Xinu —module 25

Module XXV

M eta-Consider ation:
System Configuration

1

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Relation Of Configuration To The Hierarchy

Xinu —module 25 2 2025
Copyright 0 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Motivation For Configuration

e Hardware is modular: we build a computer by choosing
— Processor
— Memory size
— Storage size and type
— A set of I/O devices

e The goal: design an operating system that can run on as many hardware configurations
as possible

e Achieving the goal: make operating system software configurable

Xinu —module 25 3 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Configuration And Binding Times

e A designer must choose how/when to specify each part of a configuration
e Examples (listed in order from early binding to late binding)

— Source code creation and configuration time

— Preprocessing time

— Compile time

— Link time

— Load time

— Operating system startup time

— Runtime

e The tradeoff: earlier binding provides more efficiency; later binding provides more
flexibility

Xinu —module 25 4 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The General Trend

e Industry has moved from early binding to late binding
e Examples
— Device-specific I/O functions to device-independent |1/0O functions
— Static program loading to dynamic loading
— Physical memory to virtual memory
— Pre-configured device drivers to dynamically-loaded drivers
— Pre-linked libraries to dynamically-loaded libraries
— Monoalithic kernel to dynamically-loaded kernel modules

Xinu —module 25 5 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Microkernel Design

e Genera idea
— Start with a minimal operating system kernel (microkernel)
— Design other operating system functions as independent modules
— Boot the microkernel and only load other modules as needed
— Possibly: unload a module when no longer needed
e Several microkernel systems have been built
e The current conclusion: microkernels fill niche roles
— Most modules are needed all the time

— Dynamically loaded libraries solve many problems for which microkernels were
originally intended

Xinu —module 25 6 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Tradeoffs Between Early And Late Binding

e FEarly binding
— More efficient
— Lower startup delay
— Lessflexible
e |ate binding
— More flexible
— A gingle system can run on a range of hardware

— Some hardware resources may go unused

Xinu —module 25 7 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Configuration

e Optimized for efficiency (i.e., uses early binding)
e When configuring the system, fix
— The specific set of devices
— Interrupt vector assignments, if needed
e By compile time, fix
— The processor architecture (e.g., instruction set, registers)
— Device names, and possibly bus addresses

— Sizes of internal operating system data structures (number of processes, semaphores,
etc.)

Xinu —module 25 8 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Configuration
(continued)

e By link time, fix
— All code, including applications, library functions, and shell commands
— Driversfor al devices
— Addresses for global kernel variables
e Post link time
— Transform the executable program into a bootable image

— Add additional headers, if needed

Xinu —module 25 9 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Configuration
(continued)

e At system startup
— Find the size (and locations) of free memory blocks
— Initialize each device
— Determine whether a real-time clock is present (optional)
— Allocate additional kernel objects (disk and network buffers)

— Start network processes (and possibly other background processes)

Xinu —module 25 10 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Configuration
(continued)

e At runtime, allow processes to allocate the following dynamically
— Buffer pools
— Message ports
— Semaphores
— Processes

— Slots used for network communication

Xinu —module 25 11 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Xinu Configuration Program

e Xinu uses a separate program named config that

Runs before the operating system is compiled and generates source code
Reads input from a text file named Configuration
Assigns major and minor device numbers

Produces two output files: conf.h and conf.c

e Fileconf.h

Defines the device switch table, device names, and constants

Allows the user to define additional constants and override system defaults

e Fileconf.c

Generates initialization code for the entire device switch table

Xinu —module 25 12

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

The Format Of The Configuration File

e File Configuration is atext file that is divided into three sections

e The sections are separated by a percent sign on aline by itself

device type declaration section
%

device specification section

%

other configuration constants

e Note: items in the third section are appended to the end of conf.h

Xinu —module 25 13
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Device Type Declarations

e Allow designers to assign a name to each type of device
e Specify a set of default driver functions for each device type
e Document how a set of device driver functions are related
e Motivations
— Show how a set of functions constitute a device driver
— Provide a name for each set of driver functions

— Allow multiple device declarations to refer to the name rather than repeating details

Xinu —module 25 14 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

An Example Device Type Declaration

e (Consider adevice driver for a serial device

e Xinu uses the name tty

e Thetype is defined once and then used with all serial devices

e The type declaration must specify a driver function for each high-level 1/0 operation

e Asan example, suppose

The driver function for read is named ttyread
The driver function for write is named ttywrite
The driver function for getc is named ttygetc
The driver function for putc is named ttyputc

... and so on

Xinu —module 25 15

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

An Example Device Type Declaration
(continued)

e The syntax used to declare the tty type in file Configuration is

tty:
on uart
-1 ttyinit -0 1 onul | -c 1onull
-r ttyread -g ttygetc -p ttyputc
-w ttywite -s loerr -n ttycontrol
-intr ttyhandl er -1rq 11

e The first line declares the type name tty

e The phrase on uart specifies the underlying hardware, and allows a single type to be
used with multiple brands of hardware

e The items that begin with a minus sign are keywords

Xinu —module 25 16 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Driver Definition

e Question: what is a device driver?

e Answer: a set of functions that provide an interface to a device, including a function the
operating system calls to initialize the device, upper-half functions applications call to
perform I/O and lower-half functions invoked when the device interrupts

e |n Xinu, one can only tell which functions a driver uses by looking at the Configuration
file

Outside the Configuration file, one finds
Individual functions; only the Configuration file
specifies which functions have been selected
to form a given device driver.

