
Module XXVI

A Pipe Mechanism
(Bounded Buffer)

Xinu – module 26 1 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Bounded Buffer

d A basic idea

d Fixed-size buffer used to transfer data between processes

– One process sends bytes of data in the buffer

– Another process extracts the data

d The buffer mechanism includes process synchronization

– The sender is blocked if the buffer is full

– The receiver is blocked if the buffer is empty

d Note: this module explains how an operating system can offer a bounded buffer
mechanism, and the next module shows how a shell uses such a mechanism

Xinu – module 26 2 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



The Unix Pipe Mechanism

d A pipe consists of a bounded buffer integrated into the I/O subsystem

d Operations

– Create a pipe and receive two file descriptors: one for input and one for output

– Write data into the descriptor used for input

– Read data from the descriptor used for output

– Close the input descriptor to send end-of-file and once all data has been read, close
the output descriptor to deallocate the pipe

Xinu – module 26 3 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



The Xinu Pipe Mechanism

d Also integrates pipes into the I/O subsystem

d Only uses one device descriptor per pipe

d Both the sending and receiving processes must each close the descriptor before the pipe
is deallocated

Unlike Unix, the Xinu pipe mechanism only uses
one device descriptor for each pipe. The system
requires the descriptor to be closed twice, once
after the sending process finishes sending data,
and a second time after the receiving process
reaches end-of-file.

Xinu – module 26 4 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Pipe Devices In Xinu

d A single primary pipe device named PIPE

d A set of pipe pseudo-devices (PIPE0, PIPE1, PIPE2,...) with one of the pseudo-devices
allocated whenever a pipe is created

Xinu – module 26 5 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Pipe Definitions
/* pipe.h */

/* Definitions for a pipe device */

#ifndef PIPE_BUF_SIZE
#define PIPE_BUF_SIZE 20 /* Default size of a pipe buffer */
#endif

/* state constants for a pipe pseudo device */

#define PIPE_FREE 0 /* Entry is not currently used */
#define PIPE_OPEN 1 /* Entry is open for reading and writing*/
#define PIPE_EOF 2 /* Entry has been closed for writes, but*/

/* remains open for reading until all */
/* chars have been read and EOF has */
/* returned */

struct pipecblk {
int32 pstate; /* State of this pipe device */
byte pbuf[PIPE_BUF_SIZE]; /* Buffer for the pipe */
int32 phead; /* Index of next byte in pbuf to read */
int32 ptail; /* Index of next byte in pbuf to write */
sid32 ppsem; /* Producer semaphore for the pipe */
sid32 pcsem; /* Consumer semaphore for the pipe */
did32 pdevid; /* Device ID of this pseudo device */
int32 pavail; /* Available characters during drain */

};

extern struct pipecblk pipetab[];

Xinu – module 26 6 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



State Transitions For A Pipe Pseudo-Device

PIPE_FREE

PIPE_OPEN PIPE_EOF

init

open

close

close

d The PIPE_EOF state indicates that one process has closed the pipe

d When a second close occurs, the pseudo-device returns to the PIPE+FREE state,
meaning it has been deallocated

Xinu – module 26 7 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Synchronizing Access To The Pipe

d A Xinu pipe appears to be a classic producer-consumer situation where access can be
controlled by two semaphores (i.e., producer and consumer)

d However, two special cases arise

– Case 1: the normal case in which the producer process calls close before all data has
been read

– Case 2: an abnormal case there the receiving process is terminated before the
producer process finishes sending data (if the buffer is full, the producer may be
blocked waiting for space in the buffer)

Xinu – module 26 8 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Handling Special Cases

d Each function that deposits or extracts data from a pipe checks the state of the pipe
when it begins

d The pipe functions cannot use the count of a semaphore to specify the number of bytes
in the buffer because the receiving process may make the count –1 if it blocks on an
empty buffer

d So, instead of using semaphore count, the control block contains an integer, pavail, that
counts available bytes

Keeping a count of data bytes separate from the
semaphore count allows the pipe code to signal a
semaphore on end-of-file without changing the
count of data bytes.

