Module XXI

File Names And A Syntactic Namespace

Xinu—module 21 1 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

L ocation Of The Namespace In The Hierarchy

Xinu —module 21 2 2025
Copyright 0 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Review

e We sad that afile system has three conceptual layers

FILE NAMING SCHEME

DIRECTORY ACCESS

FILE ACCESS

DISK DEVICE DRIVER

DISK HARDWARE

e We have aready considered directory and file access mechanisms

e What about naming?

Xinu—module 21 3 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

|dentifiers

e Many modules in an operating system use the term identifier (ID) to designate an object
identifier

e Processes use the IDs to identify objects when operating on them

e Examples
— Each semaphore is given an ID that processes use when they call wait and signal

— Each process has an ID that is used when invoking process management functions,
such as suspend, resume, send, ready, and kill

— Each device has an ID used in device manager functions, such as read and write

Xinu —module 21 4 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

|dentifier Choice And Efficient Object | dentification

e We have seen that
— The identifiers used in an operating system consist of integers

— Choosing values 0, 1, 2, ... for identifiers means that the mapping from an identifier
to an actual object is extremely efficient

e To achieve high efficiency, early programming languages required programmers to use
numerical identifiers (e.g., FORTRAN specified that when a programmer called write,
Identifier 6 designated a printer)

e However

Although using numerical identifiers makes
mapping efficient, humans find such identifiers
difficult to understand and remember.

Xinu —module 21 5 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Solving The Problem

e Tension exists between humans and machines
— Computers work best with numeric values
— Humans prefer identifiers that convey meaning

e How can we resolve the tension?

e A genera approach is used to provide the advantages of each
— Allow humans to use meaningful symbolic identifiers

— Perform early binding to convert the symbolic identifiers into an internal numeric
form (because early binding increases efficiency)

— Once the binding has been done, use the numeric form

Xinu—module 21 6 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

An Example Of Binding A Name To An Integer Identifier

e Recall that ina Unix file system
— Thefile system uses an inode number to identify afile
— Humans use file names

e The directory system provides a binding from names to files

e A process uses a path name when opening afile:

desc = open("path",omode, mode);

e The open function searches the directory system, and maps the name to an i-node
number

e The file system used the i-node number internally

Xinu—module 21 7 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

| dentifiers, Mappings, And Vulnerability

e Facts
— Symbolic identifiers work best for humans

— Operating systems contain mechanisms that map symbolic identifiers into efficient,
Internal identifiers

e Unfortunately, revealing the mapping to users has a potential security downside:
malevolent users (or malware) may be able to guess how internal identifiers are
assigned, and then use the information to access other system resources

e An example:
— The Internet standards specify protocol port numbers used for each application

— An attacker can use the protocol port numbers in attempts to access services on a
computer, even If the owner does not advertise the services

Xinu—module 21 8 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Principle Of Transparency

e To prevent outsiders from misusing information about the internal representation,
operating system designers follow a rule known as the principle of transparency:

Whenever possible, applications should remain
unaware of implementation details such as the
location of an object or its representation.

Xinu—module 21 9 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Protecting Against Attack

It may seem that because it reveals a mapping between identifiers and values used
internally, early binding always introduces a vulnerability

However, knowing the internal value may not give others access
As an example, consider file descriptors in Unix
— A descriptor is only meaningful within one process

— Even if process 20 learns that process 27 is using descriptor 4 to access file X,
process 20 will not be able to access the file because when process 20 references
descriptor 4, the reference will be interpreted with respect to process 20’ s descriptor
table

Safety: i1t is safe to use early binding and to reveal how identifiers are mapped to
Internal values provided that additional protections are employed to prevent the
knowledge from being exploited

Xinu —module 21 10 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Transparency And Functionality

e At first glance, the principle of transparency seems both reasonable and innocuous
e However... true transparency has consequences for functionality

e Consider an operating system that offers access to both a local file system and a remote
file system

— Suppose the functionality of the local and remote file systems differ (a common
Situation)

— To keep local and remote file access completely transparent, the operating system
must keep the interface identical

— The effect: transparency means the set of operations that applications can use are
limited to the intersection of the operations available on the two file systems

e Another consequence: if the interface is truly transparent, an application will not be able
to find the actual location of an object, even if doing so is important

