Xinu—module 18

Module XVIII

Remote Access And
A Remote Disk Driver

1

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

L ocation Of Remote Disk AccessIn The Hierarchy

Xinu—module 18 2 2025
Copyright 0 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Distributed Operating Systems

e Distributing OS functionality is extremely difficult

e The extent of sharing is determined by level of network communication in the design
hierarchy

e There have been many attempts to build a truly distributed operating system; the
attempts have met with little success

e A few examples follow

Xinu —module 18 3 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Examples Of Distributed Systems

e Apollo Domain

— The model: computers on a network share a 96-bit address space

— Communication is positioned at lowest level of the system
e Xerox Alto Environment

— The model: each computer has a local process manager, and all share files

— Communication is positioned between the process manager and the file system
e Unix with Internet protocols

— The modéel: interconnected autonomous systems

— The operating system supplies a communication service, but the operating system
Itself 1s not distributed

Xinu—module 18 4 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Examples Of Distributed Systems
(continued)

e Unix's Network File System (NFS)
— The model: shared files and file names
— Allows cross-mounting of directories
— Builds on the Internet protocols (TCP/IP)

— Only works among computers with identical user 1Ds

Xinu—module 18 5 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Disk Hardware

We use the term disk to refer to a solid-state disk (SSD) as well as to an older electro-
mechanical disk

Conceptually, a disk appears to consist of an array of fixed-size blocks

The de facto block size is 512 bytes (even a solid state disk provides a 512-byte block
Interface)

The blocks on adisk are numbered O, 1, 2, ...

Disk hardware only supports two operations

— Fetch a copy of the it block into a 512-byte buffer in memory

— 3Sore data from a 512-byte buffer in memory to the it block on the disk
The hardware always transfers a complete block between memory and disk

Note: special-purpose hardware used in high-performance storage systems typically uses
a larger block size (e.g., 4096 bytes)

Xinu —module 18 6 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Remote Disk Paradigm

e Theidea alow an operating system to fetch or store blocks to a remote disk
e |nterms of hardware

— A computer on the network runs remote disk server software

— The computer has one or more physical disks attached
e |nterms of software

— A client operating system contains software that can send messages over a network
to the remote disk server

— Each request either contains a block to be written to the remote disk or a request to
read a block from the remote disk

e Note: the client OS can store arbitrary data in each disk block (e.g., a boot block or
pieces of a file system)

Xinu—module 18 7 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Structure Of Xinu Remote Disk Driver Software

e Like aconventional device driver
— Has upper-half read and write functions called by processes
— Has shared data structures
e Unlike a conventional driver
— Uses a dedicated, high-priority communication process in place of a lower-half

— Does not use interrupts to trigger the lower-half, but arranges instead for the
communication process to wait on a semaphore until a request arrives

e The communication process handles all communication with the remote server

Xinu —module 18 8 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu—module 18

| llustration Of Remote Disk Access

(upper-half functions >

write read

shared
data structures

process that provides
lower-half functionality
network communication
with remote server

9
Copyright 0 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

A Remote Disk Server In Practice

e Powerful remote disk server hardware provides disks for multiple clients
e The server may

— Have N physical disks and dedicate each disk to one client

— Dedicate a virtualized disk to each client
e Virtualized disks

— Isapopular approach

— Provides each client with the illusion of a separate physical disk (i.e., the client has
Its own set of blocks O, 1, 2, ...)

