
Module XX

A Remote File System

Xinu – module 20 1 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Remote File System

Remote File Access

d Involves two software components that

– Operate on two separate computers

– Communicate over a network or the Internet

d The remote file server component

– Runs on a computer that has a local file system

– Accepts requests to perform file operations

d The remote file client component

– Is part of an operating system

– Sends requests to a server and obtains replies

Xinu – module 20 3 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Operations A Remote File System Supports

d A remote file system usually supports typical file operations

– Open or close a file

– Read data from an open file

– Write data to an open file

– Move to an arbitrary position in an open file

– Create, delete, or rename files

– Change a file’s metadata, such as the ownership and access privileges

Xinu – module 20 4 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Design Questions

d Can multiple clients access a given server?

d Can a client access files on more than one server at the same time?

d Must user IDs on the client computer agree with user IDs on the server?

d Exactly what file semantics does a remote file system support?

– Precisely the same file operations and semantics as a local file system?

– A subset of the operations and semantics supported by the local file system?

– A superset of the operations and semantics supported by the local file system?

Xinu – module 20 5 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Xinu Remote File Paradigm

d Clients on multiple Xinu machines are allowed to send read and write requests to a
given server concurrently

d Allowing multiple clients to access a server introduces the possibility of interference
(e.g., two clients may attempt to write to the same byte of a file at the same time)

d The Xinu solution

– A server serializes all incoming requests (i.e., enqueues them and handles one at a
time)

– A subsequent read always returns the last value written, independent of which client
wrote it

– If additional coordination is needed among applications using a file, it is the
programmer’s responsibility

Xinu – module 20 6 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Server Operation

d A server maintains a set of currently open files

d When a client sends an open request, the server

– Checks to see if the file is already open, and does nothing if it is

– Otherwise opens the file and records it in the set of open files

d Read and write operations from all clients refer to the same open file (a client does not
have its own open file on the server)

d When all clients close a file, the server closes the file

Xinu – module 20 7 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Remote File Interface On A Xinu Client System

d Follow pattern to defining a master device (RFILESYS) and a set of pseudo-devices

d To open a remote file, a process calls open on the master device

d = open(RFILESYS, "file", mode);

d The open call

– Allocates one of the file pseudo devices

– Returns, d, the descriptor of the open device

d The caller uses descriptor d to read or write data to the file

d When it finishes using the file, the process calls close on descriptor d

d Note: the RFILESYS device is also used for control operations (e.g., delete a file)

Xinu – module 20 8 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Structure Of The Remote File System Code

d The remote file system client code differs from the remote disk client code

d Unlike a remote disk client, a remote file client does not maintain a queue of requests,
and does not need a communication process

d Instead

– Remote server access uses a synchronous approach

– Each operation causes a request-response exchange with the remote server

– Only one request can be outstanding at a time

d An upper-half function

– Forms a request message and calls function rfscomm to send the request to the
server and obtain a response

– Waits for a response, and returns the response to its caller

Xinu – module 20 9 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Cost Of Remote File Operations

d The Xinu design has a downside: high latency

d Except for seek, each upper-half function performs an exchange with server

d Sending a request over a network and obtaining a response introduces significant
latency

d The communication overhead is highest when only a small amount of data is transferred
per request

d Example: sending 1000 bytes of data in a single request instead of one byte reduces the
number of packets transferred by a factor of 1000!

d Consequence: programmers are discouraged from using putc or getc to access a remote
file because using read and write to transfer large blocks of data incurs much less
overhead

Xinu – module 20 10 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Question Of File System Semantics

d The Xinu remote file server runs on a Unix system (Linux) that has

– Hierarchical directories

– File modes and timestamps

– Hard and symbolic links

d Further, Xinu defines an "o" mode used when opening a file (the file must exist), but
Linux does not have an exact equivalent

d There are two possibilities

– Arrange the remote file server to emulate (when possible) the Xinu file semantics

– Allow applications running on Xinu to use the Linux file system functionality and
semantics