Xinu—module 21 11 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

File Namespace

e \We use the term file namespace to refer to the set of all valid file names
e Note that a namespace includes all possible names, not just the names of existing files
e [tems in a namespace are bound by both syntactic and semantic restrictions
e Examples
— Most file systems place a bound on the maximum length of a file name

— Some file systems prohibit unprintable characters in file names or prohibit
“separator” characters (e.g., Unix prohibits the slash character from appearing in file
names)

Xinu—module 21 12 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Namespace For Hierarchical Directories

e Systems such as Multics and Unix provide a hierarchical directory structure in which a
directory can contain files and other directories

e A namespace for such a system usually
— Includes names for directories as well as files
— Gives uniform names for al files

— Two forms are used: absolute names and relative names

Xinu —module 21 13 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

An Example Of Absolute And Relative Names (Unix)

e |n Unix, an absolute name begins with a slash, and gives a path downward from the
root of the file system

e Examples of absolute names

— Jusr/bin/awk

— /var/lib/vim/addons

— /dev/null
e |n Unix, arelative name gives a path starting from the current directory
e Examples

— myfile

— bin/awk

— ../../lib/java/runtime

Xinu—module 21 14 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Heter ogeneous File Names

e A variety of file naming schemes have been created
— MSDOS Device: file
— V-System [context] name
— BSD Unix machine: path

e Unfortunately

— The Internet means that when referring to a file on a remote computer, the form of
the file name may differ completely from the form of the file name used on the
user’s local computer

— No single naming scheme is best, which means that it is unlikely a single scheme
will ever be adopted by all systems

Xinu—module 21 15 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Gluing Together Many File Systems

e (Can an operating system hide differences in names and provide users with a single,
uniform view?

e One approach consists of building a single, large file system out of multiple pieces by
Inserting an extra level on top of the file system software hierarchy

e The extraleve is arranged to

Present a uniform interface to users and application programmers
Hide the details of the underlying file systems
Map unified file system names to names for specific underlying file systems

Map generic file operations to appropriate operations on the underlying file systems

Xinu —module 21 16 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

An Example

e Suppose a computer has two disks and two separate Unix file systems, F1 and F2
e To unite them into a single giant file system

— Create a new root directory that is “above” the two file systems

— Add two entries to the new root, one for F1 and one for F2

e |nthe new system, a name of the form /F1/path_1 will refer to afilein file system F1,
and a name of the form /F2/path_2 will refer to afile in file system F2

e Examples

— Thename /F1/var /mail /smith will be interpreted as a reference to /var /mail /smith
In file system F1

— Thename/F2/usr /bin/awk will be interpreted as a reference to /usr /bin/awk in
file system F2

Xinu—module 21 17 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Unix File System Mounting

e Unix provides a unification mechanism similar to the one described above

e Thelideais straightforward: make a file system appear to be one of the directories in the
main file system

e The procedureis
— Start with one file system as the root
— Create an empty directory at any point in the directory, call it X hierarchy

— Use the mount command to specify that another file system should attach in place of
directory X

e Once the new file system is mounted, its root directory appears in place of directory X

e Note: mounting only affects the cached copy of an i-node in memory; the two file
systems remain independent on disk

Xinu—module 21 18 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Using Names

Compound Names And Their Parts

e Congder the Unix file name

[var /lib/vim/addons

e Because we know the meaning of items in a Unix file name, we tend to think of the
name as three directories (var, lib, and vim) plus one file (addons)

e Syntactically, we think of the name as the four items separated by slash characters

Xinu—module 21 20 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Hierarchies, Strings, And Prefixes

e |nstead of thinking of afile name as specifying a sequence of directories, think of it
merely as a string of characters

e [or example, think of /var /lib/vim/addons as a string of nineteen characters

e (Observe that

— The one-character prefix / specifies what we think of as the top level directory
— The four-character prefix /var specifies what we think of as a second-level directory

— The eight-character prefix /var /lib specifies what we think of as a third-level
directory, and so on

e The point is that some prefixes of the string specify directories in the directory
hierarchy

Xinu —module 21 21 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Prefix Property

