
Module XXIII

Subsystem Initialization
And

Memory Marking

Xinu – module 23 1 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Self-Initializing Modules

d The goal

– Build operating system functions in modules

– Allow each module to contain multiple functions

– Allow processes to call the functions in arbitrary order

– Avoid having the operating system call a module initialization function explicitly

d Advantage: keeping the operating system unaware of modules means the linker can
include modules that are called directly and omit modules that are not used

d Examples of modules in Xinu

– Buffer pools

– High level message passing

d Question: how can we make modules self-initializing?

Xinu – module 23 2 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Possible Approaches For Self-Initialization

d Approach 1: Use a global variable

d Approach 2: Create an operating system function that modules can use to initialize
automatically

Xinu – module 23 3 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Using A Global Variable For Initialization

d Declare a global variable with an initial value

d Example:

int32 needinit = 1;

d Write a module initialization function, func_init, that

– Tests the global variable

– Performs initialization if the variable still has its initial value

– Sets the global variable to a new value

d Insert code at the beginning of each module function to call func_init

Xinu – module 23 4 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Example Module Initialization Using A Global Variable

int32 needinit = 1; /* Non-zero until initialized */
... declarations for other global data structures

void func_init(void) {
if (needinit != 0) { /* Initialization is needed */

... code to perform initialization
needinit = 0;

}
return;

}
void func_1(... args) {

if (needinit) func_init(); /* Initialize before proceeding */
... code for func_1
return;

}
void func_2(... args) {

if (needinit) func_init(); /* Initialize before proceeding */
... code for func_2
return;

}

Xinu – module 23 5 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Problem Of Concurrent Execution

d Multiple processes can call module functions concurrently

d Therefore, multiple processes can call the initialization function concurrently

d We need mutual exclusion to ensure correctness

d The obvious choice is a semaphore because it

– Only affects processes using the module

– Eliminates global disable/restore

d However

– Using a semaphore makes self-initialization more difficult

– An initialization function must use disable/restore to create a semaphore

Xinu – module 23 6 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Initialization With Mutual Exclusion

int32 needinit = 1; /* Non-zero until initialized */
sid32 mutex; /* Mutual exclusion semaphore ID */

void func_1(... args) {
intmask mask;

mask = disable(); /* Disable during initialization */
if (needinit) func_init(); /* Initialize before proceeding */
restore(mask); /* Restore interrupts */
wait(mutex); /* Use mutex for exclusive access*/
... code for func_1
signal(mutex); /* Release the mutex */
return;

}

d Note: all other functions in the module must be structured the same way as this example

Xinu – module 23 7 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Initialization With Mutual Exclusion
(continued)

d The module init function must use disable/restore when creating the semaphore

void func_init(void) {
intmask mask;

mask = disable();
if (needinit != 0) { /* Initialization is still needed*/

mutex = semcreate(1); /* Create the mutex semaphore */
... code to perform other initialization
needinit = 0;

}
restore(mask);
return;

}

Xinu – module 23 8 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Self-Initialization And Reboot

d Recall

– Global variables are allocated in the data section

– The data segment is only initialized when the operating system is first loaded into
memory

d A problem occurs if the operating system restarts without reloading

– Global variables retain the values they had before the reboot

– Using a global variable will not work

d Example: using
int32 needinit = 1;

means that if the module is initialized when the system first runs, needinit will be 0 on
subsequent restarts

Xinu – module 23 9 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Accession Numbers

d An alternative to using a global variable as a Boolean

d The operating system defines a global variable boot that is initialized to zero and is
incremented each time the system restarts

d Each module defines a global variable modinit that is initialized to zero and is
incremented each time the module has been initialized

d If modinit is less than boot, the module has not been initialized after the most recent
reboot

Xinu – module 23 10 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Potential Problem With Accession Numbers

d Consider an embedded system with the following properties

– The hardware has a small integer size

– The system runs forever without being downloaded again

– The system restarts frequently

d Consequences

– The accession counter can wrap around

– Module initialization will fail

Xinu – module 23 11 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Goals For Module Initialization

d Make modules self-initializing (do not insert explicit initialization calls into the
operating system)

d Allow in-memory restarts

d Handle the problem of wrap-around

d Make the system efficient

d Is it possible to meet all the constraints?

