
Module II

Programming Models And
Concurrent Processing

Xinu – module 2 1 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Three Basic Programming Models

d Synchronous event loop

– Used only in low-end systems

– Programmer writes a loop that handles multiple activities

d Asynchronous event handlers

– Programmer writes a function for each “event”

– Often associated with graphical interface

– Example mouse-over event

Xinu – module 2 2 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Three Basic Programming Models
(continued)

d Concurrent Processing

– Fundamental concept that dominates OS design

– The model you have been using

– Programmer writes separate applications programs and the operating system allows
them to run at the same time

Xinu – module 2 3 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Real Vs. Apparent Concurrency

d Real concurrency is only achieved when hardware operates in parallel

– I/O devices operate at same time as the processor

– Multiple processors/cores each operate at the same time

d Apparent concurrency is achieved with multitasking (aka multiprogramming)

– The most fundamental role of an operating system

– Multiple programs appear to operate simultaneously

Xinu – module 2 4 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

In The Concurrent Model

d User(s) start multiple computations running at any time

d The OS switches processor(s) (i.e., core(s)) among available computations quickly

d To a human, all computations appear to proceed in parallel

Xinu – module 2 5 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Two Basic Categories Of Operating Systems

d Timesharing operating system

– The operating system gives the processor to a computation for a short time (e.g., a
millisecond) and then moves the processor to another

– As the user starts more computations, each receives less of the processor’s time (i.e.,
they appear to run slower)

d Real-time operating system

– Often used in embedded devices (e.g., a smart phone)

– User can specify priorities for processes (e.g., a phone call has priority over a music
player)

Xinu – module 2 6 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Terminology

d A program consists of static code and data

d A function is a unit of application program code

d A process (also called a thread of execution) is an active computation (i.e., the
execution or “running” of a program)

Xinu – module 2 7 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Process

d Is an OS abstraction

d Can be created when needed (an OS system call allows a running process to create a
new process)

d Is managed entirely by the OS and is unknown to the hardware

d Operates concurrently with other processes

Xinu – module 2 8 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Example Of Process Creation In Xinu (Part 1)

/* ex2.c - main, sndA, sndB */

#include <xinu.h>

/*--
* sndA - Repeatedly emit 'A' on the console without terminating
*--
*/

void sndA(void)
{

while(1)
putc(CONSOLE, 'A');

}

/*--
* sndB - Repeatedly emit 'B' on the console without terminating
*--
*/

void sndB(void)
{

while(1)
putc(CONSOLE, 'B');

}

Xinu – module 2 9 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Example Of Process Creation In Xinu (Part 2)

/*--
* main - Example of creating processes in Xinu
*--
*/

void main(void)
{

resume(create(sndA, 1024, 20, "process 1", 0));
resume(create(sndB, 1024, 20, "process 2", 0));

}

Xinu – module 2 10 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Difference Between Function Call And Process Creation

d A normal function call

– Only involves a single computation

– Executes synchronously (caller waits until the call returns)

d The create system call

– Starts a new process and returns

– Both the old process and the new process proceed to run after the call

Xinu – module 2 11 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Distinction Between A Program And A Process

d A sequential program is

– Declared explicitly in the code (e.g., with the name main)

– Is executed by a single thread of control

d A process

– Is an OS abstractions that is not visible in a programming language

– Is created independent of code that is executed

– Important idea: multiple processes can execute the same code concurrently

d In the following example, two processes execute function sndch concurrently

Xinu – module 2 12 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Example Of Two Processes Running The Same Code

/* ex3.c - main, sndch */

#include <xinu.h>

void sndch(char);

/*--
* main - Example of 2 processes executing the same code concurrently
*--
*/

void main(void)
{

resume(create(sndch, 1024, 20, "send A", 1, 'A'));
resume(create(sndch, 1024, 20, "send B", 1, 'B'));

}

/*--
* sndch - Output a character on a serial device indefinitely
*--
*/

void sndch(
char ch /* The character to emit continuously */

)
{

while (1)
putc(CONSOLE, ch);

}

Xinu – module 2 13 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Point To Note

A program consists of code executed by a single process (i.e., thread of control). In
contrast, concurrent processes are not uniquely associated with a piece of code; multiple
processes can execute the same code simultaneously.

Xinu – module 2 14 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Storage Allocation When Multiple Processes Execute

d Various memory models exist for concurrent processes

d Each process requires its own storage for

– A runtime stack of function calls

– Local variables

– Copies of arguments passed to functions

d A process may have private heap storage as well

Xinu – module 2 15 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Consequence For Programmers

A copy of function arguments and local variables is associated with each process
executing a particular function, not with the code in which the variables and arguments are
declared.