We use the term prefix property to describe the relationship between prefixes and the
directory hierarchy

Longer prefixes refer to items further down the directory hierarchy

Of course, an arbitrary length prefix may not correspond to a directory

In the example string /var /lib/vim/addons

— The two-character prefix /v does not name a directory

— The seven-character prefix /var /li does not name a directory

— The seventeen-character prefix /var /lib/vim/addo does not name a directory

Conclusion: a prefix length must be chosen carefully or the prefix will not correspond to
a directory or afile

Xinu —module 21 22 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Using A Prefix To Identify A File System

e Asan example of how we can use the prefix property to build a namespace, imagine a
computer with two file systems, a local file system that uses names of the form C:file
and a remote file system that supports Unix names of the form file or relative path

e Now imagine creating a file namespace that includes both file systems

e \We could choose the prefix /local / for the local file system and /remote/ for the remote
file system

e |f auser specifies the name /remote/a/b/c, the system will remove the prefix, and use
the name a/b/c as a path name on the remote file system

e Thelocal file system is dlightly more complex because the prefix must be replaced
Instead of removed: If a user specifies the name /local / X, the system must replace the
prefix /local / with the string C:, and then use the name C: X as the name of afile on
the local file system

Xinu—module 21 23 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Generalized Prefix Mapping

e |nstead of building code that uses if statements to check for /local / and /remote/,
consider a generalized system

e The generalized system will use atable of prefixes
e The prefix table will contain one entry for each possible prefix
e Each entry in the table will be a 3-tuple that specifies
— A prefix to be matched
— A replacement string (e.g., the prefix “/local/” might be replaced by “C:”)

— A file system to be used once the file name has been modified

Xinu —module 21 24 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Using A Prefix Table

When a user specifies a file name, the prefix mapping code searches the prefix table

When it finds a prefix in the table that matches the prefix of the name the user specified,
the code

— Modifies the user’s file name by substituting the replacement string in the entry in
place of the prefix

— Uses the modified file name as the file name for the file system specified in the
entry

A prefix table has several advantages over using conditional statements in the code
— Nothing is hard-wired

— The mappings can be changed at any time, even while the operating system
continues to run

Xinu —module 21 25 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Prefix Table For Our Example

e Consider the local and remote file systems described on previous slides
e Assume the local file system islocal fs and the remote file system is remote fs

e A prefix table that captures the needed mappings contains two entries

Prefix Replacement File System
"/local /" "C:" local fs
"remote/" " remote_fs

e Because the entry for the remote file system has a replacement set to the null string, the
prefix /remote/ will be removed from the name, and no further modifications will occur

Xinu—module 21 26 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Names, Prefixes, And Subdirectories

e Treating each name as a string has several implications

e No meaning: iIf a name is merely a string, no special meaning is assigned to any
character

— Therefore, “x/y/Z" is merely a string of five characters

— Humans might think of y as a subdirectory of x, but code that operates on strings
does not

e Conseguence: treating names as character strings means
— The segments in a name may not match the levels in the directory hierarchy

— Applications cannot infer semantic meaning

Xinu—module 21 27 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Possible Hierar chies

e Using prefixes allows us to create a unified abstract namespace that includes multiple
file systems

e \We have seen, for example, that an abstract namespace can include both local and
remote file systems

e |[nterestingly, various arrangements of a hierarchy are possible: local and remote can be
located at the same level, remote can be a subdirectory of the local file system, or local
can be a subdirectory of the remote file system, as illustrated

Xinu—module 21 28 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Xinu Namespace

The Xinu Syntactic Namespace

e Xinu uses a single namespace to unify multiple file systems into a single abstract
naming scheme

e The characteristics are
— Syntactic: the Xinu namespace uses prefix mapping

— Optional: applications can choose to bypass the namespace and access a specific file
system directly

— Dynamic: the namespace mappings can be changed at run time

Xinu —module 21 30 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Namespace Details

e |n Xinu, everything is a device; so the namespace is a device (actually a pseudo-device
because there is no real hardware)

e The namespace pseudo-device is configured to the name NAMESPACE
e An application

