Module XXI1

System | nitialization

Xinu —module 22 1 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Relation of Initialization To The Hierarchy

Xinu —module 22 2 2025
Copyright 0 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Starting A Computer From Scratch

e Genera idea the OS is not the first piece of software that runs

e A typical boot scenario at power-up
— The hardware performs some basic initialization
— The fetch-execute cycle begins executing code in flash memory or ROM
— ROM code completes hardware checks and hardware initialization

— ROM code identifies a boot device, finds an executable image, and loads a copy into
memory

— ROM code sets the hardware registers for kernel mode and physical address space
— ROM code branches to entry point of the image

Xinu —module 22 3 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



The Initial Image

e |snot usually an operating system

e |sknown as a bootstrap program and has the following capabilities

Knows about some devices, and contalns code to use them

|s configured with a set of devices to try

e An example bootstrap strategy

If the hard disk contains an executable image, load and run it
If an external USB drive contains a bootable image, load and run it
If the Ethernet card can boot over the network, try a network boot

If the above fails, display a message for the user and halt

Xinu —module 22 4

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025



An Example That |llustrates Bootstrap Complexity

e The Xinu lab contains Galileo Boards
e When a Galileo board boots, it must download a Xinu image over the network

e Bad news: the Galileo bootstrap system does not perform network bootstrap
automatically

e Apparently good news. the hardware includes a configurable bootstrap program named
grub

e Bad news:. the version of grub on the board cannot be reconfigured to boot over a
network

e Good news:. the Galileo bootstrap can be configured to boot a file from the internal flash
storage

Xinu—module 22 5 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Our Solution

e Place a more advanced version of grub on the internal flash that uses multiboot to check
several devices

e Configure the Galileo bootstrap to run multiboot grub from the internal flash
e Bad news. even multiboot grub cannot use the network adapter
e Good news. multiboot grub can boot a program from an SD card plugged into the board
e The solution
— Write our own network download program
— Put the program on the SD card

— Configure multiboot grub to run the program

Xinu —module 22 6 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Our Solution
(continued)

e We named our download program xboot)
e Xboot
— Contacts a server in the lab
— Uses TFTP to download a file and place it in memory

— Branches to the entry point of the program

Xinu—module 22 7 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



The Cute Twist

e The xboot program requires

— A device driver for the Ethernet device

— The code to handle basic network protocols: ARP, IP, and UDP

— A way to handle network packets asynchronoudly (e.g., a network input process)
e Weaready had all the necessary pieces in Xinu

e Thetwist: xboot is actually a version of Xinu in which the main program performs the
download (i.e., we reused working protocol software)

Xinu —module 22 8 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Memory Occupancy During Bootstrap

e \Where should a bootstrap program reside?

e |f the godl isto boot an operating system, the bootstrap program cannot occupy the
locations that the OS will occupy

e Two approaches have been used

— Self-relocating code: the bootstrap starts in the standard location, but moves a copy
of itself to high memory and then branches to the copy

— The bootstrap is bound to high memory addresses: the bootstrap program is
compiled and linked to run at a high memory address (beyond the memory into
which the operating system is |oaded)

e Note: salf-relocating code requires address constants to be relocated

e Xboot uses the second approach

Xinu —module 22 9 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Operating System Startup
After Initial Bootstrap



Steps An Operating System Takes When It Starts

e Perform initialization required by the hardware platform

e |nitialize the memory management hardware and the free memory list
e |nitialize each operating system module

e | oad (if not present) and initialize a device driver for each device

e Start (or reset) each I/O device

e Transform from a sequential program to a concurrent system

e Create a null process

e Create a process to execute user code (e.g., a desktop)

Xinu —module 22 11 2025
Copyright 0 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



When Xinu Has Been Loaded Into Memory And Begins Running

e Startup code written in assembly language performs the following
— Initializes the processor hardware
— Initializes the bus
— Zeroes the bss segment
— Initializes the co-processor, if one Is present

— Creates an environment suitable for C (e.g., sets the stack pointer to avalid
location)

— Invokes the C initialization function, nulluser

— Nulluser invokes function sysinit (also written in C)

Xinu —module 22 12 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



The Sysinit Function

e Pearforms any remaining platform initialization

e [|nitializes the memory management hardware and the free list

e [nitializes each I/O device and its driver

e |nitializes operating system modules

e Transforms from a seguential program to a concurrent system

e Arranges for the current computation to become the null process
e Enables interrupts

e Creates a new process to execute main

Xinu —module 22 13 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Transforming From A Program To A Concurrent System

e |sthe most significant aspect of initialization

e Occurs in Xinu function sysinit

e |ssurprisingly simple and elegant

e Allows fetch-execute to continue

e Does not involve any change in code or specia instructions

e Really only changes the way we view the system

Xinu —module 22 14 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Transforming From A Program To A Concurrent System
(continued)

e Steps required
— Fill In the process table entry for process O
— Make the state PRCURR and the priority zero (the lowest in the system)
— Set currpid to zero
— Create and resume a process for main program
e When resumeis called
— Resched will choose the new process
— A context switch will proceed as usual

e Suddenly, a concurrent system is executing!

Xinu —module 22 15 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Transforming From A Program To A Concurrent System
(continued)

e TO summarize

After it fills In the process table entry for
process zero, the code sets variable currpid to
zero, which transforms the sequential program
INto a process.

Xinu —module 22 16 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Per spective

e Startup involves many low-level, boring hardware details, and getting the startup code
to work can be frustrating

e \When an operating system starts, it runs as a sequential program

e |[nstead of creating a separate concurrent system and then jumping to it, the code
declares that the null process is running and invokes create to create a process running
the main function

e The point isthat iIf operating systems functions have been designed carefully, changing
from a sequential code to a concurrent system is both surprisingly straightforward and
elegant

Xinu—module 22 17 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Ouestions?




