Module XXI1I

Subsystem Initialization
And
Memory Marking

Xinu—module 23 1 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Self-Initializing Modules

e Thegoa
— Build operating system functions in modules
— Allow each module to contain multiple functions
— Allow processes to call the functions in arbitrary order
— Avoid having the operating system call a module initialization function explicitly

e Advantage: keeping the operating system unaware of modules means the linker can
Include modules that are called directly and omit modules that are not used

e Examples of modules in Xinu
— Buffer pools
— High level message passing
e Question: how can we make modules salf-initializing?

Xinu—module 23 2 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Possible Approaches For Self-Initialization

e Approach 1. Use aglobal variable

e Approach 2. Create an operating system function that modules can use to initialize
automatically

Xinu—module 23 3 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Using A Global Variable For Initialization

e Declareaglobal variable with an initial value

e Example:
INnt32 needinit = 1;

e Write a module initialization function, func_init, that
— Tests the global variable
— Peaforms initialization if the variable still has its initial value
— Setsthe global variable to a new value

e |nsert code at the beginning of each module function to call func_init

Xinu—module 23 4 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Example Module Initialization Using A Global Variable

I Nt 32 needinit = 1; /* Non-zero until initialized */
... declarations for other global data structures

void func_ init(void) {
I|f (needinit '=0) { /[* Initialization Is needed */
... code to perform initialization
needinit = O;
}
return;
}
void func _1(..args) {
I f (needinit) func_init(); /* Initialize before proceeding */
...code for func 1
return,;
}
void func 2(..args) {
| f (needinit) func_init(); /* Initialize before proceeding */
... code for func 2
return;

}

Xinu —module 23 5 2025
Copyright 0 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Problem Of Concurrent Execution

e Multiple processes can call module functions concurrently
e Therefore, multiple processes can call the initialization function concurrently
e \We need mutual exclusion to ensure correctness
e The obvious choice is a semaphore because it
— Only affects processes using the module
— Eliminates global disable/restore
e However
— Using a semaphore makes self-initialization more difficult

— Aninitialization function must use disable/restore to create a semaphore

Xinu—module 23 6 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

| nitialization With Mutual Exclusion

I Nt 32 needinit = 1; /* Non-zero until initialized */
Si d32 nut ex; [* Mutual exclusion semaphore |ID */

void func _1(..args) {
| Nt mask mask;

mask = di sabl e(); /[* Disable during initialization */
I f (needinit) func_init(); /* Initialize before proceeding */
rest or e(mask) ; /* Restore interrupts */
wai t (mut ex) ; /* Use nutex for exclusive access*/
...code for func 1

si gnal (mut ex) ; /* Rel ease the nutex */
return;

}
e Note: al other functions in the module must be structured the same way as this example

Xinu —module 23 7 2025
Copyright 0 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

| nitialization With Mutual Exclusion
(continued)

e The module init function must use disable/restore when creating the semaphore

void func_init(void) {
| Nt mask mask;
mask = di sabl e();
|f (needinit = 0) { [* Initialization is still needed*/
mutex = sencreate(l); /* Create the nutex semaphore */
... code to perform other initialization
needinit = O;

}
rest ore(mask) ;
return;
}
Xinu—module 23 8 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Salf-Initialization And Reboot

e Recdl
— Globa variables are allocated in the data section

— The data segment is only initialized when the operating system is first loaded into
memory

e A problem occurs if the operating system restarts without reloading
— Global variables retain the values they had before the reboot
— Using aglobal variable will not work

e Example: using

INt32 needinit = 1;

means that if the module is initialized when the system first runs, needinit will be 0 on
subsequent restarts

Xinu—module 23 9 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Accession Numbers

e An alternative to using a global variable as a Boolean

e The operating system defines a global variable boot that is initialized to zero and is
Incremented each time the system restarts

e Each module defines a global variable modinit that is initialized to zero and is
Incremented each time the module has been initialized

e |f modinit Is less than boot, the module has not been initialized after the most recent
reboot

Xinu —module 23 10 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Potential Problem With Accession Numbers

e Consider an embedded system with the following properties
— The hardware has a small integer size
— The system runs forever without being downloaded again
— The system restarts frequently

e Consequences
— The accession counter can wrap around

— Module initialization will fail

Xinu —module 23 11 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Goals For Module Initialization

e Make modules self-initializing (do not insert explicit initialization calls into the
operating system)

e Allow in-memory restarts
e Handle the problem of wrap-around
e Make the system efficient

e |sit possible to meet al the constraints?

Xinu—module 23 12 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Xinu Memory Marking System

e Meets dl the constraints

e Requires each module to declare a location to be used as its memory mark
memmar K L;

e Provides afunction
mar k(L) ;
that a module uses to mark location L, and a function
not mar ked(L)
that a module uses to test whether L has been marked since the last reboot

e The memory marking system guarantees that notmarked(L) will return 1 after the
operating system is restarted until mark(L) is called

Xinu—module 23 13 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

An Example Use Of Memory Marking

e Suppose a module requires initialization
e To use memory marking, a programmer
— Declares a single location, X, to be used for memory marking
— Defines a module initialization function as illustrated above
— Inserts a call to mark(X) at the end of the initialization function
— Inserts a call to test notmarked(X) at the beginning of each function

— Have the function call the module initialization function if X has not been marked