— Calls open on the NAMESPACE pseudo-device

— Supplies a file name

e The namespace open function

— Uses a prefix table to find an entry in the prefix table where the prefix matches the
file name

— Modifies the file name by replacing the prefix with the specified replacement string

— Calls open on the file system device in the entry

Xinu —module 21 31 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

An Example Of Passing An Open Call To A File System
e Consider a Xinu namespace that has been configured to have an entry in the prefix table
with the following values
("/remote/t, "", RFILESYS)

e Suppose a process calls
open(NAMESPACE, "/remote/xyz", "r");

e The namespace driver will
— Map “/remote/xyz’ into “xyZz”
— Cadll open on the RFILESY S device with the mode argument the user specified

open(RFILESYS, "xyz", "r"):

Xinu—module 21 32 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Summary Of The Xinu Syntactic Namespace Oper ation

e The Xinu namespace uses atable to hold a set of 3-tuples

(prefix, replacement, device)

where prefix and replacement are strings of characters
e Given afile name, the namespace
— Checks the name against each entry in the table
— If aprefix in the table matches the beginning of the name
* Rewrite the file name by substituting the replacement string for the prefix

* Open the resulting file name on the device specified in the table entry, and return
the result to the caller

e |f none of the prefixes in the table match the name, return SY SERR to caller

Xinu—module 21 33 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Default Prefix Mapping

e \We said that if no prefix in the table matches a name, open returns SYSERR

e To prevent errors, one can install a default entry in the table (i.e., an entry that will be
used if none of the other entries match)

e Prefix matching means a default entry can be added without modifying the lookup code
and without any special cases

e Toinsert adefault entry, specify a prefix of the null string
— Thenull string is considered to be a prefix of all other strings
— Therefore, an entry in which the prefix is null will always match

e We will see examples of how a default entry can be used

Xinu—module 21 34 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Adding Entries To The Prefix Table

e Xinu uses the same approach as Unix, a mount function

e |n Xinu, mount merely adds an entry to the prefix table

e Asexpected, Xinu’s mount function takes three arguments
— A string that specifies a prefix
— A string that specifies a replacement
— A device descriptor for afile system pseudo-device

e Example:

mount ("/remote/", "", RFILESYS);

Xinu—module 21 35 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Namespace | nitialization

e Thedriver for the NAMESPACE pseudo-device includes initialization function naminit

e After Xinu boots, It calls the init function for each device, which means it calls naminit
for the NAMESPACE device

e Naminit
— Fillsininitial values in the prefix table
— Automatically creates an entry for each device
— Uses a name of the form /dev/x for a device named X
e Example
— Naminit creates an entry /dev/iconsole for the CONSOLE device
— An open on /dev/console will be mapped to an open on CONSOLE

e To create additiona entries, calls to mount can be added to naminit

Xinu—module 21 36 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

e An example of mount calls used to build a namespace (from naminit)

e Obsarve

— Thelast entry uses a null prefix to provide a default (the local file system)

— File names that start with ~/ are also mapped to the remote file system

An Excerpt From Naminit

mount ("/dev/nul | ",

mount ("/ renote/", NULLSTR,
mount ("/1 ocal /", NULLSTR,
mount ("/tnmp/" "t np-",
mount ("/ dev/", NULLSTR,
mount (" ~/", NULLSTR,
mount ("/", "root:",
mount (" ", NULLSTR,

NULLDEV) :

RFI LESYS) ;
LFI LESYS) :
LFI LESYS) ;

SYSERR) :

RFI LESYS) :
RFI LESYS) :
LFI LESYS) ;

— Names that begin with a dash are mapped to the remote file system, and the prefix
root: is added to the name

Xinu—module 21

37

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Declarations For The Namespace

[* name. h */

/* Constants that define the nanespace mapping table sizes */

#defi ne NM PRELEN 64 /* Max size of a prefix string */
#defi ne NM REPLLEN 96 /* Maxi mum si ze of a repl acenent */
#defi ne NM MAXLEN 256 [* Maxi mum size of a file nanme */
#def i ne NNAMES 128 /* Nunber of prefix definitions */