Xinu – module 23 12 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Xinu Memory Marking System

d Meets all the constraints

d Requires each module to declare a location to be used as its memory mark

memmark L;

d Provides a function

mark(L);

that a module uses to mark location L, and a function

notmarked(L)

that a module uses to test whether L has been marked since the last reboot

d The memory marking system guarantees that notmarked(L) will return 1 after the
operating system is restarted until mark(L) is called

Xinu – module 23 13 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

An Example Use Of Memory Marking

d Suppose a module requires initialization

d To use memory marking, a programmer

– Declares a single location, X, to be used for memory marking

– Defines a module initialization function as illustrated above

– Inserts a call to mark(X) at the end of the initialization function

– Inserts a call to test notmarked(X) at the beginning of each function

– Have the function call the module initialization function if X has not been marked

Xinu – module 23 14 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

An Example Use Of Memory Marking
(continued)

memmark loc; /* Memory mark for the module */
sid32 mutex; /* Mutual exclusion semaphore */

void func_1(... args) {

if (notmarked(loc)) { /* Test whether initialized */
func_init(); /* Initialize the module */

}
wait(mutex); /* Use mutex for exclusive access */
... code for func_1
signal(mutex); /* Release the mutex */
return;

}

d Other functions in the module must be structured the same as this one

Xinu – module 23 15 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

An Example Use Of Memory Marking
(continued)

d The initialization function uses disable/restore to guarantee that only one process marks
the location

void func_init(void) {
intmask mask;

mask = disable();
if (notmarked(loc)) {

mutex = semcreate(1); /* Create the mutex semaphore */
... code to perform other initialization
mark(loc);

}
restore(mask);
return;

}

Xinu – module 23 16 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Goals For A Memory Marking System

d Absolute reliability: marking should not use a probabilistic approach even if p, the
probability of an accurate answer has the property that p → 1

d Efficiency

– The mark function should only take a few instructions

– The notmarked function should only take a few instructions

d Small marks: a memory mark location (i.e., a variable declared memmark) is only the
size of an integer

d Location independence

– An arbitrary location in memory can be used as a memory mark (i.e., type
memmark)

– The locations of memory marks do not need to be registered with the memory
marking system before being used

Xinu – module 23 17 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Idea

d Keep

– An array of marked locations, marks

– An integer count of how many locations are marked, nmarks

d Each item in the array stores the address of the marked location

d Each marked location contains an index into the marks array

d A location X is marked if and only if the following conditions hold

– X contains integer i

– 0 ≤ i < nmarks

– marks[i] contains the address of X

Xinu – module 23 18 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Implementation Of Memory Marking

d Memory marking declarations and the definition of notmarked

/* mark.h - notmarked */

#define MAXMARK 20 /* Maximum number of marked locations */

extern int32 *(marks[]);
extern int32 nmarks;
typedef int32 memmark[1]; /* Declare a memory mark to be an array */

/* so user can reference the name */
/* without a leading & */

d Note the clever use of a typedef to declare a memmark as an array of a single integer,
which means a reference to the name is an address

Xinu – module 23 19 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Code For Memory Marking (Part 1)

/* mark.c - markinit, mark */

#include <xinu.h>

int32 *marks[MAXMARK]; /* Pointers to marked locations */
int32 nmarks; /* Number of marked locations */
sid32 mkmutex; /* Mutual exclusion semaphore */

/*--
* markinit - Called once at system startup
*--
*/

void markinit(void)
{

nmarks = 0;
mkmutex = semcreate(1);

}

d The operating system calls markinit each time the system reboots

Xinu – module 23 20 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Code For Memory Marking (Part 2)

/*--
* notmarked - Return nonzero if a location has not been marked
*--
*/

syscall notmarked(memmark loc)
{

intmask mask; /* Saved interrupt mask */

mask = disable();

/* See if the location has been marked */

if (loc[0]<0 || loc[0]>=nmarks || marks[loc[0]] != loc) {
restore(mask);
return FALSE;

}
return TRUE;

}

Xinu – module 23 21 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Code For Memory Marking (Part 3)
/*--
* mark - Mark a specified memory location
*--
*/

syscall mark(
int32 *loc /* Location to mark */

)

{
intmask mask; /* Saved interrupt mask */

mask = disable();

/* If location is already marked, do nothing */

if ((*loc>=0) && (*loc<nmarks) && (marks[*loc]==loc)) {
restore(mask);
return OK;

}

/* If no more memory marks are available, indicate an error */

if (nmarks >= MAXMARK) {
restore(mask);
return SYSERR;

}

/* Obtain exclusive access and mark the specified location */

marks[(*loc) = nmarks++] = loc;
restore(mask);
return OK;

}

Xinu – module 23 22 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Perspective On Memory Marking

d It occupies almost no extra space — an integer (the mark) and a pointer (in the marks
array) per module (plus a mutex ID if the module needs mutual exclusion)

d It decouples modules from the operating system (sysinit does not need to call each
module’s initialization function explicitly)

d It is extremely elegant

d A single line C expression tests whether location L is marked

(L[0]<0 || L[0]>=nmarks || marks[L[0]]!=L)

d A single assignment does all the work of marking a location loc

marks[(*loc) = nmarks++] = loc;

Xinu – module 23 23 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Summary

d In addition to core pieces, an operating system contains a set of optional modules

d Having the operating system initialize each module means building knowledge of the
modules into the OS

d Using a global variable does not work for embedded systems that reboot often

d The Xinu memory marking system offers an elegant, efficient mechanism modules can
used to self-initialize

Xinu – module 23 24 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Questions?