Xinu – module 26 9 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Initializing A Pipe Pseudo-Device

/* pipe_init.c - pipe_init */

#include <xinu.h>

struct pipecblk pipetab[Npip];

/*------------------------------------------------------------------------
* pipe_init - initialize a pipe pseudo device
*------------------------------------------------------------------------
*/

devcall pipe_init (
struct dentry *devptr /* Entry in device switch table */

)
{

struct pipecblk *piptr; /* Pointer to pipe control block*/

piptr = &pipetab[devptr->dvminor];

piptr->pstate = PIPE_FREE;
piptr->pdevid = devptr->dvnum;
return OK;

}

Xinu – module 26 10 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Opening The PIPE Device To Create A Pipe (Part 1)

/* pipeopen.c - pipeopen */

#include <xinu.h>

/*------------------------------------------------------------------------
* pipeopen - open one of the pipe pseudo devices
*------------------------------------------------------------------------
*/

devcall pipe_open(
struct dentry *devptr, /* Entry in device switch table */
char *buff, /* Not used */
int32 count /* Not used */

)
{

struct pipecblk *piptr; /* Pointer to pipe control block*/
int i; /* Walks through control blocks */

Xinu – module 26 11 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Opening The PIPE Device To Create A Pipe (Part 2)

/* Find a pipe pseudo device that is available */

for (i=0; i<Npip; i++) {
piptr = &pipetab[i];

if (piptr->pstate == PIPE_FREE) {
break;

}
}

if (i >= Npip) {
return SYSERR;

}

piptr->pstate = PIPE_OPEN;
piptr->pcsem = semcreate(0);
piptr->ppsem = semcreate(PIPE_BUF_SIZE);
piptr->phead = piptr->ptail = 0;
piptr->pavail= 0;
return piptr->pdevid;

}

Xinu – module 26 12 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Extracting Data From A Pipe

d The special cases make extracting data surprisingly complex

d As an example, consider pipe_getc that must use the state of the pipe to decide how to
extract the next byte

d If the pipe is in state PIPE_EOF, the code checks pavail to determine whether bytes
remain in the buffer

d A separate section of code handles the case where the pipe is open

Xinu – module 26 13 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Extracting A Byte From A Pipe (pipe_getc.c Part 1)

/* pipe_getc.c - pipe_getc */

#include <xinu.h>

/*------------------------------------------------------------------------
* pipe_getc - read one character from a pipe device
*------------------------------------------------------------------------
*/

devcall pipe_getc(
struct dentry *devptr /* Entry in device switch table */

)
{

char ch; /* Byte of data from the buffer */
struct pipecblk *piptr; /* Pointer to pipe control block*/

/* Get a pointer to the control block for this pipe */

piptr = &pipetab[devptr->dvminor];

/* Check if pipe is not in use or at EOF */

if (piptr->pstate == PIPE_FREE) {
/* The pipe is not available */
return SYSERR;

}

Xinu – module 26 14 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Extracting A Byte From A Pipe (pipe_getc.c Part 2)

if (piptr->pstate == PIPE_EOF) {

/* The writer closed the pipe, so return bytes while */
/* any remain in the buffer. */

if (piptr->pavail > 0) {
ch = piptr->pbuf[piptr->phead++];
if (piptr->phead >= PIPE_BUF_SIZE) {

piptr->phead = 0;
}
piptr->pavail--;
return 0xff & ch;

}
return EOF;

}

/* State is OPEN -- Wait for a byte to be available or a close */

wait(piptr->pcsem);

Xinu – module 26 15 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Extracting A Byte From A Pipe (pipe_getc.c Part 3)

/* If the state changed while we were blocked, the producer must*/
/* have called close, possibly after writing bytes to the pipe.*/

if (piptr->pstate == PIPE_EOF) {
if (piptr->pavail <= 0) {

/* The buffer is empty */
return EOF;