/* Definition of the nane prefix table that defines all nanme mappi ngs */

struct nnentry { /* Definition of prefix table */
char nprefi x[NM_PRELEN] ; /* Null-term nated prefix */
char nrepl ace[N\M_REPLLEN] ; [* Null-term nated replacenent */
di d32 ndevi ce; /* Device descriptor for prefix */

}s

extern struct nnentry nanetab[]; /* Tabl e of nanme mappi ngs */

extern int32 nnanes; /* Nunber of entries allocated */

Xinu —module 21 38

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Open Function For The Namespace

/* nanppen.c - nanopen */

#1 ncl ude <xi nu. h>

| % o L L e
* nanmopen - Open a file or device based on the nane
K o o e e e e e e e e e e e e e e e e Y e e Y e Y M
*/
devcal | nanopen(
struct dentry *devptr, /* Entry in device switch table
char *nane, /* Name to open
char *node /* Mbde ar gunent
{)
char newnanme[NM_MAXLEN] ; /* Name with prefix repl aced
di d32 newdev; /* Device ID after mappi ng
/* Use nanespace to map nane to a new nane and new descriptor */
newdev = nanmmap(nane, newnane, devptr->dvnun;
I f (newdev == SYSERR) {
return SYSERR;
}
/* Open underlying device and return status */
return open(newdev, newnane, node);
}
Xinu —module 21 39

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

*/
*/
*/

*/
*/

2025

Mapping Function For The Namespace (Part 1)

/* nammap. c - nammap, nanrepl, nancpy */

#1 ncl ude <xi nu.

status nancpy(
di d32 nanr epl

* panmmap -
*
devcal | nammap(
char
char
di d32
)
{ .
di d32
char
| nt 32

h>

char *, char *, |
(char *, char[]);

nt 32) ;

nane, / The nanme to map

newnanme[NM_MAXLEN] , /* Buffer for mapped nane
nandev /* 1D of the nanmespace device
newdev; Devi ce descriptor to return

t mpname[NM_MAXLEN] ;

I ter;

/* Place original nane i

i f (nancpy(tnpnane,

}

Xinu—module 21

return SYSERR;

Tenporary buffer for nane
Nunber of iterations

N~ S Y
* ¥ F

n tenporary buffer and null term nate */

name, NM MAXLEN) == SYSERR) {

40
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

*/

2025

Mapping Function For The Namespace (Part 2)

/| * Repeatedly substitute the nane prefix until a non-nanmespace */
/* device is reached or an iteration limt is exceeded */
for (iter=0; iter<nnanes ; iter++) {

newdev = nanrepl (t npnanme, newnane);
I f (newdev ! = nandev) {
return newdev; [/* Either valid ID or SYSERR */
}
nancpy(t npname, newnanme, NM MAXLEN);

}
return SYSERR;

Xinu—module 21 41
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Mapping Function For The Namespace (Part 3)

| nt 32
| nt 32
struct

Xinu—module 21

*nane,
newnanme[NM_MAXLEN]

I

*pptr;
*rptr;
*optr;
*nptr,;
ol en;

pl en;
rlen;

remai n;
nnmentry *nanptr;

e e e e e e e e e e

b I T T I R . R T . I

* Original nane
*

Buf fer for mapped nane

|terate through nane table
Wal ks through a prefix
Wal ks through a repl acenent
Wal ks through origi nal nane
Wal ks t hrough new nane
Length of original nane
I ncl udi ng the NULL byte
Length of a prefix string
not including NULL byte
Length of replacnent string
Bytes in nane beyond prefix
Pointer to a table entry

42

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

2025

Mapping Function For The Namespace (Part 4)

[* Search nane table for first prefix that matches */

for

Xinu—module 21

(i =0; i<nnanes; i ++)

nanptr = &nanetab[i];
optr = nane; /* Start at begi nning of nane */
pptr = nanptr->nprefix; /* Start at beginning of prefix */

/[* Conpare prefix to string and count prefix size */

for (plen=0; *pptr !'= NULLCH ; plen++) {

I f (*pptr '= *optr) {
br eak:
}

pptr ++,
opt r ++;

}

i f (*pptr !'= NULLCH) { /* Prefix does not match */
conti nue;

}

/* Found a match - check that replacenent string plus */
/* Dbytes remaining at the end of the original nanme wll*/