— Maps the client requests onto the set of local disks
— Hides the details of the mapping from clients

Xinu —module 18 10 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Caching And its Importance
e The access pattern: file systems exhibit temporal locality in which a give disk block is
accessed repeatedly
e To optimize performance, a disk driver maintains two data structures
— A cache of recently-accessed disk blocks
— A set of pending read or write reguests

e |nvariant: at any time, a copy of block K in the cache contains the latest data written to
block K

Xinu—module 18 11 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

L ast-Write Semantics

e A disk driver recelves a sequence of read and write requests where each request
specifies a disk block number. the driver must guarantee that the block returned for a
read request is the latest block that has been written to the disk

e To enforce |last-write semantics
— The driver inserts requests at the tall of a queue

— The lower-half process continually removes and performs a request from the head of
the queue

e Complication: the queue may contain write reguests for the same block

Xinu—module 18 12 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

An Interesting Synchronization Problem

e A semaphore will block a process that attempts to perform aread or write until space is
available in the queue

e However...
— The disk driver must guarantee that requests are handled in the order they occur
— Multiple processes may pass the semaphore iIf multiple spaces are available

— The scheduler may run a higher priority process first, which means that

Using a semaphore to access the queue of
requests does not guarantee strict temporal
order of requests.

Xinu—module 18 13 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Satisfying The Strict Ordering Regquirement

e |ntroduce a serialization mechanism
e Have the mechanism guarantee that items will be processed in the order received
e Trick: use an extra serial queue that has enough slots so that every process has a slot

e Block a process until its request can be moved to the request queue

Xinu—module 18 14 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Serial Queue Insertion And Resumption Of the Communication Process

e We will see that the remote disk communication process suspends itself when the
request gueue becomes empty

e Conseguence: when it inserts an entry in the serial queue, a process must perform two
steps

— Resume the remote disk communication process
— Susgpend itsalf (it will be resumed when its request is moved to the request queue)

e Unfortunately, a race condition exists because the communication process runs at high
priority

e Once the communication process resumes, the calling process will not be able to
suspend itself

Xinu—module 18 15 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Solving The Race Condition

e Create afunction, rdsars, that atomically performs two tasks
— Resumes the communication process
— Suspends the calling process

e |mplementation

— Set the current process state to the desired state PR SUSP
— If the communication process Is suspended, make it ready

— If not, ssimply call resched

Xinu —module 18 16 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Code For Rdsars (Part 1)

[* rdsars.c - rdsars */

#i ncl ude <xi nu. h>

*

* rdsars - atomcally resune a high-priority server process and suspend
* the current process
*

*

/
syscal | rdsars(
pi d32 pi d /* 1D of the process to resune */
)
{
I nt mask mask; [* Saved interrupt nask */
struct procent *prptr; [* Ptr to process's table entry */
mask = disabl e();
I f (isbadpid(pid)) {
rest or e(mask) ;
return SYSERR,
}
Xinu—module 18 17

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Code For Rdsars (Part 2)

[* Set current process state to suspended */
proctab[currpid]. prstate = PR _SUSP;

/[* |If target process is suspended, resune it */

prptr = &proctab[pid];
I f (prptr->prstate == PR _SUSP) {

ready(pid);
} else {
resched();
}
rest or e(mask) ;
return OK;
}
Xinu—module 18 18 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Xinu Remote Disk Interface

e Works exactly like alocal disk, by allowing a caller to
— Write a specified block to the disk
— Read a specified block from the disk
e Defines a Xinu device named RDISK that corresponds to the remote disk

e Arranges driver software for the RDISK device to support read and write operations

e Hides al network communication

Xinu—module 18 19 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Read And Write Operations On A Disk With Xinu

e Each read or write operation on a disk requires a block number, but read and write do
not have an extra argument

e Trick: the length of adisk block is fixed, so interpret the “length” field in aread and
write call as a disk block number

e Example: if the remote disk device is named RDISK, to read block 5 of the remote disk,
a process calls read with 5 as the length argument:

read(RDISK, &buffer, 5);

Xinu—module 18 20 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Request Queue

e QOperates exactly like the request queue used by alocal disk driver
e [Each item in the request queue specifies

— A disk block number

— An operation (read or write)

— A pointer to a buffer that either contains data to be written (for write) or to be filled
(for read)

— The ID of a process waiting for the request to be fulfilled
e [temsin arequest queue are ordered in FIFO order

e Each item in the cache contains a block number and buffer that holds the data for one
disk block

