Module XX

A Remote File System

Xinu —module 20 1 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Remote File System

Remote File Access

e |nvolves two software components that
— Operate on two separate computers
— Communicate over a network or the Internet
e The remote file server component
— Runs on a computer that has a local file system
— Accepts requests to perform file operations
e The remote file client component
— |Is part of an operating system

— Sends requests to a server and obtains replies

Xinu —module 20 3 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Operations A Remote File System Supports

e A remote file system usually supports typical file operations
— Open or close afile
— Read data from an open file
— Write data to an open file
— Moveto an arbitrary position in an open file
— Create, delete, or rename files

— Change afile's metadata, such as the ownership and access privileges

Xinu —module 20 4 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Design Questions

e (Can multiple clients access a given server?
e (Can aclient access files on more than one server at the same time?
e Must user IDs on the client computer agree with user IDs on the server?
e Exactly what file semantics does a remote file system support?
— Precisely the same file operations and semantics as a local file system?
— A subset of the operations and semantics supported by the local file system?

— A superset of the operations and semantics supported by the local file system?

Xinu —module 20 5 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Xinu Remote File Paradigm

e (Clients on multiple Xinu machines are allowed to send read and write requests to a
given server concurrently

e Allowing multiple clients to access a server introduces the possibility of interference
(e.g., two clients may attempt to write to the same byte of afile at the same time)

e The Xinu solution

— A sarver serializes all incoming requests (i.e., enqueues them and handles one at a
time)

— A subsequent read always returns the last value written, independent of which client
wrote it

— If additional coordination is needed among applications using afile, it is the
programmer’ s responsibility

Xinu —module 20 6 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Server Operation

e A sarver maintains a set of currently open files

e When aclient sends an open request, the server
— Checksto see if the file is already open, and does nothing If it Is
— Otherwise opens the file and records it in the set of open files

e Read and write operations from all clients refer to the same open file (a client does not
have its own open file on the server)

e \When al clients close afile, the server closes the file

Xinu —module 20 7 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Remote File Interface On A Xinu Client System

e [ollow pattern to defining a master device (RFILESYS) and a set of pseudo-devices

e To open aremote file, a process calls open on the master device

d = open(RFILESY' S, "file", mode);

e The open call
— Allocates one of the file pseudo devices
— Returns, d, the descriptor of the open device
e The caller uses descriptor d to read or write data to the file
e When it finishes using the file, the process calls close on descriptor d

e Note: the RFILESY S device is also used for control operations (e.g., delete afile)

Xinu —module 20 8 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Structure Of The Remote File System Code

e Theremote file system client code differs from the remote disk client code

e Unlike aremote disk client, a remote file client does not maintain a queue of requests,
and does not need a communication process

e |nstead
— Remote server access uses a synchronous approach
— Each operation causes a request-response exchange with the remote server
— Only one request can be outstanding at a time

e An upper-half function

— Forms a request message and calls function rfscomm to send the request to the
server and obtain a response

— Waits for aresponse, and returns the response to its caller

Xinu —module 20 9 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Cost Of Remote File Operations

e The Xinu design has a downside: high latency
e Except for seek, each upper-half function performs an exchange with server

e Sending arequest over a network and obtaining a response introduces significant
latency

e The communication overhead is highest when only a small amount of data is transferred
per request

e Example: sending 1000 bytes of data in a single request instead of one byte reduces the
number of packets transferred by a factor of 1000!

e Conseguence: programmers are discouraged from using putc or getc to access a remote
file because using read and write to transfer large blocks of data incurs much less
overhead

Xinu —module 20 10 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Question Of File System Semantics

e The Xinu remote file server runs on a Unix system (Linux) that has
— Hierarchical directories
— File modes and timestamps
— Hard and symbolic links

e Further, Xinu defines an "0" mode used when opening afile (the file must exist), but
Linux does not have an exact equivalent

e There are two possibilities
— Arrange the remote file server to emulate (when possible) the Xinu file semantics

— Allow applications running on Xinu to use the Linux file system functionality and
semantics

Xinu —module 20 11 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Our Design

e Our remote file server implements Xinu file system semantics whenever doing so is
both feasible and efficient