Xinu—module 23 14 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

An Example Use Of Memory Marking

menmmar k | oc:

si d32

nmut ex;

void func_1(..args) {

| f (notmarked(loc)) { /* Test whether initialized
func_init(); /[* Initialize the nodul e

}

}

wai t (mut ex) ;
...code for func_1
si gnal (mut ex) ;
return;

(continued)

[* Menory mark for the nodul e
[/ * Mutual exclusion semaphore

[* Use nmutex for exclusive access

/* Rel ease the nutex

e Other functions in the module must be structured the same as this one

Xinu—module 23

15
Copyright 0 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

*/
*/

*/

*/

*/

*/

2025

An Example Use Of Memory Marking
(continued)

e The initialization function uses disable/restore to guarantee that only one process marks
the location

void func_init(void) {
| nt mask mask;

mask = di sabl e();

| f (notmarked(loc)) {
mutex = sencreate(l); /* Create the nutex semaphore */
... code to perform other initialization

mar k(1 oc) ;
}
rest ore(mask) ;
return;
}
Xinu—module 23 16 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Goals For A Memory Marking System

e Absolute reliability: marking should not use a probabilistic approach even if p, the
probability of an accurate answer has the property that p - 1

e Efficiency
— The mark function should only take a few instructions
— The notmarked function should only take a few instructions

e Small marks: a memory mark location (i.e., a variable declared memmark) is only the
size of an integer

e | ocation independence

— An arbitrary location in memory can be used as a memory mark (i.e., type
memmark)

— The locations of memory marks do not need to be registered with the memory
marking system before being used

Xinu—module 23 17 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The |ldea

e Keep
— An array of marked locations, marks
— Aninteger count of how many locations are marked, nmarks

e Each item in the array stores the address of the marked location

e Each marked location contains an index into the marks array

e A location X is marked if and only if the following conditions hold
— X contans integer |
— 0<i<nmarks

— markgi] contains the address of X

Xinu—module 23 18
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

The Implementation Of Memory Marking

e Memory marking declarations and the definition of notmarked

/[* mark.h - not nmarked */

#defi ne MAXMARK 20 [* Maxi mum nunber of narked | ocati ons * [

extern int32 *(marks[]);
extern int32 nmar ks;

t ypedef int32 memmar k[1] ; /* Declare a nenory mark to be an array */
/* so user can reference the nane */
/* wi t hout a | eading & */

e Note the clever use of atypedef to declare a memmark as an array of a single integer,
which means a reference to the name is an address

Xinu—module 23 19 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Code For Memory Marking (Part 1)

[* mark.c - markinit, mark */

#1 ncl ude <xi nu. h>

I nt 32 *mar ks[MAXMVARK] ; /* Pointers to marked | ocations */
I nt 32 nmar ks; /* Nunmber of marked | ocations */
si d32 nmkmut ex; /* Mutual exclusion semaphore */
/2
* markinit - Called once at system startup
K o o o e e e e o e Y Y Y e Y e Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y M Y Y Y Y Y e
*/
voi d mar ki ni t (voi d)
{

nmar ks = 0;
nmkmut ex = sencreate(1);

e The operating system calls markinit each time the system reboots

Xinu—module 23 20
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Xinu Code For Memory Marking (Part 2)

| % o e e o e o e -
* notmarked - Return nonzero if a |location has not been narked
K o o e Y e Y e Y e Y e
* [
syscal |l not marked(nmenmar k | oc)
{
| nt mask mask; /* Saved interrupt mask */
mask = di sabl e();
/* See if the |ocation has been marked */
i f (loc[0]<0 || loc[O]>=nmarks || marks[loc[0]] != loc) {
rest or e(mask) ;
return FALSE;
}
return TRUE;
}
Xinu —module 23 21

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Xinu Code For Memory Marking (Part 3)

| ® o e e e o o e
* mark - Mark a specified nenory |ocation
*/
syscal | mark(
i nt32 *| oc /* Location to mark */
)
{ . |
I nt mask mask; /* Saved interrupt mask */
mask = di sabl e();
/* |f location is already narked, do nothing */
if ((*loc>=0) && (*loc<nmarks) && (marks[*l oc]==loc)) {
rest or e(mask) ;
return CK;
}
/[* If no nore nenory marks are available, indicate an error */
I T (nmarks >= MAXMARK) ({
rest or e(mask) ;
return SYSERR;
}
/* Obtain exclusive access and mark the specified |location */
marks[(*loc) = nmarks++ | = | oc;
rest ore(mask) ;
return CK;
}
Xinu —module 23 22

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Per spective On Memory Marking

e |t occupies amost no extra space — an integer (the mark) and a pointer (in the marks
array) per module (plus a mutex ID if the module needs mutual exclusion)

e |t decouples modules from the operating system (sysinit does not need to call each
modulé€' s initialization function explicitly)

e |tisextremely elegant

e A singleline C expression tests whether location L is marked
(L[O]<O || L[O]>=nmarks || marks[L[O]]!=L)
e A single assignment does all the work of marking a location loc

markg (*loc) = nmarks++] = loc;

Xinu—module 23 23 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Summary

e |n addition to core pieces, an operating system contains a set of optional modules

e Having the operating system initialize each module means building knowledge of the
modules into the OS

e Using agloba variable does not work for embedded systems that reboot often

e The Xinu memory marking system offers an elegant, efficient mechanism modules can
used to self-initialize

Xinu—module 23 24 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Ouestions?