Xinu—module 18 21 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

| mplementation Of The Lower-half Software

e Consists of a communication process named rdsprocess that handles all communication
with remote server

e QOperation

— Repeatedly extract and handle the next request (i.e., build a request message and
send to the remote server)

— Updates the cache when a block is changed (written or read)

e On each iteration, the rdsprocess moves items from the serial queue to the request
gueue if space is available

Xinu—module 18 22 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

| mplementation Of The Lower-half Software
(continued)

e Rdsprocess satisfies requests locally, if possible

e Obvious optimization: when processing a read request, search the cache to see if the
block is in the cache

e Another optimization: search the request queue backward to find the last pending write
request for the block

Xinu—module 18 23 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Use Of Rdscomm

e Rdsprocess calls function rdscomm to
— Format a message
— Add a unique seguence number to each outgoing message
— Send the message to the server and wait for areply
— Retransmit the message, if the reply does not arrive promptly

e Separating rdsprocess from rdscomm allows rdscomm to be used when opening,
closing, or deleting a remote disk

Xinu—module 18 24 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Sync Operation

e Disk hardware only supports fetch and store operations
e However, the request queue supports three operations
— Read (fetch a block from disk)
— Write (store a block to disk)
— Sync (synchronize requests)
e The sync operation
— Blocks the caller until all previously-written blocks have been stored on disk
— Isused by afile system to guarantee metadata is saved
— Isinvoked with a control function

— May be used by individual processes as well as a file system

Xinu—module 18 25 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

How Sync Works

e A process invokes the “sync”’ control function

e The device driver
— Adds a sync request for the process to the request queue
— Suspends the calling process

e Once the sync request reaches head of queue (i.e., all previous requests have been
satisfied), the communication process

— Resumes the process that made the sync request

e Note that sync is handled locally — no message is sent to the remote server and no data
IS transferred

Xinu—module 18 26 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Structure Of A Reguest Queue Node (from rdisksys.h)

[* excerpt frpmrdiisksys.h */
/* Operations for request queue */

#defi ne RD_OP_READ 1 /* Read operation on req. |ist
#define RD_ OP_VWRI TE 2 /[* Wite operation on req. |i st
#define RD OP_SYNC 3 /* Sync operation on req. |ist
/* Definition of a serial queue node */
struct rdsent { /[* Entry in the serial queue
I nt 32 rd_op; [* Qperation - read/wite/sync
uint32 rd_bl knum /* Di sk block nunmber to use
char *rd_cal |l buf; /* Address of caller's buffer
pi d32 rd_pid; /* Process that initiated the
}i [* request

/* Definition of a request queue node */

struct rdgnode { /* Node in the request queue
struct rdgnode *rd_next; /* Pointer to next node
struct rdgnode *rd_prev; /* Pointer to previous node
I nt 32 rd_op; [* Qperation - read/wite/sync
uint32 rd_bl knum /* Di sk block nunmber to use
char *rd_cal |l buf; /* Address of caller's buffer
pi d32 rd_pid; /* Process making the request
char rd_wbuf [RD_BLKSI Z] ; /* Data for a wite operation

}

Xinu—module 18 27

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

*/
*/
*/

*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/

2025

Structure Of A Cache Node (from rdisksys.h)

/[* Definition of a node in the cache */

struct

rdcnode { /* Node in the cache

struct rdcnode *rd_next; /* Pointer to next node
struct rdcnode *rd_prev; /* Pointer to previous node
uint32 rd_bl knum /* Nunmber of this disk block
byt e rd_dat a[RD_BLKSI Z] ; /* Data for the disk block

e A given block only appears once in the cache (the latest copy)

*/
*/
*/
*/
*/

e A block is not placed in the cache until it has been written to disk (i.e., a block number
IS not duplicated in both the request queue and cache)

Xinu—module 18

28
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

/* Constants for

#def i ne
#def i ne
#def i ne

/* Constants for

#def i ne
#def i ne
#def i ne
#def i ne

Xinu—module 18

Constants For The Remote Disk (from rdisksys.h)