— Example: to emulate Xinu "0" and "n" modes, the remote file server checks whether
the file exists before opening it

e The system provides Xinu applications with access to additional Linux file system
functionality via the control function, allowing a Xinu process to

— Create or remove a directory
— Truncate afile

— QObtain the current size of afile (which allows a Xinu application to move to the end
and append new data)

Xinu —module 20 12 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Operations For The Xinu Remote File System

e Open —open afile

e (lose — terminate use of file

e Read — obtain data from afile

e Write — deposit datain afile

e Sze-— obtain the current file size

e Delete —remove afile

e Truncate — discard any existing contents

e Mkdir — make a directory

e Rmdir — remove a directory

e Seek — move to specified position (handled locally; no message sent to server)
e Note getc and putc are provided, but their use is discouraged

Xinu—module 20 13 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

File Position | nformation

e Operations like read and write assume the file system maintains a current position for
each open file

e [For example, when an application calls read, the application receives byes starting at
the current file position (and the position is updated)

e Question: should the file position be maintained at the server or the client?
e Note the location where the position is stored affects sharing

— If the position is kept at the server and multiple clients share an open file, the
position changes whenever any of the clients read or write

— Keeping the position information at the client allows multiple clients to each
maintain their own file position (and works as long as they coordinate to avoid
overwriting parts of the file that others are reading)

Xinu —module 20 14 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu File Position And Seek

e Each call to open is assigned a new pseudo device
e The pseudo-device maintains a file position
e Consequence: two processes can open the same file and maintain their own file position

e Because Xinu stores the position at the client, every request sent to the server must
specify a position

e |f multiple clients access a file ssmultaneously, they do not interfere with each other’s
position information

e The Seek operation allows an application to move to a specific byte offset within the file

e The Xinu design means seek is extremely efficient because the operation can be
performed locally; no exchange with the server is needed

Xinu —module 20 15 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Definitions For The Remote File System (Part 1)

/* rfilesys.h - Definitions for renote file system pseudo-devices */

#i fndef Nrfl

#define Nrfl 10

#endi f

/* Control block for a renote file pseudo-device */

#defi ne RF_NAM_EN 128 /[* Maxi mum |l ength of file name */
#defi ne RF_DATALEN 1024 /* Maximumdata in read or wite*/
#define RF_MODE R F MODE R /* Bit to grant read access */
#defi ne RF_MODE W F_MODE W /* Bit to grant wite access */
#defi ne RF_MODE RW F_MODE RW /* Mask for read and wite bits */
#define RF_MODE N F MODE N /* Bit for "new' node */
#define RF_MODE O F MODE O /[* Bit for "old" node */
#defi ne RF_MODE NO F_MODE_NO /* Mask for "n" and "o" bits */
/* d obal data for the renote server */

#i f ndef RF_SERVER

#defi ne RF_SERVER "exanpl e. cont'

#endi f

#i f ndef RF_SERVER PORT

#defi ne RF_SERVER PORT 53224

#endi f

#i f ndef RF_LOC PORT

#defi ne RF_LOC PORT 53224

#endi f

Xinu —module 20 16 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Definitions For The Remote File System (Part 2)

struct rfdata {
| nt 32 rf _seq;
uint32 rf_ser _ip;
uintlé rf_ser port;
uintlé rf _|loc port;
I nt 32 rf udp_slot;
Si d32 rf _mutex;
bool 8 rf registered,

Next sequence nunber to use
Server | P address

Server UDP port

Local (client) UPD port

UDP sl ot to use

Mut ual exclusion for access

e e e e e)
* %k ok K ok ¥ ok

}
extern struct rfdata Rf_data;
/* Definition of the control block for a renote file pseudo-device

#define RF_FREE O /[* Entry is currently unused
#define RF_USED 1 /[* Entry is currently in use

struct rflcblk {

| nt 32 rfstate; /* Entry is free or used
| nt 32 rf dev; /* Device nunber of this dev.
char r f name[RF_NAMLEN] ; /[* Name of the file
uint32 rfpos; [* Current file position
uint 32 rfnode; /* NMobde: read access, wite
[* access or both
}
extern struct rflcblk rfltab[]; /* Renote file control bl ocks
Xinu —module 20 17

