
Module XIX

File Systems

Xinu – module 19 1 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Location Of File Systems In The Hierarchy

Xinu – module 19 2 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Purpose Of A File System

d Manages data on nonvolatile storage

d Allows user to name and manipulate semi-permanent files

d Provides mechanisms used to organize files directories (aka folders)

d Stores metadata associated with a file

– Size

– Ownership

– Access rights

– Location on the storage system

Xinu – module 19 3 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Aspects Of A File System

d The relatively straightforward aspect

– Allow applications to read and write data to files on local storage

d More difficult aspects

– Control sharing on a multiuser system

– Handle caching (important for efficiency)

– Manage a distributed file system that allows applications on many computers to
create, access, and change files

Xinu – module 19 4 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

General Observations About Sharing

d One of the most difficult aspects of file sharing revolves around the semantics of
concurrent access

d An example: consider three applications that all have access to a given file

– Application 1 opens the file, and is therefore positioned at byte 0

– Before Application 1 reads or writes the file, Application 2 opens the file and reads
10 bytes

d At that point in time, Application 3 deletes the file

d Application 1 tries to read from the file

d What should happen?

Xinu – module 19 5 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Questions About File Sharing In A Unix System

d What happens if

– A file is deleted after it has been opened?

– File permissions change after a file has been opened?

– A file is moved to a new directory after it has been opened?

– File ownership changes after a file has been opened?

d What happens to the file position in open files after a fork()?

d What happens if two processes open a file and concurrently write data

– To different locations?

– To the same location?

Xinu – module 19 6 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Sharing In A Unix System (Answers)

d Permissions are only checked when a file is opened

d Each process has its own position for a file; if two processes access the same file,
changing the position in one does not affect the position in the other

d In Unix, a file is separate from the directory entry for the file

– Removing a file from a directory does not delete the file itself

– When a file is removed, actual deletion is deferred until the last process that has
opened the file closes it

– Consequence: even if a file has been removed from the directory system, processes
that have it open will be able to perform read and write operations on it

Xinu – module 19 7 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Multiple File System Partitions

d Also known as multiple volumes

d The idea: divide a physical disk into multiple areas, and place a separate, independent
file system in each area

d Add a way to link all partitions together into a single unified hierarchy (e.g., by using
Unix’s mount)

d Advantages

– Higher reliability: fewer files tend to be lost if part of a disk fails

– Lower maintenance cost: a smaller file system is much faster to check or repair

d Disadvantage: the partition sizes must be selected when a disk is formatted

Xinu – module 19 8 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Examples Of Multiple Partitions

d Traditional Unix systems had at least two partitions (/ and /usr)

– The root partition (/)

* Was used at startup

* Only contained enough commands to boot the OS and check the file system in
the other partition

– The user file system (/usr)

* Contained all the user directories

* A program, fsck, checked the usr file system before it was mounted

d Apple recently moved to multiple partitions, even for external disk drives

Xinu – module 19 9 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

File System Internals

The Conceptual Organization Of A File System

DISK HARDWARE

DISK DEVICE DRIVER

FILE ACCESS

DIRECTORY ACCESS

FILE NAMING SCHEME

d Each level adds functionality

d An implementation may integrate multiple levels for increased efficiency

d We will examine each level

Xinu – module 19 11 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Function Of Each Level Of Software

d Naming level

– Deals with name syntax

– May determine the location of a file (e.g., whether file is local or remote)

d Directory access level

– Maps a name to a file object

– May be completely separate from naming or integrated

d File access level

– Implements basic operations on files

– Includes creation and deletion as well as reading and writing

d Disk driver level

– Performs block I/O operations on a specific type of hardware

Xinu – module 19 12 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Two Fundamental Philosophies Have Been Used

d Typed files (MVS)

– The operating system defines a set of types that specify file format / contents

– A user chooses a type when creating file

– The type determines operations that are allowed

d Untyped files (Unix)

– A file is a “sequence of bytes”

– The operating system does not understand contents, format, or structure

– A small set of operations apply to all files

Xinu – module 19 13 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

An Assessment Of Typed Files

d Pros

– Types protect user from application / file mismatch

– File access mechanisms can be optimized

– A programmer can choose whichever file representation is best for a given need

d Cons

– Extant types may not match new applications

– It is extremely difficult to add a new file type

– No “generic” commands can be written (e.g., od)

