
devcal | pipe_getc(
struct dentry *devptr

)

char ch
struct pipecblk *piptr;

/|* Get a pointer to the control

/* Entry in device switch table */

/* Byte of data fromthe buffer */
/* Pointer to pipe control block*/

bl ock for this pipe */

pi ptr = &pi petab[devptr->dvm nor];

/* Check if pipe is not in use or at EOF */

I f (piptr->pstate == PI PE_FREE) {
/* The pipe is not avail able */

return SYSERR

Xinu —module 26

14

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Extracting A Byte From A Pipe (pipe getc.c Part 2)

if (piptr->pstate == PI PE ECF) {

/* The witer closed the pipe, so return bytes while */
/[* any remain in the buffer. */

I f (piptr->pavail > 0) {
ch = piptr->pbuf[piptr->phead++];
i f (piptr->phead >= Pl PE BUF_SI ZE) {
pi ptr->phead = O;
}

pi ptr->pavail --;
return Oxff & ch;

}
return EOCF;

}

/* State is OPEN -- Wait for a byte to be available or a close */

wai t (pi ptr->pcsem ;

Xinu —module 26 15
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Extracting A Byte From A Pipe (pipe getc.c Part 3)

/* If the state changed while we were bl ocked, the producer nust*/
/* have called close, possibly after witing bytes to the pipe.*/

if (piptr->pstate == PI PE_ECF) {
i f (piptr->pavail <= 0) {
/* The buffer is enpty */
return EOF;

: }
/* A byte is available to be read -- pick up and return the byte*/
ch = piptr->pbuf[piptr->phead++];
if (piptr->phead >= PI PE_ BUF_SI ZE) {
pi ptr->phead = O;
}
pi ptr->pavail - -;

/* Signal the producer and return the byte */

si gnal (pi ptr->ppsen ;
return Oxff & ch;

Xinu —module 26 16 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Depositing A ByteIn A Pipe
e Asusual, asending process must wait on the producer semaphore, deposit a byte, and

then signal the consumer semaphore

e A specia case arises if the recelving process closes the pipe while the sending process
IS waiting

e Look at the code in pipe putc to see how it checks the state

Xinu —module 26 17 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Depositing A Byte From A Pipe (pipe putc.c Part 1)

/* pipeputc.c - pipeputc */

#i ncl ude <xi nu. h>

| * e o eeeee-
* pipeputc - wite one character to a pipe device
*/
devcal | pipe_putc(
struct dentry *devptr, /* Entry in device switch table */
char ch /* Byte to wite */
{)
struct pipecblk *piptr; /* Pointer to pipe control block*/
/|* Get a pointer to the control block for this pipe */
pi ptr = &pi petab[devptr->dvm nor];
/* Check that the pipe is available for witing */
I f (piptr->pstate !'= Pl PE_OPEN) {
return SYSERR;
}
Xinu —module 26 18 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Depositing A Byte From A Pipe (pipe putc.c Part 2)

wai t (pi ptr->ppsem ;
/* See if pipe was closed or set to ECF while we were bl ocked */
i f (piptr->pstate != Pl PE_ OPEN) {
return SYSERR,
}
/* Deposit a byte in next buffer position */
pi ptr->pbuf[piptr->ptail ++] = ch;
if (piptr->ptail >= PIPE BUF _SIZE) {
piptr->ptail = 0;
}
pi ptr->pavai l ++;

/* Signal the consuner semaphore and return */

si gnal (pi ptr->pcsen ;
return OK;

Xinu —module 26 19 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Closing A Pipe

e Recall that close will be called twice
e The code uses the state to determine the appropriate action
e During the first close, the code resets the producer semaphore

e To ensure it finishes resetting semaphores before any context switch occurs, the code
defers rescheduling while making changes

Xinu —module 26 20 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Closing A Pipe (pipe close.c Part 1)

/* pipe_close.c - pipe_close */
#i ncl ude <xi nu. h>

| * o o e
* pipe_close - Cose a pipe
*/
devcal | pipe_close (
struct dentry *devptr /* Entry in device switch table */
{)
struct pipecblk *piptr; /* Pointer to pipe control block*/
/* Note: because both a witing process and readi ng process use */
/* a given pipe, both will close the pipe. Conceptually, the */
/* first call noves the pipe to a read-only state and marks the*/
/* end-of-ile. The second call deallocates the pipe device, */
/* making it avail able for reuse. */
pi ptr = &pi petab[devptr->dvm nor];
/* If pipe is conpletely closed, return SYSERR */
I f (piptr->pstate == PI PE_ FREE) {
return SYSERR;
}
Xinu —module 26 21 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Closing A Pipe (pipe close.c Part 2)

/* First call to close -- nove to EOF state */

I f (piptr->pstate == Pl PE_OPEN) {
pi ptr->pstate = Pl PE EOF,;
resched_cnt| (DEFER_START) ;
I f (sentount (piptr->pcsen) < 0) {
/* Pipe is enpty and consuner is bl ocked, so */
/* Allow the consuner to run */
senr eset (pi ptr->pcsem 0);

}

/* Allow a bl ocked producer to proceed, if any */

I f (sentount (piptr->ppsem < 0) {
senr eset (pi ptr->ppsem O0);

}
resched_cnt| (DEFER_STOP) ;
return OK;

Xinu —module 26 22 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Closing A Pipe (pipe close.c Part 3)

/* Second call to close - deall ocate the pipe device */

pi ptr->pstate = Pl PE_FREE;
sendel et e(pi ptr->ppsem ;
sendel et e(pi ptr->pcsem ;

pi ptr->pavail = O0;
return OK
}
Xinu —module 26 23 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Ouestions?