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

*/
*/
*/
*/
*/
*/

Has UDP port been registered?*/

*/

*/
*/

*/
*/
*/
*/
*/
*/

2025

M essage Formats Used With The Remote File System

e Use the same approach as the remote disk system
e Define areguest and reply message for each operation

e Note

— FHilerfilesys.h is shared between client and server software

— Key concept: the message formats and constants are only defined once

18 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu —module 20

Definitions For The Remote File System (Part 3)

#define RF_RETRI ES
#define RF_TI MEQUT

/[* Control functions for a renpte file pseudo device */

#define RFS_CTL_DEL

#define RFS_CTL_TRUNC
#define RFS_CTL_MKDI R
#define RFS_CTL_RMDI R

[* Definitions of paraneters used when accessing a renote server */
3 /[* Time to retry sending a nsg */
1000 /[* Wait one second for a reply */
F CTL_DEL /* Delete a file */
F CTL_TRUNC /[* Truncate a file */
F CTL_MKDI R /* Make a directory */
F CTL_RMDI R /* Renove a directory */
F CTL_SI ZE /[* btain the size of a file */

#define RFS_CTL_SI ZE

/**/

[* */
[* Definition of nessages exchanged with the renpte server */
[* */

/**/

/* Values for the type field in nessages */

#defi ne RF_MSG RREQ
#defi ne RF_MSG_RRES

#defi ne RF_MSG RESPONSE 0x0100 /[* Bit that indicates response */
0x0001 /* Read Request and response */
(RF_M5G RREQ | RF_MSG _RESPONSE)
0x0002 /* Wite Request and response */

#defi ne RF_MSG WREQ
#defi ne RF_MSG WRES

Xinu —module 20

(RF_MBG WREQ | RF_MSG RESPONSE)

19
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Definitions For The Remote File System (Part 4)

/* Message header fields present in each nessage */

#defi ne RF_MSG HDR /* Common nessage fields */\
uintle rf _type; /* Message type */\
uint16 rf_status; /[* 0 in reqg, status in response */\
uint32 rf_seq; /* Message sequence nunber */\
char rf _name[RF_NAM_EN] ; /[* Null-term nated file nane */

/* The standard header present in all nessages with no extra fields */

/**/

[* * [
[* Header * [
[* * |

/**/

#pragma pack(?2)

struct rf_nsg _hdr { /| * Header fields present in each*/
RF_MSG_HDR [* renote file system nessage */

3

#pragma pack()

Xinu —module 20 20
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Definitions For The Remote File System (Part 5)

***/

/*
/*
[* Read
/*
/*

*/
*/
*/

***/

#pragma pack(?2)

struct rf_nsg_rreq { /* Renote file read request
RF _M5G HDR /* Header fields
uint32 rf_pos; /[* Position in file to read
uint32 rf _Ilen; /* Nunber of bytes to read

[* (between 1 and 1024)
3
#pragma pack()

#pragma pack(?2)

struct rf _nsg rres { /* Renote file read reply
RF_ M5G HDR /| * Header fields
uint32 rf_pos; [* Position in file
uint32 rf _len; /* Nunber of bytes that foll ow
[* (0 for EOF)
char rf dat a] RF_DATALEN] ; /* Array containing data from
[* the file

3
#pragma pack()

Xinu —module 20 21
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

*/
*/
*/
*/
*/

*/

*/
*/
*/
*/
*/

2025

Definitions For The Remote File System (Part 6)

/**/

[* */

/* Wite */

[* */

/**/

#pragma pack(?2)

struct rf_nsg_weq { /* Renote file wite request */
RF MSG HDR /* Header fields */
uint32 rf_pos; [* Position in file */
uint32 rf _Ilen; /* Nunber of valid bytes in */

[* array that follows */
char rf dat a] RF_DATALEN] ; /* Array containing data to be */
[* witten to the file */

3

#pragma pack()

#pragma pack(?2)

struct rf_nsg wes { /* Renpote file wite response */
RF _MSG HDR /* Header fields */
uint32 rf_pos; [* Original position in file */
uint32 rf _len; /* Nunber of bytes witten */