Xinu – module 2 16 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Process Exit

d In Xinu, as in many operating systems. a process can exit in two ways

– The process can be killed (i.e., terminated prematurely)

– The process can Exit normally

Xinu – module 2 17 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Killing A Xinu Process

d A process with process ID n can be terminated by calling

kill(n);

d The Xinu system call getpid returns the process ID of the currently executing process,
so a process can kill itself by calling

kill(getpid());

Xinu – module 2 18 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Normal Process Exit

d A process exits normally by returning from the function in which it started

d To be precise: exit occurs when the process returns from the top function on the
activation stack, even if recursive calls occur

Xinu – module 2 19 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Concurrent Processes, Shared Memory, And Race Conditions

d Many operating systems permit processes to share memory

d Example: Xinu makes all global variables shared

d When two or more processes attempt to change a shared variable, errors can arise

Xinu – module 2 20 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Classic Example Of Two Processes Incrementing a Shared Variable

d Suppose integer x is shared among all processes

d Consider what happens if two processes each execute x++;

d The compiler generates the following instructions for x++

– Load the value of x from memory into a register

– Increment the register

– Store the value from the register into x in memory

d The point:

Although a programmer thinks of x++ as a single operation, the underlying
hardware performs multiple steps to increment an integer.

Xinu – module 2 21 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Classic Example Of Two Processes Incrementing a Shared Variable
(continued)

d The operating system may switch back and forth between processes at any time, which
means the following could occur when two processes execute x++

– Process 1 loads the value of x into one of its registers and increments its register

– The OS switches to process 2, which loads the value of x into one of its registers,
increments the register, and stores the value from the register into x

– The OS switches back to process 1, which stores the value from its register into x

d Result: The value of x is only incremented by 1 even though two processes executed
x++;

Xinu – module 2 22 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Illustration Of Two Processes Incrementing x

process1 process2

load x into register 1

incr register 1

load x into register 2

incr register 2

store register 2 into x

store register 1 into x

at this point, the operating
system switches to process 2

interrupt occurs
(context switch)

Xinu – module 2 23 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Solving Race Conditions: Synchronization

d Operating systems provide mechanisms a programmer can use to guarantee correct
results on shared variables

d Example: Xinu uses counting semaphores

d We will learn much more later in the course, but here is a quick preview

Xinu – module 2 24 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Mutual Exclusion

d Allows only one process to access a shared variable at a given time

d Requires a programmer to

– Create a semaphore with an initial count of 1

sid32 mysemaphore;
mysemaphore = semcreate(1);

– Place calls to wait and signal around each reference to the shared variable, as in:

wait(mysemaphore);
x++;
signal(mysemaphore);

d The operating system guarantees that only one process will pass the call to wait until a
call to signal occurs; the OS blocks other processes (keeps them from running)

Xinu – module 2 25 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Producer-Consumer Interaction

d Is slightly more complex than merely protecting access to a variable

d One process “produces” something that another process must “consume”

d Example: two processes pass values in a shared integer (initial value 0)

– A “producer” process contains a loop that increments n 2000 times

– A “consumer” process contains a loop that prints each of the values

d If the two processes run without synchronization, it is unlikely that the output will list
all values of the variable

d Reason: the producer may iterate many times before the consumer process runs or may
even finish before the consumer runs at all (all outputs list a value of 2000)

Xinu – module 2 26 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Synchronizing Producer-Consumer Interaction

d Can be done with two semaphores that the processes share

– A consumer semaphore has an initial value of 0

– A producer semaphore has an initial value of 1

d The producer process executes the following 2000 times

wait(consumed);
n++;
signal(produced);

d The consumer process executes the following 2000 times

wait(produced);
printf("%d\n", n);
signal(consumed);

d You do not need to understand synchronization yet — just appreciate that an operating
system provides easy-to-use synchronization mechanisms

Xinu – module 2 27 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

To Learn More

d Read the sections in Chapter 2 on producer-consumer synchronization and mutual
exclusion and look at the example code

d Note that a programmer only needs to add a few calls of semaphore functions to enable
processes to share variables correctly

d What’s coming

– PSO exercises where you will have a chance to write code that uses semaphore
functions to coordinate processes

– A future module where you will learn how an operating system implements
semaphores

Xinu – module 2 28 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Type Names In Xinu

d A type name can specify

– An abstract meaning that specifies the intended use (e.g., “integer”)

– A size (especially important in embedded systems)

d Xinu type names specify both, for example:
22

Type Meaning22

byte unsigned 8-bit value
22

bool8 8-bit value used as a Boolean
22

int16 signed 16-bit integer
22

uint16 unsigned 16-bit integer
22

int32 signed 32-bit integer
22

uint32 unsigned 32-bit integer22

sid32 32-bit semaphore ID
2211
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Xinu – module 2 29 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Hint For Working Within An Operating System

d Applications use putc or printf to print output on the CONSOLE

d Both printf and putc

– Require the I/O subsystem within the operating system to work correctly

– Interrupts to be enabled

d In most cases, operating system functions disable interrupts temporarily

d Therefore, programmers must use specialized functions that work in the operating
system kernel

– Use kprintf instead of printf

– Use kputc instead of putc

Xinu – module 2 30 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Questions?

