
Module XXV

Meta-Consideration:
System Configuration

Xinu – module 25 1 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Relation Of Configuration To The Hierarchy

Xinu – module 25 2 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Motivation For Configuration

d Hardware is modular: we build a computer by choosing

– Processor

– Memory size

– Storage size and type

– A set of I/O devices

d The goal: design an operating system that can run on as many hardware configurations
as possible

d Achieving the goal: make operating system software configurable

Xinu – module 25 3 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Configuration And Binding Times

d A designer must choose how/ when to specify each part of a configuration

d Examples (listed in order from early binding to late binding)

– Source code creation and configuration time

– Preprocessing time

– Compile time

– Link time

– Load time

– Operating system startup time

– Run time

d The tradeoff: earlier binding provides more efficiency; later binding provides more
flexibility

Xinu – module 25 4 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



The General Trend

d Industry has moved from early binding to late binding

d Examples

– Device-specific I/O functions to device-independent I/O functions

– Static program loading to dynamic loading

– Physical memory to virtual memory

– Pre-configured device drivers to dynamically-loaded drivers

– Pre-linked libraries to dynamically-loaded libraries

– Monolithic kernel to dynamically-loaded kernel modules

Xinu – module 25 5 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Microkernel Design

d General idea

– Start with a minimal operating system kernel (microkernel)

– Design other operating system functions as independent modules

– Boot the microkernel and only load other modules as needed

– Possibly: unload a module when no longer needed

d Several microkernel systems have been built

d The current conclusion: microkernels fill niche roles

– Most modules are needed all the time

– Dynamically loaded libraries solve many problems for which microkernels were
originally intended

Xinu – module 25 6 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Tradeoffs Between Early And Late Binding

d Early binding

– More efficient

– Lower startup delay

– Less flexible

d Late binding

– More flexible

– A single system can run on a range of hardware

– Some hardware resources may go unused

Xinu – module 25 7 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Xinu Configuration

d Optimized for efficiency (i.e., uses early binding)

d When configuring the system, fix

– The specific set of devices

– Interrupt vector assignments, if needed

d By compile time, fix

– The processor architecture (e.g., instruction set, registers)

– Device names, and possibly bus addresses

– Sizes of internal operating system data structures (number of processes, semaphores,
etc.)

Xinu – module 25 8 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Xinu Configuration
(continued)

d By link time, fix

– All code, including applications, library functions, and shell commands

– Drivers for all devices

– Addresses for global kernel variables

d Post link time

– Transform the executable program into a bootable image

– Add additional headers, if needed

Xinu – module 25 9 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Xinu Configuration
(continued)

d At system startup

– Find the size (and locations) of free memory blocks

– Initialize each device

– Determine whether a real-time clock is present (optional)

– Allocate additional kernel objects (disk and network buffers)

– Start network processes (and possibly other background processes)

Xinu – module 25 10 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Xinu Configuration
(continued)

d At runtime, allow processes to allocate the following dynamically

– Buffer pools

– Message ports

– Semaphores

– Processes

– Slots used for network communication

Xinu – module 25 11 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



The Xinu Configuration Program

d Xinu uses a separate program named config that

– Runs before the operating system is compiled and generates source code

– Reads input from a text file named Configuration

– Assigns major and minor device numbers

– Produces two output files: conf.h and conf.c

d File conf.h

– Defines the device switch table, device names, and constants

– Allows the user to define additional constants and override system defaults

d File conf.c

– Generates initialization code for the entire device switch table

Xinu – module 25 12 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



The Format Of The Configuration File

d File Configuration is a text file that is divided into three sections

d The sections are separated by a percent sign on a line by itself

device type declaration section

%

device specification section

%

other configuration constants

d Note: items in the third section are appended to the end of conf.h

Xinu – module 25 13 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Device Type Declarations

d Allow designers to assign a name to each type of device

d Specify a set of default driver functions for each device type

d Document how a set of device driver functions are related

d Motivations

– Show how a set of functions constitute a device driver

– Provide a name for each set of driver functions

– Allow multiple device declarations to refer to the name rather than repeating details

Xinu – module 25 14 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



An Example Device Type Declaration

d Consider a device driver for a serial device

d Xinu uses the name tty

d The type is defined once and then used with all serial devices

d The type declaration must specify a driver function for each high-level I/O operation

d As an example, suppose

– The driver function for read is named ttyread

– The driver function for write is named ttywrite

– The driver function for getc is named ttygetc

– The driver function for putc is named ttyputc

– ... and so on

Xinu – module 25 15 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



An Example Device Type Declaration
(continued)

d The syntax used to declare the tty type in file Configuration is

tty:
on uart

-i ttyinit -o ionull -c ionull
-r ttyread -g ttygetc -p ttyputc
-w ttywrite -s ioerr -n ttycontrol
-intr ttyhandler -irq 11

d The first line declares the type name tty

d The phrase on uart specifies the underlying hardware, and allows a single type to be
used with multiple brands of hardware

d The items that begin with a minus sign are keywords

Xinu – module 25 16 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Driver Definition

d Question: what is a device driver?

d Answer: a set of functions that provide an interface to a device, including a function the
operating system calls to initialize the device, upper-half functions applications call to
perform I/O and lower-half functions invoked when the device interrupts

d In Xinu, one can only tell which functions a driver uses by looking at the Configuration
file

Outside the Configuration file, one finds
individual functions; only the Configuration file
specifies which functions have been selected
to form a given device driver.