3

#pragma pack()

Xinu —module 20 22 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Communication With The Remote File Server

e All communication goes through a single function, rfscomm

e Each upper-half function (except seek) uses rfscomm

e Rfscomm handles

Registering a UDP port

The assignment of a sequence number to each outgoing message
The transmission of a request

Timeout and retry

The reception of areply

Validation of reply (to ensure it matches the request)

Xinu —module 20 23

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Remote File Communication (Part 1)

[* rfscommc - rfscomm */

#i ncl ude <xi nu. h>

*
* rfscomm - Handle comunication with RFS server (send request and
* receive a reply, including sequencing and retries)

i nt 32 rf scomm (

struct rf _nsg _hdr *nsg, /* Message to send */
int32 nlen, /* Message | ength */
struct rf_nsg _hdr *reply, /[* Buffer for reply */
int32 rlen /* Size of reply buffer */
)
{ . . .
I nt 32 | ; /[* Counts retries */
I nt 32 retval ; /* Return val ue */
I nt 32 seq; /* Sequence for this exchange */
i nt 16 rtype; /* Reply type in host byte order*/
I nt 32 sl ot ; /* UDP sl ot */
char err[128]; [* Error nmessage buffer */
Xinu —module 20 24

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Remote File Communication (Part 2)

/* For the first time after reboot, register the server port
If (! Rf data.rf _registered) {
/* Convert the server nane to an | P address */

| f (dnsl ookup(RF_SERVER, &Rf data.rf _ser ip) == SYSERR) {
sprintf(err, "rfs server % is invalid", RF_SERVER);
panic("err");

}

if ((slot = udp_register(Rf _data.rf _ser _ip,
Rf data.rf_ser port,
Rf data.rf _loc port)) == SYSERR) {
return SYSERR;

}
Rf data.rf _udp _slot = slot;

Rf data.rf _registered = TRUE;
}

/* Assign nessage next sequence nunber */

seq = Rf _data.rf_seq++;
nsg->rf _seq = htonl (seq);

/* Repeat RF_RETRIES tines: send nessage and receive reply */
for (i=0; Ii<RF_RETRIES; i++) {

Xinu —module 20 25
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Xinu —module 20

Remote File Communication (Part 3)

/* Send a copy of the nessage */

retval = udp_send(Rf _data.rf _udp_slot, (char *)nsg,
m en) ;

I f (retval == SYSERR) {
kprintf("Cannot send to renote file server\n");
return SYSERR;

}
/* Receive a reply */

retval = udp recv(Rf _data.rf _udp _slot, (char *)reply,
rlen, RF_TIMEQUT) ;

i f (retval == TIMEQUT) {
conti nue;
} else if (retval == SYSERR) {

kprintf("Error reading renote file reply\n");
return SYSERR;

26
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Remote File Communication (Part 4)

/[* Verify that sequence in reply matches request */
i f (ntohl (reply->rf _seq) != seq) {
conti nue;
}
/* Verify the type in the reply matches the request */
rtype = ntohs(reply->rf _type);
i f (rtype '= (ntohs(nsg->rf _type) | RF_MSG RESPONSE)) {

conti nue;
}

return retval; /* Return length to caller */

}

/* Retries exhausted w t hout success */

kprintf("Timeout on exchange with renote file server\n");
return TI MEOUT,

Xinu —module 20 27 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

An Example Remote File Operation (read)

e An application calls read, and control is passed to the upper-half read function, rflread
e Rflread
— Forms aread request message and calls rfscomm to send the message
— Rfscomm blocks the calling process to await a reply
— When the reply arrives, rfscomm
* Extracts the data from the message and copies it to the caller’s buffer
* Updates the file position in the control block for the pseudo device
* Returns to the caller, allowing the read to complete

e Note: each open file has a mutual exclusion semaphore to prevent other processes from
using the file while an operation proceeds

Xinu —module 20 28 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Remote File Read (Part 1)