Xinu – module 19 14 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

An Assessment Of Untyped Files

d Pros

– Untyped files permit generic commands and tools to be used

– The file system design is separate from the applications and the structure of data
they use

– There is no need to change the operating system when new applications need a
different file format

d Cons

– The operating system cannot prevent mismatch errors (e.g., cat a.out garbles the
screen)

– The file system may not be optimal for any particular application

– The operating system owner does not know how files are being used

Xinu – module 19 15 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

An Example Of Operations For Untyped Files

d The classic open-close-read-write interface (as defined by Unix)

d Conceptually, there are eight main functions

create – start a fresh file object

destroy – remove existing file

open – provide access path to file

close – remove access path

read – transfer data from file to application

write – transfer data from application to file

seek – move to a specified file position

control – provide miscellaneous operations on files, such as changing modes

or forming links

Xinu – module 19 16 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

File Allocation Choices

d How should files be allocated?

d Static allocation

– The early approach

– Space is allocated before the file is used

– The file size cannot grow beyond the limit

– Easy to implement; difficult to use

d Dynamic allocation

– Files grow as needed

– Easy to use; more difficult to implement

– Has the potential for starvation (one file takes all the space on a disk)

Xinu – module 19 17 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Desired Cost Of File Operations

d Read / write

– The most common operations performed

– Provide sequential data transfer

– The desired cost is 0(t), where t is size of transfer

d Seek (move to an arbitrary position in the file)

– Needed for random access

– Infrequently used

– The desired cost is 0(log n), where n is file size

Xinu – module 19 18 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Few Factors That Affect File System Design

d Many files are small; few are large

d Most access is sequential; random access is uncommon

d Overhead is important, especially the latency required to open a file and move to the
first byte

d Clever data structures are needed to achieve efficient access

d The data structures are on disk, not in memory

d Good news

– SSD hardware is much faster than old electromechanical disks

– Large memories allow files systems to cache many disk blocks

Xinu – module 19 19 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Underlying Hardware

d Most files systems assume a traditional disk

– The disk has fixed-size blocks (sectors) that are numbered 0, 1, 2, ...

– The standard block size is 512 bytes, but cloud storage is moving to 4K blocks

d The disk interface

– The hardware can only transfer (read or write) a complete block

– The hardware provides random access by block number

d An important point, especially for metadata

Disk hardware cannot perform partial-block transfers.

Xinu – module 19 20 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

An Example
File System

The Xinu File System

d For now, assume one file system per disk

d Views the underlying disk as an array of 512-byte blocks

d Takes a simplistic approach by dividing the disk into three areas

– Directory area (only one block)

– File index area (a small number of blocks)

– Data area (the rest of the disk)
direc-
tory index area data area

block 0 block N–1

d The size of the index and data areas is chosen when the disk is formatted

Xinu – module 19 22 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Data Area

d The file system treats the entire data area as an array of data blocks

– Inside the file system, data blocks are numbered from 0 to D – 1, where D is the
total number of data blocks

– Each data block is 512 bytes long, and occupies one physical disk block

– Data block j is not located at disk block j because data blocks start beyond the
directory and index blocks

– Blocks in the data area only store file contents

– Currently unused data blocks are linked on a free list on the disk

Xinu – module 19 23 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Index Area

d The file system treats the index area as an array of index blocks (i-blocks)

– Inside the file system, index blocks are numbered from 0 to I – 1, where I is the total
number of index blocks

– An index block is smaller than a physical disk block

– Because an index block is smaller than 512 bytes, multiple index blocks occupy a
given disk block

– Each index block stores

* Pointers to data blocks that make up a file

* The offset in file of first data byte that the index block indexes

– Currently unused index blocks are linked on free list on the disk

Xinu – module 19 24 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Directory Area

d The file system treats the directory as an array of pairs:

(file name, first index block for the file)

d Conceptually

– A file consists of a list of index blocks with pointers to data blocks that contain the
bytes of the file

– A directory entry provides a mapping from a name to the index block list for the file

d In Xinu, the entire directory occupies the first physical disk block on the disk

d The directory is limited, but has sufficient size for a small embedded system

Xinu – module 19 25 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Xinu File System Data Structure

file
name

.

data blocks for the file

index blocks for the file

directory

d Index blocks for a file are linked together, and each index block points to a set of data
blocks

d The figure is not drawn to scale (a data block is actually larger than an index block)
Xinu – module 19 26 2025

Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Free Lists

d A Xinu file system contains two free lists

– All the index blocks that are not currently used for any file are linked onto a free list
of index blocks (on disk)

– All the data blocks that are not currently used are linked onto a free list of data
blocks (on disk)

d The directory contains “pointers” to the two free lists

d Important note: although we use the term pointers, the values are really the number of
the first index block on the free list and the number of the first data block on the free
list

Xinu – module 19 27 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Few Index Block Details

d Think of the diagram, and imagine a linked list of index blocks for each file

d An index block contains

– A pointer to the next index block

– The byte offset of the first byte in the file indexed by this index block

– Pointers to 16 data blocks of the file indexed by this index block

d Remember that a pointer is merely an integer that specifies one of the data blocks for
the file

d Although the diagram looks like a linked list in memory, each list is actually on disk

d To find the data block for a given offset in the file, the file system must walk along the
linked list of index blocks, which means reading items into memory

d Xinu defines null values for both an index block pointer and a disk block pointer

Xinu – module 19 28 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Important Concept

Within the operating system, a file is
referenced by the i-block number of the first
index block, not by name.

(A name is only needed when opening a file.)

Xinu – module 19 29 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

File Access In Xinu

d In Xinu, everything is a device

d The file access paradigm uses

– A set of “file devices” defined when system configured

– A single pseudo device, LFILESYS, is used to open files on the local file system

– A set of K additional file pseudo devices are used for data transfer

– The device driver for a data transfer pseudo device implements read and write
operations

– The device driver for the LFILESYS device only implements open and control (e.g.,
to delete or truncate a file)

Xinu – module 19 30 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Using The Xinu Local File System

d To open a file, an application calls

desc = open(LFILESYS, name, mode);

d The call sets desc to the device descriptor of one of the data transfer pseudo devices,
and associates the pseudo device with the named file

d To access the file, the application calls read, write, and (possibly) seek, passing desc as
the device descriptor on each call

d When it finishes using the file, the application calls close

Xinu – module 19 31 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Xinu File Access Paradigm

d When an application opens a file, the code takes the following steps

– Obtain a copy of the directory from the disk, if not already in memory

– Search the directory to find the i-block number for the file

– Allocate a data transfer pseudo-device for the application to use

– Set the initial file position to zero

– Obtain the data block that contains byte zero of the file

* Read the first i-block to find first data block ID

* Read the first data block into a buffer, b

* Set the byte pointer to first byte in buffer b

Xinu – module 19 32 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Xinu File Access Paradigm
(continued)

d When the application reads or writes data

– If the file position has moved to a new data block, fetch the data block from disk

– Read or write data from/to the data in memory, incrementing the position for each
byte

d Note: even if all data in a given data block has been consumed, the file system does not
fetch the “next” data block until it is referenced

d Key points

– A copy of one index block and one data block are kept in memory

– A pointer (lfbyte) gives the address of the next byte to read from the in-memory
buffer that holds a copy of the current data block of the next byte to be read

Xinu – module 19 33 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The File System Pseudo-device Control Block

/* excerpt from lfilesys.h */

struct lflcblk { /* Local file control block */
byte lfstate; /* Is entry free or used */
did32 lfdev; /* device ID of this device */
sid32 lfmutex; /* Mutex for this file */
struct ldentry *lfdirptr; /* Ptr to file's entry in the */

/* in-memory directory */
int32 lfmode; /* mode (read/write/both) */
uint32 lfpos; /* Byte position of next byte */

/* to read or write */
char lfname[LF_NAME_LEN]; /* Name of the file */
ibid32 lfinum; /* ID of current index block in */

/* lfiblock or LF_INULL */
struct lfiblk lfiblock; /* In-mem copy of current index */

/* block */
dbid32 lfdnum; /* Number of current data block */

/* in lfdblock or LF_DNULL */
char lfdblock[LF_BLKSIZ]; /* in-mem copy of current data */

/* block */
char *lfbyte; /* Ptr to byte in lfdblock if */

/* pos is inside current block */
bool8 lfibdirty; /* Has lfiblock changed? */
bool8 lfdbdirty; /* Has lfdblock changed? */

};

Xinu – module 19 34 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Example File Access: lflgetc.c (Part 1)