}
}
/* A byte is available to be read -- pick up and return the byte*/

ch = piptr->pbuf[piptr->phead++];
if (piptr->phead >= PIPE_BUF_SIZE) {

piptr->phead = 0;
}
piptr->pavail--;

/* Signal the producer and return the byte */

signal(piptr->ppsem);
return 0xff & ch;

}

Xinu – module 26 16 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Depositing A Byte In A Pipe

d As usual, a sending process must wait on the producer semaphore, deposit a byte, and
then signal the consumer semaphore

d A special case arises if the receiving process closes the pipe while the sending process
is waiting

d Look at the code in pipe_putc to see how it checks the state

Xinu – module 26 17 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Depositing A Byte From A Pipe (pipe_putc.c Part 1)

/* pipeputc.c - pipeputc */

#include <xinu.h>

/*------------------------------------------------------------------------
* pipeputc - write one character to a pipe device
*------------------------------------------------------------------------
*/

devcall pipe_putc(
struct dentry *devptr, /* Entry in device switch table */
char ch /* Byte to write */

)
{

struct pipecblk *piptr; /* Pointer to pipe control block*/

/* Get a pointer to the control block for this pipe */

piptr = &pipetab[devptr->dvminor];

/* Check that the pipe is available for writing */

if (piptr->pstate != PIPE_OPEN) {
return SYSERR;

}

Xinu – module 26 18 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Depositing A Byte From A Pipe (pipe_putc.c Part 2)

wait(piptr->ppsem);

/* See if pipe was closed or set to EOF while we were blocked */

if (piptr->pstate != PIPE_OPEN) {
return SYSERR;

}

/* Deposit a byte in next buffer position */

piptr->pbuf[piptr->ptail++] = ch;
if (piptr->ptail >= PIPE_BUF_SIZE) {

piptr->ptail = 0;
}
piptr->pavail++;

/* Signal the consumer semaphore and return */

signal(piptr->pcsem);
return OK;

}

Xinu – module 26 19 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Closing A Pipe

d Recall that close will be called twice

d The code uses the state to determine the appropriate action

d During the first close, the code resets the producer semaphore

d To ensure it finishes resetting semaphores before any context switch occurs, the code
defers rescheduling while making changes

Xinu – module 26 20 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Closing A Pipe (pipe_close.c Part 1)

/* pipe_close.c - pipe_close */

#include <xinu.h>

/*------------------------------------------------------------------------
* pipe_close - Close a pipe
*------------------------------------------------------------------------

*/

devcall pipe_close (
struct dentry *devptr /* Entry in device switch table */

)
{

struct pipecblk *piptr; /* Pointer to pipe control block*/

/* Note: because both a writing process and reading process use */
/* a given pipe, both will close the pipe. Conceptually, the */
/* first call moves the pipe to a read-only state and marks the*/
/* end-of-ile. The second call deallocates the pipe device, */
/* making it available for reuse. */

piptr = &pipetab[devptr->dvminor];

/* If pipe is completely closed, return SYSERR */

if (piptr->pstate == PIPE_FREE) {
return SYSERR;

}

Xinu – module 26 21 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Closing A Pipe (pipe_close.c Part 2)

/* First call to close -- move to EOF state */

if (piptr->pstate == PIPE_OPEN) {
piptr->pstate = PIPE_EOF;
resched_cntl(DEFER_START);
if (semcount(piptr->pcsem) < 0) {

/* Pipe is empty and consumer is blocked, so */
/* Allow the consumer to run */
semreset(piptr->pcsem, 0);

}

/* Allow a blocked producer to proceed, if any */

if (semcount(piptr->ppsem) < 0) {
semreset(piptr->ppsem, 0);

}
resched_cntl(DEFER_STOP);
return OK;

}

Xinu – module 26 22 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Closing A Pipe (pipe_close.c Part 3)

/* Second call to close - deallocate the pipe device */

piptr->pstate = PIPE_FREE;
semdelete(piptr->ppsem);
semdelete(piptr->pcsem);
piptr->pavail = 0;
return OK;

}

Xinu – module 26 23 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Questions?