Xinu – module 25 17 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Data Associated With A Device

d In addition to a set of functions, a device driver may need additional data

– The address on the bus assigned to the device’s Control and Status Registers (CSRs)

– The interrupt Request number (IRQ) assigned to the device

d For embedded systems, CSR and IRQ values are assigned statically when the hardware
is designed

d For larger systems, the operating system must use a bus protocol at startup to find the
CSR and IRQ values for each device

d Consequence: the Xinu Configuration file allows, but does not require, a user to specify
IRQ and CSR values

Xinu – module 25 18 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Keywords Used In Type Specification And Their Meanings

22222222222222222222222222222222222222222222222

Keyword Meaning22222222222222222222222222222222222222222222222

-i function that performs init
-o function that performs open
-c function that performs close
-r function that performs read
-w function that performs write
-s function that performs seek
-g function that performs getc
-p function that performs putc
-n function that performs control

-intr function that handles interrupts
-csr control and status register address
-irq interrupt vector number

222222222222222222222222222222222222222222222221
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Xinu – module 25 19 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Device Specification Section

d The second section of file Configuration specifies actual devices, and has one entry for
each device in the system

d An entry specifies

– A unique name for the device

– The type of the device (using type names declared in the previous section)

– A set of device driver functions or values, if they differ from the default

d Example 1: on the Galileo, the CONSOLE device is specified:

CONSOLE is tty on uart csr 0001770 -irq 0052

d Example 2: on the BeagleBone Black, the CONSOLE device is specified:

CONSOLE is tty on uart csr 0x44E09000 -irq 72

Xinu – module 25 20 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Overriding Individual Items

d An entry in the device specification may override any default in the type

d Example 1: use mygetc for the CONSOLE device, and specify a CSR address and irq

CONSOLE is tty on uart csr 0001770 -irq 0052 -g mygetc

d Example 2: specify CONSOLE and SERIAL1 to both be tty devices, but give each a
unique CSR and IRQ; only use mygetc for CONSOLE

CONSOLE is tty on uart csr 0001770 -irq 0052 -g mygetc

SERIAL1 is tty on uart csr 0001370 -irq 0054

Xinu – module 25 21 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Minor Numbers And Device Control Blocks

d When run, the config program

– Assigns each device a unique major device number

– Assigns each device a minor device number that is unique within all devices of the
same type

– Defines a constant that specifies the number of devices of each type

d Generates conf.h and conf.c files

d Motivation

– Each major device number defines a row in the device switch table

– Minor device numbers allow a programmer to declare an array of control blocks for
each device type, and use the minor number of a device as an index

Xinu – module 25 22 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Example Major and Minor Device Numbers And Constants

222222222222222222222222222222222222222222222

device device device minor
name identifier type number222222222222222222222222222222222222222222222

CONSOLE 0 tty 0
222222222222222222222222222222222222222222222

ETHERNET 1 eth 0
222222222222222222222222222222222222222222222

SERIAL2 2 tty 1
222222222222222222222222222222222222222222222

PRINTER 3 tty 2
222222222222222222222222222222222222222222222

ETHERNET2 4 eth 1
2222222222222222222222222222222222222222222221
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1

d Generated constants

#define Ntty 3

#define Neth 2

Xinu – module 25 23 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Modern OS Device Configuration

d Operating systems have placed increasing emphasis on runtime configuration of devices

d There are two basic paradigms

– Adaptation (used by embedded systems): a system checks for one of several devices
at startup and selects an appropriate device driver (e.g., the system recognizes any of
four NICs)

– Dynamic device configuration: a system permits devices to be plugged in or
disconnected while the system is running

d The Internet makes it easier to locate and download driver software for new devices

Xinu – module 25 24 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Runtime Device Configuration Requirements

d Hardware must be able to detect and report the presence of a new device

– Each device must follow a standard for identification

– The device and processor must agree on a protocol that allows the processor to
interrogate the device without knowing the device type or details

d The operating system must be capable of loading drivers dynamically

Xinu – module 25 25 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



An Example Of Dynamic Configuration: USB Devices

d The hardware uses a single interrupt vector for the USB host controller

d A device driver for the host controller is configured at startup

d The driver for the host controller acts as a dispatcher

d When a new device appears, the host controller software

– Polls the device over the USB to determine which device connected

– Loads a driver for the device

– Records the location of the driver

d When one of the USB devices interrupts, the host driver dispatches the interrupt to the
driver for that device

Xinu – module 25 26 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



The Balancing Act

d Automated configuration is handy, but may make choices for the user

d Examples

– When a computer with a printer connects to a network, should others on the
network be allowed to use the printer?

– If a computer has a Wi-Fi interface plus an Ethernet interface that connects to the
Internet, should other Wi-Fi users be allowed to connect to the Internet by sending
packets through the computer?

d Manual configuration allows an owner to specify devices and avoid loading drivers
dynamically, but requires more effort

d What is the correct balance?

d Vendors try to separate polices from configuration, but the list of policy decisions
seems to grow longer and longer

Xinu – module 25 27 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Summary

d System configuration

– Permits a single operating system to run on multiple hardware configurations

– Adapts to details such as

* Peripheral devices

* Memory size

– Tradeoff: later binding increases flexibility, but reduces performance

d An operating system is not the first piece of software that runs

d Simply booting an operating system may involve multiple bootstrap programs

Xinu – module 25 28 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Questions?