/* lflgetc.c - lfgetc */

#include <xinu.h>

/*--
* lflgetc - Read the next byte from an open local file
*--
*/

devcall lflgetc (
struct dentry *devptr /* Entry in device switch table */

)
{

struct lflcblk *lfptr; /* Ptr to open file table entry */
struct ldentry *ldptr; /* Ptr to file's entry in the */

/* in-memory directory */
int32 onebyte; /* Next data byte in the file */

/* Obtain exclusive use of the file */

lfptr = &lfltab[devptr->dvminor];
wait(lfptr->lfmutex);

/* If file is not open, return an error */

if (lfptr->lfstate != LF_USED) {
signal(lfptr->lfmutex);
return SYSERR;

}

Xinu – module 19 35 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Example File Access: lflgetc.c (Part 2)

/* Return EOF for any attempt to read beyond the end-of-file */

ldptr = lfptr->lfdirptr;
if (lfptr->lfpos >= ldptr->ld_size) {

signal(lfptr->lfmutex);
return EOF;

}

/* If byte pointer is beyond the current data block, set up */
/* a new data block */

if (lfptr->lfbyte >= &lfptr->lfdblock[LF_BLKSIZ]) {
lfsetup(lfptr);

}

/* Extract the next byte from block, update file position, and */
/* return the byte to the caller */

onebyte = 0xff & *lfptr->lfbyte++;
lfptr->lfpos++;
signal(lfptr->lfmutex);
return onebyte;

}

Xinu – module 19 36 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Concurrent Access To A Shared File

d The chief design difficulty: shared file position

d Ambiguity can arises when

– A set of processes open a file for reading

– Other processes open the same file for writing

– Each process issues read and write calls without specifying a file position

– The file position depends on when processes execute

d To avoid the problem, Xinu’s local file system prohibits concurrent access

– Only one active open can exist on a given file at a given time

– A programmer must choose how to share a file among processes

Xinu – module 19 37 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Index Block Access And Disk I/O

d Recall

– The hardware always transfers a complete physical disk block

– An index block is smaller than a disk block

d To store index block number i

– Map i to a physical disk block, p

– Read disk block p

– Copy i-block i to the correct position in p

– Write physical block p back to disk

d Unix i-nodes use the same paradigm (discussed later)

Xinu – module 19 38 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Illustration Of Index Blocks In A Disk Block

Disk Block 1

Disk Block 2

i-block 0 i-block 1 i-block 2 i-block 3 i-block 4 i-block 5 i-block 6

i-block 7 i-block 8 i-block 9 i-block 10 i-block 11 i-block 12 i-block 13

d Xinu stores seven i-blocks in each disk block

d To compute the disk block number in which i-block k resides, divide k by 7 (integer
arithmetic) and add 1 (because the index blocks start at disk block 1)

d To compute the byte position of i-block k within a disk block, calculate r, the remainder
of dividing k by 7, and multiply r times the size of an i-block

Xinu – module 19 39 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu I-block Definition

/* excerpt from lfilesys.h */

#define LF_AREA_IB 1 /* First sector of i-blocks */

#define LF_INULL (ibid32) -1 /* Index block null pointer */
#define LF_IBLEN 16 /* Data block ptrs per i-block */
#define LF_IMASK 0x00001fff /* Mask for the data indexed by */

/* one index block (i.e., */
/* bytes 0 through 8191). */

#define LF_IDATA 8192 /* Bytes of data indexed by a */
/* single index block */

/* Structure of an index block on disk */

struct lfiblk { /* Format of index block */
ibid32 ib_next; /* Address of next index block */
uint32 ib_offset; /* First data byte of the file */

/* Indexed by this i-block */
dbid32 ib_dba[LF_IBLEN];/* Ptrs to data blocks indexed */

};

/* Conversion between index block number and disk sector number */

#define ib2sect(ib) (((ib)/7)+LF_AREA_IB)

/* Conversion between index block number and the relative offset within */
/* a disk sector */

#define ib2disp(ib) (((ib)%7)*sizeof(struct lfiblk))

Xinu – module 19 40 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Function To Read An I-block (Part 1)

/* lfibget.c - lfibget */

#include <xinu.h>

/*--
* lfibget - Get an index block from disk given its number (assumes
* mutex is held)
*--
*/

void lfibget(
did32 diskdev, /* Device ID of disk to use */
ibid32 inum, /* ID of index block to fetch */
struct lfiblk *ibuff /* Buffer to hold index block */