Xinu – module 20 11 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Our Design

d Our remote file server implements Xinu file system semantics whenever doing so is
both feasible and efficient

– Example: to emulate Xinu "o" and "n" modes, the remote file server checks whether
the file exists before opening it

d The system provides Xinu applications with access to additional Linux file system
functionality via the control function, allowing a Xinu process to

– Create or remove a directory

– Truncate a file

– Obtain the current size of a file (which allows a Xinu application to move to the end
and append new data)

Xinu – module 20 12 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Operations For The Xinu Remote File System

d Open – open a file

d Close – terminate use of file

d Read – obtain data from a file

d Write – deposit data in a file

d Size – obtain the current file size

d Delete – remove a file

d Truncate – discard any existing contents

d Mkdir – make a directory

d Rmdir – remove a directory

d Seek – move to specified position (handled locally; no message sent to server)

d Note getc and putc are provided, but their use is discouraged

Xinu – module 20 13 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

File Position Information

d Operations like read and write assume the file system maintains a current position for
each open file

d For example, when an application calls read, the application receives byes starting at
the current file position (and the position is updated)

d Question: should the file position be maintained at the server or the client?

d Note the location where the position is stored affects sharing

– If the position is kept at the server and multiple clients share an open file, the
position changes whenever any of the clients read or write

– Keeping the position information at the client allows multiple clients to each
maintain their own file position (and works as long as they coordinate to avoid
overwriting parts of the file that others are reading)

Xinu – module 20 14 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu File Position And Seek

d Each call to open is assigned a new pseudo device

d The pseudo-device maintains a file position

d Consequence: two processes can open the same file and maintain their own file position

d Because Xinu stores the position at the client, every request sent to the server must
specify a position

d If multiple clients access a file simultaneously, they do not interfere with each other’s
position information

d The Seek operation allows an application to move to a specific byte offset within the file

d The Xinu design means seek is extremely efficient because the operation can be
performed locally; no exchange with the server is needed

Xinu – module 20 15 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Definitions For The Remote File System (Part 1)

/* rfilesys.h - Definitions for remote file system pseudo-devices */

#ifndef Nrfl
#define Nrfl 10
#endif

/* Control block for a remote file pseudo-device */

#define RF_NAMLEN 128 /* Maximum length of file name */
#define RF_DATALEN 1024 /* Maximum data in read or write*/
#define RF_MODE_R F_MODE_R /* Bit to grant read access */
#define RF_MODE_W F_MODE_W /* Bit to grant write access */
#define RF_MODE_RW F_MODE_RW /* Mask for read and write bits */
#define RF_MODE_N F_MODE_N /* Bit for "new" mode */
#define RF_MODE_O F_MODE_O /* Bit for "old" mode */
#define RF_MODE_NO F_MODE_NO /* Mask for "n" and "o" bits */

/* Global data for the remote server */

#ifndef RF_SERVER
#define RF_SERVER "example.com"
#endif

#ifndef RF_SERVER_PORT
#define RF_SERVER_PORT 53224
#endif

#ifndef RF_LOC_PORT
#define RF_LOC_PORT 53224
#endif

Xinu – module 20 16 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Definitions For The Remote File System (Part 2)
struct rfdata {

int32 rf_seq; /* Next sequence number to use */
uint32 rf_ser_ip; /* Server IP address */
uint16 rf_ser_port; /* Server UDP port */
uint16 rf_loc_port; /* Local (client) UPD port */
int32 rf_udp_slot; /* UDP slot to use */
sid32 rf_mutex; /* Mutual exclusion for access */
bool8 rf_registered; /* Has UDP port been registered?*/

};

extern struct rfdata Rf_data;

/* Definition of the control block for a remote file pseudo-device */

#define RF_FREE 0 /* Entry is currently unused */
#define RF_USED 1 /* Entry is currently in use */

struct rflcblk {
int32 rfstate; /* Entry is free or used */
int32 rfdev; /* Device number of this dev. */
char rfname[RF_NAMLEN]; /* Name of the file */
uint32 rfpos; /* Current file position */
uint32 rfmode; /* Mode: read access, write */

