
Module XVIII

Remote Access And
A Remote Disk Driver

Xinu – module 18 1 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Location Of Remote Disk Access In The Hierarchy

Xinu – module 18 2 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Distributed Operating Systems

d Distributing OS functionality is extremely difficult

d The extent of sharing is determined by level of network communication in the design
hierarchy

d There have been many attempts to build a truly distributed operating system; the
attempts have met with little success

d A few examples follow

Xinu – module 18 3 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Examples Of Distributed Systems

d Apollo Domain

– The model: computers on a network share a 96-bit address space

– Communication is positioned at lowest level of the system

d Xerox Alto Environment

– The model: each computer has a local process manager, and all share files

– Communication is positioned between the process manager and the file system

d Unix with Internet protocols

– The model: interconnected autonomous systems

– The operating system supplies a communication service, but the operating system
itself is not distributed

Xinu – module 18 4 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Examples Of Distributed Systems
(continued)

d Unix’s Network File System (NFS)

– The model: shared files and file names

– Allows cross-mounting of directories

– Builds on the Internet protocols (TCP /IP)

– Only works among computers with identical user IDs

Xinu – module 18 5 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Disk Hardware

d We use the term disk to refer to a solid-state disk (SSD) as well as to an older electro-
mechanical disk

d Conceptually, a disk appears to consist of an array of fixed-size blocks

d The de facto block size is 512 bytes (even a solid state disk provides a 512-byte block
interface)

d The blocks on a disk are numbered 0, 1, 2, ...

d Disk hardware only supports two operations

– Fetch a copy of the ith block into a 512-byte buffer in memory

– Store data from a 512-byte buffer in memory to the ith block on the disk

d The hardware always transfers a complete block between memory and disk

d Note: special-purpose hardware used in high-performance storage systems typically uses
a larger block size (e.g., 4096 bytes)

Xinu – module 18 6 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Remote Disk Paradigm

d The idea: allow an operating system to fetch or store blocks to a remote disk

d In terms of hardware

– A computer on the network runs remote disk server software

– The computer has one or more physical disks attached

d In terms of software

– A client operating system contains software that can send messages over a network
to the remote disk server

– Each request either contains a block to be written to the remote disk or a request to
read a block from the remote disk

d Note: the client OS can store arbitrary data in each disk block (e.g., a boot block or
pieces of a file system)

Xinu – module 18 7 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Structure Of Xinu Remote Disk Driver Software

d Like a conventional device driver

– Has upper-half read and write functions called by processes

– Has shared data structures

d Unlike a conventional driver

– Uses a dedicated, high-priority communication process in place of a lower-half

– Does not use interrupts to trigger the lower-half, but arranges instead for the
communication process to wait on a semaphore until a request arrives

d The communication process handles all communication with the remote server

Xinu – module 18 8 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Illustration Of Remote Disk Access

upper-half functions

shared
data structures

write read

network communication
with remote server

process that provides
lower-half functionality

Xinu – module 18 9 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Remote Disk Server In Practice

d Powerful remote disk server hardware provides disks for multiple clients

d The server may

– Have N physical disks and dedicate each disk to one client

– Dedicate a virtualized disk to each client

d Virtualized disks

– Is a popular approach

– Provides each client with the illusion of a separate physical disk (i.e., the client has
its own set of blocks 0, 1, 2, ...)

– Maps the client requests onto the set of local disks

– Hides the details of the mapping from clients

Xinu – module 18 10 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Caching And its Importance

d The access pattern: file systems exhibit temporal locality in which a give disk block is
accessed repeatedly

d To optimize performance, a disk driver maintains two data structures

– A cache of recently-accessed disk blocks

– A set of pending read or write requests

d Invariant: at any time, a copy of block K in the cache contains the latest data written to
block K

Xinu – module 18 11 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Last-Write Semantics

d A disk driver receives a sequence of read and write requests where each request
specifies a disk block number. the driver must guarantee that the block returned for a
read request is the latest block that has been written to the disk

d To enforce last-write semantics

– The driver inserts requests at the tail of a queue

– The lower-half process continually removes and performs a request from the head of
the queue

d Complication: the queue may contain write requests for the same block

Xinu – module 18 12 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

An Interesting Synchronization Problem

d A semaphore will block a process that attempts to perform a read or write until space is
available in the queue

d However...

– The disk driver must guarantee that requests are handled in the order they occur

– Multiple processes may pass the semaphore if multiple spaces are available

– The scheduler may run a higher priority process first, which means that

Using a semaphore to access the queue of
requests does not guarantee strict temporal
order of requests.

Xinu – module 18 13 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Satisfying The Strict Ordering Requirement

d Introduce a serialization mechanism

d Have the mechanism guarantee that items will be processed in the order received

d Trick: use an extra serial queue that has enough slots so that every process has a slot

d Block a process until its request can be moved to the request queue

Xinu – module 18 14 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Serial Queue Insertion And Resumption Of the Communication Process

d We will see that the remote disk communication process suspends itself when the
request queue becomes empty

d Consequence: when it inserts an entry in the serial queue, a process must perform two
steps

– Resume the remote disk communication process

– Suspend itself (it will be resumed when its request is moved to the request queue)

d Unfortunately, a race condition exists because the communication process runs at high
priority

d Once the communication process resumes, the calling process will not be able to
suspend itself

Xinu – module 18 15 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Solving The Race Condition

d Create a function, rdsars, that atomically performs two tasks

– Resumes the communication process

– Suspends the calling process

d Implementation

– Set the current process state to the desired state PR_SUSP

– If the communication process is suspended, make it ready

– If not, simply call resched

Xinu – module 18 16 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Code For Rdsars (Part 1)

