Module |l

Programming Models And
Concurrent Processing

Xinu—module 2 1 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Three Basic Programming Models

e Synchronous event loop

— Used only in low-end systems

— Programmer writes a loop that handles multiple activities
e Asynchronous event handlers

— Programmer writes a function for each “event”

— Often associated with graphical interface

— Example mouse-over event

Xinu —module 2 2 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Three Basic Programming Models
(continued)

e Concurrent Processing

— Fundamental concept that dominates OS design

— The model you have been using

— Programmer writes separate applications programs and the operating system allows
them to run at the same time

3 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu—module 2

Real Vs. Apparent Concurrency

e Real concurrency is only achieved when hardware operates in parallel
— 1/O devices operate at same time as the processor
— Multiple processors/cores each operate at the same time

e Apparent concurrency is achieved with multitasking (aka multiprogramming)
— The most fundamental role of an operating system

— Multiple programs appear to operate simultaneously

4 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu—module 2

In The Concurrent Mode

e User(s) start multiple computations running at any time
e The OS switches processor(s) (i.e., core(s)) among available computations quickly

e To ahuman, all computations appear to proceed in parallel

Xinu—module 2 5 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Two Basic Categories Of Operating Systems

e Timesharing operating system

— The operating system gives the processor to a computation for a short time (e.g., a
millisecond) and then moves the processor to another

— Asthe user starts more computations, each receives less of the processor’stime (i.e.,
they appear to run slower)

e Real-time operating system
— Often used in embedded devices (e.g., a smart phone)

— User can specify priorities for processes (e.g., a phone call has priority over a music
player)

Xinu —module 2 6 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Terminology

e A program consists of static code and data
e A function is a unit of application program code

e A process (also caled athread of execution) Is an active computation (i.e., the
execution or “running” of a program)

Xinu —module 2 7 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Process

e |san OS abstraction

e (Can be created when needed (an OS system call allows a running process to create a
New Process)

e |s managed entirely by the OS and is unknown to the hardware

e Operates concurrently with other processes

Xinu—module 2 8 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Example Of Process Creation In Xinu (Part 1)

[* ex2.c - main, sndA, sndB */

#1 ncl ude <xi nu. h>

| ® o L L e o
* sndA - Repeatedly emt "A" on the console without term nating
*_ _ e - - —-—_—— Y e Y Y Y L Lo
*/
voi d sndA(voi d)
{
while(1)
put c(CONSOLE, ' A);
}
| X o o L L e
* sndB - Repeatedly emt 'B' on the console without term nating
*_ _ e - - —-————_—___ e Y e Y Y Y Y L Lo
*/
voi d sndB(voi d)
{
while(1)
put c(CONSOLE, 'B');
}
Xinu—module 2 9 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Example Of Process Creation In Xinu (Part 2)

/2
*main - Exanple of creating processes in Xinu
K o o e Y e e Y e Y e Y e Y e M
*/
voi d mai n(voi d)
{
resune(create(sndA, 1024, 20, "process 1", 0));
resune(create(sndB, 1024, 20, "process 2", 0));
}
Xinu—module 2 10 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

T he Difference Between Function Call And Process Creation

e A normal function call

— Only involves a single computation

— Executes synchronously (caller waits until the call returns)
e The create system call

— Starts a new process and returns

— Both the old process and the new process proceed to run after the call

Xinu—module 2 11 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Distinction Between A Program And A Process

e A sequential program is
— Declared explicitly in the code (e.g., with the name main)
— Is executed by a single thread of control
e A process
— Isan OS abstractions that is not visible in a programming language
— |s created independent of code that Is executed
— Important idea: multiple processes can execute the same code concurrently

e |n the following example, two processes execute function sndch concurrently

Xinu—module 2 12 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Example Of Two Processes Running The Same Code

/[* ex3.c - main, sndch */

#1 ncl ude <xi nu. h>

voi d sndch(char);
/2
*main - Exanple of 2 processes executing the sane code concurrently
K o o o e e e e o e Y Y Y e Y e Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y M Y Y Y Y Y e
*
voi d mai n(voi d)
{
resune(create(sndch, 1024, 20, "send A", 1, "A));
resune(create(sndch, 1024, 20, "send B', 1, 'B'));
}
| % o e e o e o e -
* sndch - Qutput a character on a serial device indefinitely
X o o e e e e e e b b Y Y Y Y Y Y M M L
*
voi d sndch(
char ch /* The character to emt continuously */
)
{ |
while (1)
put c(CONSOLE, ch);
}
Xinu —module 2 13

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

The Point To Note

A program consists of code executed by a single process (i.e., thread of control). In
contrast, concurrent processes are not uniquely associated with a piece of code; multiple
Processes can execute the same code simultaneously.

Xinu—module 2 14 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Storage Allocation When Multiple Processes Execute

e Various memory models exist for concurrent processes
e Each process requires its own storage for

— A runtime stack of function calls

— Local variables

— Copies of arguments passed to functions

e A process may have private heap storage as well

Xinu—module 2 15 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Consequence For Programmers

A copy of function arguments and local variables is associated with each process
executing a particular function, not with the code in which the variables and arguments are
declared.