/* access or both */
};
extern struct rflcblk rfltab[]; /* Remote file control blocks */

Xinu – module 20 17 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Message Formats Used With The Remote File System

d Use the same approach as the remote disk system

d Define a request and reply message for each operation

d Note

– File rfilesys.h is shared between client and server software

– Key concept: the message formats and constants are only defined once

Xinu – module 20 18 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Definitions For The Remote File System (Part 3)

/* Definitions of parameters used when accessing a remote server */

#define RF_RETRIES 3 /* Time to retry sending a msg */
#define RF_TIMEOUT 1000 /* Wait one second for a reply */

/* Control functions for a remote file pseudo device */

#define RFS_CTL_DEL F_CTL_DEL /* Delete a file */
#define RFS_CTL_TRUNC F_CTL_TRUNC /* Truncate a file */
#define RFS_CTL_MKDIR F_CTL_MKDIR /* Make a directory */
#define RFS_CTL_RMDIR F_CTL_RMDIR /* Remove a directory */
#define RFS_CTL_SIZE F_CTL_SIZE /* Obtain the size of a file */

/**/
/* */
/* Definition of messages exchanged with the remote server */
/* */
/**/

/* Values for the type field in messages */

#define RF_MSG_RESPONSE 0x0100 /* Bit that indicates response */

#define RF_MSG_RREQ 0x0001 /* Read Request and response */
#define RF_MSG_RRES (RF_MSG_RREQ | RF_MSG_RESPONSE)

#define RF_MSG_WREQ 0x0002 /* Write Request and response */
#define RF_MSG_WRES (RF_MSG_WREQ | RF_MSG_RESPONSE)

Xinu – module 20 19 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Definitions For The Remote File System (Part 4)

/* Message header fields present in each message */

#define RF_MSG_HDR /* Common message fields */\
uint16 rf_type; /* Message type */\
uint16 rf_status; /* 0 in req, status in response */\
uint32 rf_seq; /* Message sequence number */\
char rf_name[RF_NAMLEN]; /* Null-terminated file name */

/* The standard header present in all messages with no extra fields */

/**/
/* */
/* Header */
/* */
/**/
#pragma pack(2)
struct rf_msg_hdr { /* Header fields present in each*/

RF_MSG_HDR /* remote file system message */
};
#pragma pack()

Xinu – module 20 20 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Definitions For The Remote File System (Part 5)

/**/
/* */
/* Read */
/* */
/**/

#pragma pack(2)
struct rf_msg_rreq { /* Remote file read request */

RF_MSG_HDR /* Header fields */
uint32 rf_pos; /* Position in file to read */
uint32 rf_len; /* Number of bytes to read */

/* (between 1 and 1024) */
};
#pragma pack()

#pragma pack(2)
struct rf_msg_rres { /* Remote file read reply */

RF_MSG_HDR /* Header fields */
uint32 rf_pos; /* Position in file */
uint32 rf_len; /* Number of bytes that follow */

/* (0 for EOF) */
char rf_data[RF_DATALEN]; /* Array containing data from */

/* the file */
};
#pragma pack()

Xinu – module 20 21 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Definitions For The Remote File System (Part 6)

/**/
/* */
/* Write */
/* */
/**/

#pragma pack(2)
struct rf_msg_wreq { /* Remote file write request */

RF_MSG_HDR /* Header fields */
uint32 rf_pos; /* Position in file */
uint32 rf_len; /* Number of valid bytes in */

/* array that follows */
char rf_data[RF_DATALEN]; /* Array containing data to be */

/* written to the file */
};
#pragma pack()

#pragma pack(2)
struct rf_msg_wres { /* Remote file write response */

RF_MSG_HDR /* Header fields */
uint32 rf_pos; /* Original position in file */
uint32 rf_len; /* Number of bytes written */

};
#pragma pack()