RD | DLEN
RD_STACK
RD PRI O

RD CLOSED
RD_OPEN
RD_PEND
RD_DELETI NG

renote di sk device control block */

64 [* Size of a renpte disk ID
16384 [* Stack size for comm process
600 /[* Priorty of conm process
/* (Must be higher than any
[* process that reads/wites
state of the device */
0 /* Device is not in use
1 /* Device is open
2 /* Device is being opened
3 /* Device is being del eted

29
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

*/
*/
*/
*/
*/

*/
*/
*/
*/

2025

Structure Of A Remote Disk Control Block (from rdisksys.h)

/* Device control

struct

}

extern

Xinu—module 18

bl ock for a renpte di sk */

rdscbl k { /* Renote disk control bl ock */
I nt 32 rd_state; /* State of device */
char rd i d[RD_| DLEN] ; /[* Disk I D currently being used */
I nt 32 rd_seq; /* Next sequence nunber to use */
struct rdcnode *rd _chead; /* Head of cache */
struct rdcnode *rd ctail; [* Tail of cache */
struct rdcnode *rd _cfree; /* Free list of cache nodes */
struct rdgnode *rd_qghead; /* Head of request queue */
struct rdgnode *rd_qtail; [* Tail of request queue */
struct rdgnode *rd_qfree; /* Free |list of request nodes */
struct rdsent rd_sq[RD _SSIZE];/* Serial queue circular buffer */
I nt 32 rdshead,; /* Head of the serial queue */
I nt 32 rdstail /[* Tail of the serial queue */
I nt 32 rdscount ; /* Count serial queue itens */
pi d32 rd_conproc; /* Process ID of comm process */
uint32 rd_ser _ip; /* Server |P address */
uint16 rd_ser port; [* Server UDP port */
uintl6 rd_|oc _port; /* Local (client) UPD port */
bool 8 rd_registered; /* Has UDP port been registered?*/
I nt 32 rd_udpsl ot; /* Registered UDP sl ot */
struct rdscblk rdstab[]; /* Renote disk control bl ock */

30

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

M essages Exchanged With The Remote Disk Server

e The remote disk system uses five message types when communicating between the local
operating system and the remote disk server

Xinu—module 18

Open — Prepare the remote disk for use and specify a name
Close — Discontinue use of the remote disk

Read — Read ablock from the remote disk

Write — Write a block to the remote disk

Delete — Remove the entire remote disk from the remote server

31 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Names For Remote Disks

e A remote disk server
— Retains disk contents across server reboots
— Maintains multiple virtual disks
— Can handle requests from multiple clients
e To prevent interference, each disk is given a unigue name
e A disk name must be passed to the server in each request
e Posshbilities
— Students in a class could each use their login ID as a unique disk name

— The IP address of a Xinu back-end computer (converted to atext string) could be
used as a disk name

Xinu—module 18 32 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

M essage For mats

e The remote disk software in an operating system and the server software must agree on
the format of messages and values used in the messages

e One possible approach

— Write the definitions in a document

— Have software engineers who build pieces of the software follow the document
e A better approach

— Place the definitions in an include (.h) file, and use the same file in both client and
server software

— Instead of defining individual hex values for each possible request and response,
define a “response” bit and use it in the definition of message types

e Xinu uses the latter approach

Xinu—module 18 33 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

M essage For mats
(continued)

e [or each operation, two message formats must be defined, such as

— Open request and reply

— Read request and reply

— Wrkite request and reply
e Note that the format of areply often differs from the format of a request
e Example

— A read request merely specifies the block number to fetch

— A read reply contains actual data in addition to the block number

Xinu—module 18 34 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Declarations For Message Types (from rdisksys.h)