[* fit into new buffer. |Ignore null on replacenent */
/[* string, but keep null on remainder of nane. */
43

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Mapping Function For The Namespace (Part 5)

ol en = nam en(nane , NM MAXLEN) ;
rl en = nam en(nanptr->nreplace, NM MAXLEN) - 1;
remain = olen - plen;
if ((rlen + remain) > NM MAXLEN) {

return (di d32) SYSERR;
}

/* Place replacenent string followed by reminder of */
[* original nanme (and null) into the new nane buffer */

nptr newnane;

rptr nanptr - >nr epl ace;

for (; rlen>0 ; rlen--) {
*nptr++ = *rptr++;

}

for (; remain>0 ; remain--) {
*nptr++ = *optr++;
}

return nanptr->ndevi ce;

}
return (di d32) SYSERR;

Xinu—module 21 44 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Mapping Function For The Namespace (Part 6)

*/
*/
*/

*/
*/
*/

*/

/2
* nancpy - Copy a nane fromone buffer to another, checking | ength
K o o e Y e e Y e Y e Y e Y e M
*/

status nancpy(

char *newnane, /* Buffer to hold copy
char *ol dnane, /* Buffer containing nanme
I nt 32 bufl en /* Size of buffer for copy
)
{ _
char *nptr; /* Point to new nane
char *optr; /* Point to old nane
i nt 32 cnt; /* Count of characters copied
nptr = newnane;
optr = ol dnane;
for (cnt=0; cnt<buflen; cnt++) {
I f ((*nptr++ = *optr++) == NULLCH) {
return CK;
} }
return SYSERR, /* Buffer filled before copy conpl eted
}
Xinu —module 21 45

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Problems With A Syntactic Approach

e |nfinite name expansion
e [nfinite recursion

e A short prefix hides alonger one

Xinu—module 21 46 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Problem #1: Infinite Name Expansion

e Suppose the namespace contains

mount ("a", "this_a", NAMESPACE);
mount ("t", "and t", NAMESPACE),;

e Consider
open(NAMESPACE, "and that", "r");

e Repeated replacement keeps building a longer and longer name

this _and t hat

and this and t hat

this and this and that

and this and this and that
{and so on...}

e Solution: check the size of the expanded name, stop and return (SY SERR) if the size
exceeds the maximum name length

Xinu—module 21 47 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Problem #2: Infinite Recursion

e Suppose the namespace contains

mount ("cs_ ", "ece ", NAMESPACE);
nount ("ece ", "cs_ ", NAMESPACE);

e Consder
open(NAMESPACE, "cs is best", "r");

e Repeated substitution goes on forever, alternating between cs is best and ece is best

e Solution: limit the number of repeated substitutions to nnames

Xinu—module 21 48 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Problem #3. A Short Prefix Hides A Longer One

e Suppose the namespace contains two entries in the following order

mount ("I1", "I", RFILESYS),
nmount ("l ocal /", "", LFILESYS);

e Consider
open(NAMESPACE, "l ocal/x", "r");

e Thefirst entry prevents the second from ever getting used. so the open always goes to
RFILESYS even though the second entry appears to direct it to LFILESYS

e Solution: order entries in the table with longest prefix first (and prohibit duplicate
prefixes)

Xinu—module 21 49 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Generalized Patterns

e Although our example uses a fixed string as a pattern, more sophisticated patterns are
possible, for example:

Character Meaning
A match beginning of string
$ match end of string
. match any single character
* repeat O or more of a pattern
\ take next character in pattern literally

other self match as in a fixed string

Xinu—module 21 50 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Summary

e |tispossible to build a naming hierarchy separate from the underlying file systems

e \When the naming hierarchy is viewed syntactically, prefixes define each piece of the
hierarchy

e A prefix table that includes replacement can be used to create a fairly general hierarchy
e |n Xinu, the syntactic namespace is implemented as the NAMESPACE pseudo-device

e Opening the NAMESPACE device causes a file name to be mapped according to the
prefix table and then passed to open on a specific file system

e Using the null string as a prefix creates a default entry in the prefix table that is
guaranteed to match any file name

Xinu—module 21 51 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Ouestions?