Xinu – module 20 22 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Communication With The Remote File Server

d All communication goes through a single function, rfscomm

d Each upper-half function (except seek) uses rfscomm

d Rfscomm handles

– Registering a UDP port

– The assignment of a sequence number to each outgoing message

– The transmission of a request

– Timeout and retry

– The reception of a reply

– Validation of reply (to ensure it matches the request)

Xinu – module 20 23 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Remote File Communication (Part 1)

/* rfscomm.c - rfscomm */

#include <xinu.h>

/*--
* rfscomm - Handle communication with RFS server (send request and
* receive a reply, including sequencing and retries)
*--
*/

int32 rfscomm (
struct rf_msg_hdr *msg, /* Message to send */
int32 mlen, /* Message length */
struct rf_msg_hdr *reply, /* Buffer for reply */
int32 rlen /* Size of reply buffer */

)
{

int32 i; /* Counts retries */
int32 retval; /* Return value */
int32 seq; /* Sequence for this exchange */
int16 rtype; /* Reply type in host byte order*/
int32 slot; /* UDP slot */
char err[128]; /* Error message buffer */

Xinu – module 20 24 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Remote File Communication (Part 2)

/* For the first time after reboot, register the server port */

if (! Rf_data.rf_registered) {

/* Convert the server name to an IP address */

if (dnslookup(RF_SERVER, &Rf_data.rf_ser_ip) == SYSERR) {
sprintf(err, "rfs server %s is invalid", RF_SERVER);
panic("err");

}

if ((slot = udp_register(Rf_data.rf_ser_ip,
Rf_data.rf_ser_port,
Rf_data.rf_loc_port)) == SYSERR) {

return SYSERR;
}
Rf_data.rf_udp_slot = slot;
Rf_data.rf_registered = TRUE;

}

/* Assign message next sequence number */

seq = Rf_data.rf_seq++;
msg->rf_seq = htonl(seq);

/* Repeat RF_RETRIES times: send message and receive reply */

for (i=0; i<RF_RETRIES; i++) {

Xinu – module 20 25 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Remote File Communication (Part 3)

/* Send a copy of the message */

retval = udp_send(Rf_data.rf_udp_slot, (char *)msg,
mlen);

if (retval == SYSERR) {
kprintf("Cannot send to remote file server\n");
return SYSERR;

}

/* Receive a reply */

retval = udp_recv(Rf_data.rf_udp_slot, (char *)reply,
rlen, RF_TIMEOUT);

if (retval == TIMEOUT) {
continue;

} else if (retval == SYSERR) {
kprintf("Error reading remote file reply\n");
return SYSERR;

}

Xinu – module 20 26 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Remote File Communication (Part 4)

/* Verify that sequence in reply matches request */

if (ntohl(reply->rf_seq) != seq) {
continue;

}

/* Verify the type in the reply matches the request */

rtype = ntohs(reply->rf_type);
if (rtype != (ntohs(msg->rf_type) | RF_MSG_RESPONSE)) {

continue;
}
return retval; /* Return length to caller */

}

/* Retries exhausted without success */

kprintf("Timeout on exchange with remote file server\n");
return TIMEOUT;

}

Xinu – module 20 27 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

An Example Remote File Operation (read)

d An application calls read, and control is passed to the upper-half read function, rflread

d Rflread

– Forms a read request message and calls rfscomm to send the message

– Rfscomm blocks the calling process to await a reply

– When the reply arrives, rfscomm

* Extracts the data from the message and copies it to the caller’s buffer

* Updates the file position in the control block for the pseudo device

* Returns to the caller, allowing the read to complete

d Note: each open file has a mutual exclusion semaphore to prevent other processes from
using the file while an operation proceeds

Xinu – module 20 28 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Remote File Read (Part 1)

/* rflread.c - rflread */

#include <xinu.h>

/*--
* rflread - Read data from a remote file
*--
*/

devcall rflread (
struct dentry *devptr, /* Entry in device switch table */
char *buff, /* Buffer of bytes */
int32 count /* Count of bytes to read */