Xinu —module 25 17 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Data Associated With A Device

e |n addition to a set of functions, a device driver may need additional data
— The address on the bus assigned to the device' s Control and Status Registers (CSRs)
— Theinterrupt Request number (IRQ) assigned to the device

e [For embedded systems, CSR and IRQ values are assigned statically when the hardware
IS designed

e [or larger systems, the operating system must use a bus protocol at startup to find the
CSR and IRQ values for each device

e Consequence: the Xinu Configuration file allows, but does not require, a user to specify
IRQ and CSR values

Xinu —module 25 18 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Keywords Used In Type Specification And Their Meanings

Keyword Meaning

-l function that performs init

-0 function that performs open

-C function that performs close

-r function that performs read

-W function that performs write

-S function that performs seek

-0 function that performs getc

P function that performs putc

-Nn function that performs control
-intr function that handles interrupts
-CSTr control and status register address
-irq Interrupt vector number

Xinu —module 25 19 2025
Copyright 0 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Device Specification Section

e The second section of file Configuration specifies actual devices, and has one entry for
each device in the system

e An entry specifies
— A unigue name for the device
— The type of the device (using type names declared in the previous section)
— A set of device driver functions or values, if they differ from the default

e Example 1: on the Galileo, the CONSOLE device is specified:
CONSOLE Iis tty on uart csr 0001770 -irg 0052
e Example 2: on the BeagleBone Black, the CONSOLE device Is specified:
CONSCLE 1s tty on uart csr 0x44E09000 -irqg 72

Xinu —module 25 20 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Overriding Individual Items

e An entry in the device specification may override any default in the type

o Example 1: use mygetc for the CONSOLE device, and specify a CSR address and irq

CONSOLE 1s tty on uart c¢sr 0001770 -irg 0052 -g nygetc

e Example 2: specify CONSOLE and SERIAL1 to both be tty devices, but give each a
unique CSR and IRQ; only use mygetc for CONSOLE

CONSOLE 1s tty on uart c¢sr 0001770 -irg 0052 -g nygetc
SERIAL1 Iis tty on uart csr 0001370 -irg 0054

Xinu —module 25 21 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Minor Numbers And Device Control Blocks

e \When run, the config program
— Assigns each device a unique major device number

— Assigns each device a minor device number that is unique within all devices of the
same type

— Defines a constant that specifies the number of devices of each type
e (Generates conf.h and conf.c files
e Motivation

— Each major device number defines a row in the device switch table

— Minor device numbers allow a programmer to declare an array of control blocks for
each device type, and use the minor number of a device as an index

Xinu —module 25 22 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Example Major and Minor Device Numbers And Constants

device device device minor

name identifier type number
CONSOLE 0 tty 0
ETHERNET 1 eth 0
SERIAL?2 2 tty 1
PRINTER 3 tty 2
ETHERNETZ2 4 eth 1

e Generated constants

#define Nty 3
#def1 ne Net h 2

Xinu —module 25

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

23

2025

Modern OS Device Configuration

e Operating systems have placed increasing emphasis on runtime configuration of devices
e There are two basic paradigms

— Adaptation (used by embedded systems). a system checks for one of several devices
at startup and selects an appropriate device driver (e.g., the system recognizes any of
four NICs)

— Dynamic device configuration: a system permits devices to be plugged in or
disconnected while the system Is running

e The Internet makes it easier to locate and download driver software for new devices

Xinu —module 25 24 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Runtime Device Configuration Requirements

e Hardware must be able to detect and report the presence of a new device

— Each device must follow a standard for identification

The device and processor must agree on a protocol that allows the processor to
Interrogate the device without knowing the device type or details

e The operating system must be capable of loading drivers dynamically

25 2025

Xinu —module 25
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

An Example Of Dynamic Configuration: USB Devices

The hardware uses a single interrupt vector for the USB host controller
A device driver for the host controller is configured at startup

The driver for the host controller acts as a dispatcher

When a new device appears, the host controller software

— Polls the device over the USB to determine which device connected
— Loads adriver for the device

— Records the location of the driver

When one of the USB devices interrupts, the host driver dispatches the interrupt to the
driver for that device

Xinu —module 25 26 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Balancing Act

e Automated configuration is handy, but may make choices for the user
e Examples

— When a computer with a printer connects to a network, should others on the
network be allowed to use the printer?

— If acomputer has a Wi-Fi interface plus an Ethernet interface that connects to the
Internet, should other Wi-Fi users be allowed to connect to the Internet by sending
packets through the computer?

e Manual configuration allows an owner to specify devices and avoid loading drivers
dynamically, but requires more effort

e \What iIs the correct balance?

e Vendorstry to separate polices from configuration, but the list of policy decisions
seems to grow longer and longer

Xinu —module 25 27 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Summary

e System configuration
— Permits a single operating system to run on multiple hardware configurations
— Adapts to details such as
* Peripheral devices
* Memory size
— Tradeoff: later binding increases flexibility, but reduces performance
e An operating system is not the first piece of software that runs

e Simply booting an operating system may involve multiple bootstrap programs

Xinu —module 25 28 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Ouestions?