/**/

/* Definition of nessages exchanged with the renote di sk server */

/**/

/* Values for the type field in nessages */

#defi ne RD MSG RESPONSE 0x0100 /* Bit that indicates response */
#defi ne RD MSG RREQ 0x0010 /* Read request and response */
#defi ne RD_MSG _RRES (RD_M5G RREQ | RD_MSG_RESPONSE)

#defi ne RD MSG V\REQ 0x0020 /[* Wite request and response */
#defi ne RD_MSG WRES (RD_M5G WREQ | RD_MSG_RESPONSE)

#defi ne RD MSG OREQ 0x0030 /* Open request and response */
#defi ne RD_MSG _ORES (RD_M5G OREQ | RD_MSG_RESPONSE)

#defi ne RD MSG CREQ 0x0040 /* Close request and response */
#defi ne RD_MSG _CRES (RD_M5G CREQ | RD_MSG_RESPONSE)

#def i ne RD_MSG_DREQ 0x0050 /* Del ete request and response */
#defi ne RD_MSG _DRES (RD_MSG DREQ | RD_MSG_RESPONSE)

#define RD M N REQ RD M5G RREQ /[* M nimum request type */
#defi ne RD MAX REQ RD M5G DREQ [* Maxi mum r equest type */
Xinu—module 18 35

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

M essage For mats (from rdisksys.h)

/* Message header fields present in each nessage */

#defi ne RD MSG HDR /* Common nessage fields */\
uint16 rd type; /* Message type */\
uint16 rd_status; /[* 0 in reqg, status in response */\
uint32 rd_seq; /* Message sequence nunber */\
char rd_id[RD_I DLEN] ; /[* Null-term nated disk ID */

/**/

[* Header */

/**/

/* The standard header present in all nessages with no extra fields */

#pragma pack(?2)

struct rd_nsg_hdr { /| * Header fields present in each*/
RD MSG_HDR [* renot e di sk system nessage */

3

#pragma pack()

Xinu—module 18 36 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

M essage For mats (from rdisksys.h)

/**/

/* Read */

/**/

#pragma pack(?2)

struct rd_nsg_rreq { /* Renote disk read request */
RD MSG HDR /* Header fields */
uint32 rd_blk; /* Bl ock nunber to read */

3

#pragma pack()

#pragma pack(?2)

struct rd nsg rres { /* Renote disk read reply */
RD MSG HDR [* Header fields */
uint32 rd_blk; /* Bl ock nunber that was read */
char rd_dat a[RD_BLKSI Z] ; /* Array containing one bl ock */

3

#pragma pack()

Xinu—module 18

37

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

M essage For mats (from rdisksys.h)

/**/

[* Wite */

/**/

#pragma pack(?2)

struct rd_nsg_weq { /* Renpte disk wite request */
RD MSG HDR /* Header fields */
uint32 rd_blk; /* Bl ock nunber to wite */
char rd_dat a[RD_BLKSI Z] ; /* Array containing one bl ock */

3
#pragma pack()

#pragma pack(?2)

struct rd _nsg wes { /* Renpte disk wite response */
RD MSG HDR /* Header fields */
uint32 rd_blk; /* Bl ock nunber that was witten*/

3

#pragma pack()

Xinu—module 18 38 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Importance Of Disk Block Caching

e Disk I/O, even for alocal disk, is much slower than memory accesses
e Communication to a remote disk server makes disk access extremely slow

e Reminder: disk accesses exhibit temporal locality in which a given block is accessed
repeatedly

e Keeping adisk block in a memory cache speeds up access times substantially

e Result: all disk drivers (even for SSDs) rely on a cache to achieve reasonable
performance

Xinu—module 18 39 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Next Steps

e ook through the files for the remote disk driver (in directory device/rds or online) to
see how

— A cdll to rdsread works
— A call to rdswrite works

— What happens when a process calls
control(RDISK, RD_CTL_SYNC, 0);

e Either ask questions now or come to the next class with questions

Note: be sure to look at the latest Xinu code.

40 2025

Xinu —module 18
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Ouestions?