Xinu—module 2 16 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Process Exit

e |n Xinu, asin many operating systems. a process can exit in two ways
— The process can be killed (i.e., terminated prematurely)

— The process can Exit normally

Xinu—module 2 17 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Killing A Xinu Process

e A process with process ID n can be terminated by calling
kill(n);

e The Xinu system call getpid returns the process ID of the currently executing process,
so a process can kill itself by calling

Kill (getpid());

Xinu—module 2 18 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Normal Process Exit

e A process exits normally by returning from the function in which it started

e To be precise: exit occurs when the process returns from the top function on the
activation stack, even if recursive calls occur

Xinu—module 2 19 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Concurrent Processes, Shared Memory, And Race Conditions

e Many operating systems permit processes to share memory
e Example: Xinu makes all global variables shared

e \When two or more processes attempt to change a shared variable, errors can arise

Xinu—module 2 20 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Classic Example Of Two Processes | ncrementing a Shared Variable

e Suppose integer X is shared among all processes
e Consider what happens if two processes each execute X+ +;
e The compiler generates the following instructions for x++
— Load the value of x from memory into a register
— Increment the register
— Store the value from the register into X in memory

e The point:

Although a programmer thinks of x++ as a single operation, the underlying
hardware performs multiple steps to increment an integer.

Xinu—module 2 21 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Classic Example Of Two Processes | ncrementing a Shared Variable
(continued)

e The operating system may switch back and forth between processes at any time, which
means the following could occur when two processes execute x++

— Process 1 |oads the value of x into one of its registers and increments its register

— The OS switches to process 2, which loads the value of x into one of its registers,
Increments the register, and stores the value from the register into x

— The OS switches back to process 1, which stores the value from its register into x

e Result: The value of x is only incremented by 1 even though two processes executed
X++:

Xinu—module 2 22 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

|llustration Of Two Processes | ncrementing X

process, process,

load x into register 1

incr register 1

L _at this point, the operating
~ system switches to process 2

load x into register 2
incr register 2

store register 2 into x

interrupt occurs _ J
(context switch) =

store register 1 into x

|

Xinu—module 2 23
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Solving Race Conditions. Synchronization

e QOperating systems provide mechanisms a programmer can use to guarantee correct
results on shared variables
e Example: Xinu uses counting semaphores

e We will learn much more later in the course, but here is a quick preview

Xinu —module 2 24 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Mutual Exclusion

e Allows only one process to access a shared variable at a given time
e Requires a programmer to

— Create a semaphore with an initial count of 1

si d32 nysemaphor e;
mysemaphore = sencreate(1);

— Place calls to wait and signal around each reference to the shared variable, asin:

wal t (mysemaphore);
X++:

si gnal (mysemaphore);

e The operating system guarantees that only one process will pass the call to wait until a
call to signal occurs, the OS blocks other processes (keeps them from running)

Xinu—module 2 25 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Producer-Consumer Interaction

e |sdlightly more complex than merely protecting access to a variable

e One process “produces’ something that another process must “consume”

e Example: two processes pass values in a shared integer (initial value 0)
— A “producer” process contains a loop that increments n 2000 times
— A “consumer” process contains a loop that prints each of the values

e |f the two processes run without synchronization, it is unlikely that the output will list
all values of the variable

e Reason: the producer may iterate many times before the consumer process runs or may
even finish before the consumer runs at all (all outputs list a value of 2000)

Xinu—module 2 26 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Synchronizing Producer-Consumer Interaction

e Can be done with two semaphores that the processes share
— A consumer semaphore has an initial value of O
— A producer semaphore has an initial value of 1

e The producer process executes the following 2000 times

wal t (consuned) ;
n++:
si gnal (produced);

e The consumer process executes the following 2000 times

wal t (produced);
printf("%\n", n);
si gnal (consuned) ;

e You do not need to understand synchronization yet — just appreciate that an operating
system provides easy-to-use synchronization mechanisms

Xinu—module 2 27 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

ToLearn More

e Read the sections in Chapter 2 on producer-consumer synchronization and mutual
exclusion and look at the example code

e Note that a programmer only needs to add a few calls of semaphore functions to enable
processes to share variables correctly

e What's coming

— PSO exercises where you will have a chance to write code that uses semaphore
functions to coordinate processes

— A future module where you will learn how an operating system implements
semaphores

28 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu—module 2

e A type name can specify

— An abstract meaning that specifies the intended use (e.g., “integer”)

Type Names In Xinu

— A size (especially important in embedded systems)

e Xinu type names specify both, for example:

Xinu—module 2

Type Meaning

byte unsigned 8-bit value

bool8 | 8-bit value used as a Boolean
int16 signed 16-bit integer

uintlé | unsigned 16-bit integer

INnt32 signed 32-bit integer

uint32 | unsigned 32-bit integer
sid32 | 32-bit semaphore ID

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

29

2025

A Hint For Working Within An Operating System

e Applications use putc or printf to print output on the CONSOLE

e Both printf and putc
— Require the I/O subsystem within the operating system to work correctly
— Interrupts to be enabled

e |n most cases, operating system functions disable interrupts temporarily

e Therefore, programmers must use specialized functions that work in the operating
system kernel

— Use kprintf instead of printf
— Use kputc instead of putc

Xinu—module 2 30 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Ouestions?

