
Module XXII

System Initialization

Xinu – module 22 1 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Relation of Initialization To The Hierarchy

Xinu – module 22 2 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Starting A Computer From Scratch

d General idea: the OS is not the first piece of software that runs

d A typical boot scenario at power-up

– The hardware performs some basic initialization

– The fetch-execute cycle begins executing code in flash memory or ROM

– ROM code completes hardware checks and hardware initialization

– ROM code identifies a boot device, finds an executable image, and loads a copy into
memory

– ROM code sets the hardware registers for kernel mode and physical address space

– ROM code branches to entry point of the image

Xinu – module 22 3 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



The Initial Image

d Is not usually an operating system

d Is known as a bootstrap program and has the following capabilities

– Knows about some devices, and contains code to use them

– Is configured with a set of devices to try

d An example bootstrap strategy

– If the hard disk contains an executable image, load and run it

– If an external USB drive contains a bootable image, load and run it

– If the Ethernet card can boot over the network, try a network boot

– If the above fails, display a message for the user and halt

Xinu – module 22 4 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



An Example That Illustrates Bootstrap Complexity

d The Xinu lab contains Galileo Boards

d When a Galileo board boots, it must download a Xinu image over the network

d Bad news: the Galileo bootstrap system does not perform network bootstrap
automatically

d Apparently good news: the hardware includes a configurable bootstrap program named
grub

d Bad news: the version of grub on the board cannot be reconfigured to boot over a
network

d Good news: the Galileo bootstrap can be configured to boot a file from the internal flash
storage

Xinu – module 22 5 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Our Solution

d Place a more advanced version of grub on the internal flash that uses multiboot to check
several devices

d Configure the Galileo bootstrap to run multiboot grub from the internal flash

d Bad news: even multiboot grub cannot use the network adapter

d Good news: multiboot grub can boot a program from an SD card plugged into the board

d The solution

– Write our own network download program

– Put the program on the SD card

– Configure multiboot grub to run the program

Xinu – module 22 6 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Our Solution
(continued)

d We named our download program xboot)

d Xboot

– Contacts a server in the lab

– Uses TFTP to download a file and place it in memory

– Branches to the entry point of the program

Xinu – module 22 7 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



The Cute Twist

d The xboot program requires

– A device driver for the Ethernet device

– The code to handle basic network protocols: ARP, IP, and UDP

– A way to handle network packets asynchronously (e.g., a network input process)

d We already had all the necessary pieces in Xinu

d The twist: xboot is actually a version of Xinu in which the main program performs the
download (i.e., we reused working protocol software)

Xinu – module 22 8 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Memory Occupancy During Bootstrap

d Where should a bootstrap program reside?

d If the goal is to boot an operating system, the bootstrap program cannot occupy the
locations that the OS will occupy

d Two approaches have been used

– Self-relocating code: the bootstrap starts in the standard location, but moves a copy
of itself to high memory and then branches to the copy

– The bootstrap is bound to high memory addresses: the bootstrap program is
compiled and linked to run at a high memory address (beyond the memory into
which the operating system is loaded)

d Note: self-relocating code requires address constants to be relocated

d Xboot uses the second approach

Xinu – module 22 9 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Operating System Startup
After Initial Bootstrap



Steps An Operating System Takes When It Starts

d Perform initialization required by the hardware platform

d Initialize the memory management hardware and the free memory list

d Initialize each operating system module

d Load (if not present) and initialize a device driver for each device

d Start (or reset) each I/O device

d Transform from a sequential program to a concurrent system

d Create a null process

d Create a process to execute user code (e.g., a desktop)

Xinu – module 22 11 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



When Xinu Has Been Loaded Into Memory And Begins Running

d Startup code written in assembly language performs the following

– Initializes the processor hardware

– Initializes the bus

– Zeroes the bss segment

– Initializes the co-processor, if one is present

– Creates an environment suitable for C (e.g., sets the stack pointer to a valid
location)

– Invokes the C initialization function, nulluser

– Nulluser invokes function sysinit (also written in C)

Xinu – module 22 12 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



The Sysinit Function

d Performs any remaining platform initialization

d Initializes the memory management hardware and the free list

d Initializes each I/O device and its driver

d Initializes operating system modules

d Transforms from a sequential program to a concurrent system

d Arranges for the current computation to become the null process

d Enables interrupts

d Creates a new process to execute main

Xinu – module 22 13 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Transforming From A Program To A Concurrent System

d Is the most significant aspect of initialization

d Occurs in Xinu function sysinit

d Is surprisingly simple and elegant

d Allows fetch-execute to continue

d Does not involve any change in code or special instructions

d Really only changes the way we view the system

Xinu – module 22 14 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Transforming From A Program To A Concurrent System
(continued)

d Steps required

– Fill in the process table entry for process 0

– Make the state PRCURR and the priority zero (the lowest in the system)

– Set currpid to zero

– Create and resume a process for main program

d When resume is called

– Resched will choose the new process

– A context switch will proceed as usual

d Suddenly, a concurrent system is executing!

Xinu – module 22 15 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Transforming From A Program To A Concurrent System
(continued)

d To summarize

After it fills in the process table entry for
process zero, the code sets variable currpid to
zero, which transforms the sequential program
into a process.

Xinu – module 22 16 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Perspective

d Startup involves many low-level, boring hardware details, and getting the startup code
to work can be frustrating

d When an operating system starts, it runs as a sequential program

d Instead of creating a separate concurrent system and then jumping to it, the code
declares that the null process is running and invokes create to create a process running
the main function

d The point is that if operating systems functions have been designed carefully, changing
from a sequential code to a concurrent system is both surprisingly straightforward and
elegant

Xinu – module 22 17 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Questions?