[* rflread.c - rflread */

#i ncl ude <xi nu. h>

*/
devcall rflread (

struct dentry *devptr, /[* Entry in device switch table */
char *buff, /* Buffer of bytes */
i nt 32 count /* Count of bytes to read */
{)
struct rflcblk *rfptr; /* Pointer to control block */
I nt 32 retval ; /* Return val ue */
struct rf_nsg_rreq nsg; / * Request nessage to send */
struct rf_nsg_rres resp; [* Buffer for response */
I nt 32 | ; /* Counts bytes copied */
char *from *to; /* Used during nanme copy */
I nt 32 | en; /* Length of nane */
[* WAit for exclusive access */
wai t (Rf _data.rf _nutex);
Xinu —module 20 29 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Remote File Read (Part 2)

[* Verify count is legitimte */

if ((count <= 0) || (count > RF_DATALEN)) {
signal (Rf _data.rf_nutex);
return SYSERR

}

/* Verify pseudo-device is in use */
rfptr = & fltab[devptr->dvm nor];
/[* |f device not currently in use, report an error */

i f (rfptr->rfstate == RF_FREE) {
signal (Rf _data.rf _nutex);
return SYSERR,

}

/* Verify pseudo-device allows reading */

I f ((rfptr->rfnode & RF MODE R) == 0) {
signal (Rf _data.rf_ nutex);
return SYSERR,

Xinu —module 20 30 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Remote File Read (Part 3)

/* Formread request */

neg.rf _type = htons(RF_MSG RREQ) ;

neg.rf _status = htons(0);

nsg.rf_seq = O; /* RRsconmw || set sequence */
from= rfptr->rfnane;

to = neg.rf _nane;

menset (to, NULLCH, RF_NAMLEN); /* Start nanme as all zero bytes */

| en = O;
while ((*to+t+ = *from+)) { /* Copy nane to request */
i f (++l en >= RF_NAMLEN) {
signal (Rf _data.rf_nutex);
return SYSERR;
) }
neg.rf _pos = htonl (rfptr->rfpos);/* Set file position */
neg.rf _len = htonl (count); /* Set count of bytes to read */

/* Send nessage and receive response */

retval = rfscomm((struct rf_nsg _hdr *)&nsg,
si zeof (struct rf_nsg rreq),
(struct rf _nmsg _hdr *)&resp,
sizeof (struct rf_nsg rres));

Xinu —module 20 31 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Remote File Read (Part 4)

/| * Check response */

I f (retval == SYSERR) {
signal (Rf _data.rf_nutex);
return SYSERR
} else if (retval == TIMEQUT) {
kprintf("Tinmeout during renote file read\n");
signal (Rf _data.rf_nutex);
return SYSERR
} else if (ntohs(resp.rf _status) != 0) {
signal (Rf _data.rf_nutex);
return SYSERR

}
/[* Copy data to application buffer and update file position */

for (i=0; i<ntohl(resp.rf _len); i++) {
*buff++ = resp.rf _datali];
}

rfptr->rfpos += ntohl (resp.rf_Ilen);

signal (Rf _data.rf _mutex);

I f (ntohl (resp.rf _len) == 0) {
return EOCF;

}

return ntohl (resp.rf _|en);

}

Xinu —module 20 32 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Remote File Server

e |slaunched in adirectory on a Unix system

e Accepts reguests from client(s)

e Opens each file in the directory where the server is running

e Prevents clients from accessing files in higher-level directories

e Examples: the server forbids access to files with names

Jusers/xxx/y/z
A..1..1../bbb/gg

Xinu —module 20 33 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Summary

e Remote storage access mechanisms are a popular part of many operating systems
e |nthe Xinu remote disk subsystem, a device corresponds to a remote disk

e The remote disk device driver relies on a process to perform lower-half functions
e (Caching is an important optimization for disk systems

e The Xinu remote disk system maintains a cache of recently-used disk blocks as well as
a gueue of requests

e The Xinu remote file access mechanism uses a synchronous approach that requires a
message exchange for each operation, which means the remote file system access code
does not need a separate process

e The Xinu remote file system implements Xinu file semantics whenever possible, and
uses control to allow applications to access Linux file operations that are not normally
available

Xinu —module 20 34 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Ouestions?