)
{

struct rflcblk *rfptr; /* Pointer to control block */
int32 retval; /* Return value */
struct rf_msg_rreq msg; /* Request message to send */
struct rf_msg_rres resp; /* Buffer for response */
int32 i; /* Counts bytes copied */
char *from, *to; /* Used during name copy */
int32 len; /* Length of name */

/* Wait for exclusive access */

wait(Rf_data.rf_mutex);

Xinu – module 20 29 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Remote File Read (Part 2)

/* Verify count is legitimate */

if ((count <= 0) || (count > RF_DATALEN)) {
signal(Rf_data.rf_mutex);
return SYSERR;

}

/* Verify pseudo-device is in use */

rfptr = &rfltab[devptr->dvminor];

/* If device not currently in use, report an error */

if (rfptr->rfstate == RF_FREE) {
signal(Rf_data.rf_mutex);
return SYSERR;

}

/* Verify pseudo-device allows reading */

if ((rfptr->rfmode & RF_MODE_R) == 0) {
signal(Rf_data.rf_mutex);
return SYSERR;

}

Xinu – module 20 30 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Remote File Read (Part 3)

/* Form read request */

msg.rf_type = htons(RF_MSG_RREQ);
msg.rf_status = htons(0);
msg.rf_seq = 0; /* Rfscomm will set sequence */
from = rfptr->rfname;
to = msg.rf_name;
memset(to, NULLCH, RF_NAMLEN); /* Start name as all zero bytes */
len = 0;
while ((*to++ = *from++)) { /* Copy name to request */

if (++len >= RF_NAMLEN) {
signal(Rf_data.rf_mutex);
return SYSERR;

}
}
msg.rf_pos = htonl(rfptr->rfpos);/* Set file position */
msg.rf_len = htonl(count); /* Set count of bytes to read */

/* Send message and receive response */

retval = rfscomm((struct rf_msg_hdr *)&msg,
sizeof(struct rf_msg_rreq),

(struct rf_msg_hdr *)&resp,
sizeof(struct rf_msg_rres));

Xinu – module 20 31 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Remote File Read (Part 4)

/* Check response */

if (retval == SYSERR) {
signal(Rf_data.rf_mutex);
return SYSERR;

} else if (retval == TIMEOUT) {
kprintf("Timeout during remote file read\n");
signal(Rf_data.rf_mutex);
return SYSERR;

} else if (ntohs(resp.rf_status) != 0) {
signal(Rf_data.rf_mutex);
return SYSERR;

}

/* Copy data to application buffer and update file position */

for (i=0; i<ntohl(resp.rf_len); i++) {
*buff++ = resp.rf_data[i];

}
rfptr->rfpos += ntohl(resp.rf_len);

signal(Rf_data.rf_mutex);
if (ntohl(resp.rf_len) == 0) {

return EOF;
}
return ntohl(resp.rf_len);

}
Xinu – module 20 32 2025

Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Remote File Server

d Is launched in a directory on a Unix system

d Accepts requests from client(s)

d Opens each file in the directory where the server is running

d Prevents clients from accessing files in higher-level directories

d Examples: the server forbids access to files with names

/users/xxx/y/z

./.. / .. / ../bbb/qq

Xinu – module 20 33 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Summary

d Remote storage access mechanisms are a popular part of many operating systems

d In the Xinu remote disk subsystem, a device corresponds to a remote disk

d The remote disk device driver relies on a process to perform lower-half functions

d Caching is an important optimization for disk systems

d The Xinu remote disk system maintains a cache of recently-used disk blocks as well as
a queue of requests

d The Xinu remote file access mechanism uses a synchronous approach that requires a
message exchange for each operation, which means the remote file system access code
does not need a separate process

d The Xinu remote file system implements Xinu file semantics whenever possible, and
uses control to allow applications to access Linux file operations that are not normally
available

Xinu – module 20 34 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Questions?