)
{

char *from, *to; /* Pointers used in copying */
int32 i; /* Loop index used during copy */
char dbuff[LF_BLKSIZ]; /* Buffer to hold disk block */

Xinu – module 19 41 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Function To Read An I-block (Part 2)

/* Read disk block that contains the specified index block */

read(diskdev, dbuff, ib2sect(inum));

/* Copy specified index block to caller's ibuff */

from = dbuff + ib2disp(inum);
to = (char *)ibuff;
for (i=0 ; i<sizeof(struct lfiblk) ; i++)

*to++ = *from++;
return;

}

Xinu – module 19 42 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Function To Write An I-block (Part 1)

/* lfibput.c - lfibput */

#include <xinu.h>

/*--
* lfibput - Write an index block to disk given its ID (assumes
* mutex is held)
*--
*/

status lfibput(
did32 diskdev, /* ID of disk device */
ibid32 inum, /* ID of index block to write */
struct lfiblk *ibuff /* Buffer holding the index blk */

)
{

dbid32 diskblock; /* ID of disk sector (block) */
char *from, *to; /* Pointers used in copying */
int32 i; /* Loop index used during copy */
char dbuff[LF_BLKSIZ]; /* Temp. buffer to hold d-block */

/* Compute disk block number and offset of index block */

diskblock = ib2sect(inum);
to = dbuff + ib2disp(inum);
from = (char *)ibuff;

Xinu – module 19 43 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Function To Write An I-block (Part 2)

/* Read disk block */

if (read(diskdev, dbuff, diskblock) == SYSERR) {
return SYSERR;

}

/* Copy index block into place */

for (i=0 ; i<sizeof(struct lfiblk) ; i++) {
*to++ = *from++;

}

/* Write the block back to disk */

write(diskdev, dbuff, diskblock);
return OK;

}

Xinu – module 19 44 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Questions

d What should be cached?

– Individual index blocks?

– The disk block in which an index block is contained?

d How can the Xinu file system be extended to

– Allow concurrent file access?

– Use a file to store the directory?

– Provide better caching?

Xinu – module 19 45 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Unix File System

The Unix File Access Paradigm

d The operating system maintains an open file table

– Internal to the operating system

– One entry for each open file

– Uses a reference count for concurrent access

d Each process has a file descriptor table

– An array where each entry points to an entry in the open file table

– Each entry contains a position in the file for the process

d A file descriptor

– Is a small integer returned by open

– Provides an index into the process’s file descriptor table

– Is meaningless outside the process
Xinu – module 19 47 2025

Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Generalization Of Unix File Descriptors

d Unix file descriptors provide access to mechanisms other than local files

d A descriptor can also refer to

– An I /O device (e.g., /dev/console)

– A network socket

– A remote file

d Unix uses the open-read-write-close paradigm for all descriptors

Xinu – module 19 48 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Inheritance, Sharing, And Reference Counts

d Recall: a reference count is kept for each entry in the open file table

d The reference count is initialized to 1 when a file is first opened

d When a process uses fork to create a new process

– The new process gains a copy of each descriptor

– The reference count in the open file table is incremented

d When a process calls close, the reference count in the open file table is decremented,
and the entry in the process’s file descriptor table is released for reuse

d When a reference count in open file table reaches zero, the entry is released

d Unix closes all open descriptors automatically when a process exits, so the above steps
are followed whether a process explicitly closes a file or merely exits

Xinu – module 19 49 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Unix File System Properties

d The design accommodates both small and large files

d It has highly tuned access mechanisms

d The overhead is logarithmic in the size of allocated files

d It provides a hierarchical directory system (like MULTICS)

d The data structure uses index nodes (i-nodes) and data blocks

d An interesting twist: directories are stored in files!

Embedding a directory in a file is possible
because inside the operating system, files are
known by their index rather than by name

Xinu – module 19 50 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Contents Of A Unix I-node

d The owner’s user ID

d A group ID

d The current file size

d The number of links (how many directory entries point to the file)

d Permissions (i.e., read, write, and execute protection bits)

d Timestamps for creation, last access, and last update

d A set of 13 pointers that lead to the data blocks of the file

Xinu – module 19 51 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The 13 Pointers In An I-node

d Ten direct pointers each point to a data block

d One indirect pointer points to a block of 128 pointers to data blocks

d One doubly indirect pointer points to a disk block that contains 128 pointers to blocks
that contain indirect pointers

d One triply indirect pointer points to a disk block that contains 128 pointers to blocks
that contain doubly indirect pointers

d The scheme accommodates

– Rapid access to small files

– Fairly rapid access to intermediate files

– Reasonable access to large files

Xinu – module 19 52 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Illustration of Pointers In A Unix I-node

other info

. . .

. . .

. . .

.

to triply
indirect

i-node

indirect

doubly indirect

Xinu – module 19 53 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Unix File Sizes

d The data accessible using direct pointers

– Up to 5,120 bytes

d The data accessible via the indirect pointer

– Up to 70,656 bytes

d The data accessible via the doubly indirect pointer

– Up to 8,459,264 bytes

d The data accessible via the triply indirect pointer

– 1,082,201,088 bytes

d Note: maximum file size seemed immense when Unix was designed; FreeBSD
increased sizes to use 64-bit pointers, making the maximum size 8ZB.

Xinu – module 19 54 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Unix Hierarchical Directory Mechanism

d Provides the scheme used to organize file names

d Was derived from the MULTICS system

d Allows a hierarchy of directories (aka folders)

d A given directory can contain

– Files

– Subdirectories

d The top-level directory is called the root

Xinu – module 19 55 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Unix File Name

d A name is a text string

d Each name corresponds to a specific file

d The name specifies a path through the hierarchy

d Example

– / u / u5 / dec / stuff

d Two special names are found in each directory

– The current directory is named “.”

– The parent directory is named “. .”

Xinu – module 19 56 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Unix Hierarchical Directory Implementation

d A directory is implemented as a file

– Files that contain directories have a special file type (directory)

– Each directory contains a set of triples

(type, file name, i-node number)

d The root directory is always at i-node 2

d A path is resolved one component at a time, starting with i-node 2

d The directory system is general enough for an arbitrary graph; restrictions are added to
simplify administration

Xinu – module 19 57 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Advantages Of Unix File System

d Imposes very little overhead for sequential access

d Allows random access to specified position

– Especially fast search in a short file

– Logarithmic search in a large files

d Files can grow as needed

d Directories can grow as needed

d Economy of mechanism is achieved because directories are embedded in files

Xinu – module 19 58 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Disadvantages Of Unix File System

d The protections are restricted to three sets: owner, group, and other

d The single access mechanism may not be optimized for any particular purpose

d The data structures can be corrupted during system crash

d The integration of directories into the file system makes a distributed file system more
difficult

Xinu – module 19 59 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Caching

d Recall that

The most difficult aspects of file system
design arise from the tension between efficient
concurrent access, caching, and the need to
guarantee consistency on disk.

Xinu – module 19 60 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Caching, Locking Granularity, And Efficiency Questions

d To be efficient, a file system must cache data items in memory

d To guarantee mutual exclusion, cached items must be locked

d What granularity of locking works best?

– Should an entire directory be locked?

– Should individual i-nodes be locked?

– Should individual disk blocks be locked?

d Does it make sense to lock a disk block that contains i-nodes from multiple files?

d Can locking at the level of disk blocks lead to a deadlock?

Xinu – module 19 61 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Caching, Locking Granularity, And Efficiency Questions
(continued)

d A file system cannot afford to write every change to disk immediately

d When should updates be made?

– Periodically?

– After a significant change?

d How can a file system maintain consistency on disk?

– Must an i-node be written first?

– When should the i-node free list be updated on disk?

– In which order should indirect blocks be written to disk?

Xinu – module 19 62 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Importance Of Caching

d An i-node cache eliminates the need to reread the index

d A disk block cache tends to keep the directories near the root in memory because they
are searched often

d Caching provides dramatic performance improvements

Xinu – module 19 63 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Memory-mapped Files

d The idea

– Map a file into part of a process’s virtual address space

– Allow the process to manipulate the entire file as an array of bytes in memory

– Use the virtual memory paging system to fetch pages of the file from disk when
they are needed

d The approach works best with a large virtual address space (e.g., a 64-bit address space)

Xinu – module 19 64 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Summary

d A file system manages data on non-volatile storage

d The functionality includes

– A naming mechanism

– A directory system

– Individual file access

d The Xinu file system contains files and a directory

d Files are implemented with index blocks that point to data blocks

d Unix embeds directories in files, a technique that is possible because files are identified
by i-node numbers

d Caching is essential for high performance

d Memory-mapped files are feasible, especially with a large virtual address space

Xinu – module 19 65 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Questions?