/* rdsars.c - rdsars */

#include <xinu.h>

/*--
* rdsars - atomically resume a high-priority server process and suspend
* the current process
*--
*/

syscall rdsars(
pid32 pid /* ID of the process to resume */

)
{

intmask mask; /* Saved interrupt mask */
struct procent *prptr; /* Ptr to process's table entry */

mask = disable();
if (isbadpid(pid)) {

restore(mask);
return SYSERR;

}

Xinu – module 18 17 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Code For Rdsars (Part 2)

/* Set current process state to suspended */
proctab[currpid].prstate = PR_SUSP;

/* If target process is suspended, resume it */

prptr = &proctab[pid];
if (prptr->prstate == PR_SUSP) {

ready(pid);
} else {

resched();
}
restore(mask);
return OK;

}

Xinu – module 18 18 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Xinu Remote Disk Interface

d Works exactly like a local disk, by allowing a caller to

– Write a specified block to the disk

– Read a specified block from the disk

d Defines a Xinu device named RDISK that corresponds to the remote disk

d Arranges driver software for the RDISK device to support read and write operations

d Hides all network communication

Xinu – module 18 19 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Read And Write Operations On A Disk With Xinu

d Each read or write operation on a disk requires a block number, but read and write do
not have an extra argument

d Trick: the length of a disk block is fixed, so interpret the “length” field in a read and
write call as a disk block number

d Example: if the remote disk device is named RDISK, to read block 5 of the remote disk,
a process calls read with 5 as the length argument:

read(RDISK, &buffer, 5);

Xinu – module 18 20 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Request Queue

d Operates exactly like the request queue used by a local disk driver

d Each item in the request queue specifies

– A disk block number

– An operation (read or write)

– A pointer to a buffer that either contains data to be written (for write) or to be filled
(for read)

– The ID of a process waiting for the request to be fulfilled

d Items in a request queue are ordered in FIFO order

d Each item in the cache contains a block number and buffer that holds the data for one
disk block

Xinu – module 18 21 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Implementation Of The Lower-half Software

d Consists of a communication process named rdsprocess that handles all communication
with remote server

d Operation

– Repeatedly extract and handle the next request (i.e., build a request message and
send to the remote server)

– Updates the cache when a block is changed (written or read)

d On each iteration, the rdsprocess moves items from the serial queue to the request
queue if space is available

Xinu – module 18 22 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Implementation Of The Lower-half Software
(continued)

d Rdsprocess satisfies requests locally, if possible

d Obvious optimization: when processing a read request, search the cache to see if the
block is in the cache

d Another optimization: search the request queue backward to find the last pending write
request for the block

Xinu – module 18 23 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Use Of Rdscomm

d Rdsprocess calls function rdscomm to

– Format a message

– Add a unique sequence number to each outgoing message

– Send the message to the server and wait for a reply

– Retransmit the message, if the reply does not arrive promptly

d Separating rdsprocess from rdscomm allows rdscomm to be used when opening,
closing, or deleting a remote disk

Xinu – module 18 24 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Sync Operation

d Disk hardware only supports fetch and store operations

d However, the request queue supports three operations

– Read (fetch a block from disk)

– Write (store a block to disk)

– Sync (synchronize requests)

d The sync operation

– Blocks the caller until all previously-written blocks have been stored on disk

– Is used by a file system to guarantee metadata is saved

– Is invoked with a control function

– May be used by individual processes as well as a file system

Xinu – module 18 25 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

How Sync Works

d A process invokes the “sync” control function

d The device driver

– Adds a sync request for the process to the request queue

– Suspends the calling process

d Once the sync request reaches head of queue (i.e., all previous requests have been
satisfied), the communication process

– Resumes the process that made the sync request

d Note that sync is handled locally — no message is sent to the remote server and no data
is transferred

Xinu – module 18 26 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Structure Of A Request Queue Node (from rdisksys.h)

/* excerpt frpm rdiisksys.h */

/* Operations for request queue */

#define RD_OP_READ 1 /* Read operation on req. list */
#define RD_OP_WRITE 2 /* Write operation on req. list */
#define RD_OP_SYNC 3 /* Sync operation on req. list */

/* Definition of a serial queue node */

struct rdsent { /* Entry in the serial queue */
int32 rd_op; /* Operation - read/write/sync */
uint32 rd_blknum; /* Disk block number to use */
char *rd_callbuf; /* Address of caller's buffer */
pid32 rd_pid; /* Process that initiated the */

}; /* request */

/* Definition of a request queue node */

struct rdqnode { /* Node in the request queue */
struct rdqnode *rd_next; /* Pointer to next node */
struct rdqnode *rd_prev; /* Pointer to previous node */
int32 rd_op; /* Operation - read/write/sync */
uint32 rd_blknum; /* Disk block number to use */
char *rd_callbuf; /* Address of caller's buffer */
pid32 rd_pid; /* Process making the request */
char rd_wbuf[RD_BLKSIZ]; /* Data for a write operation */

};

Xinu – module 18 27 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Structure Of A Cache Node (from rdisksys.h)

/* Definition of a node in the cache */

struct rdcnode { /* Node in the cache */
struct rdcnode *rd_next; /* Pointer to next node */
struct rdcnode *rd_prev; /* Pointer to previous node */
uint32 rd_blknum; /* Number of this disk block */
byte rd_data[RD_BLKSIZ]; /* Data for the disk block */

};

d A given block only appears once in the cache (the latest copy)

d A block is not placed in the cache until it has been written to disk (i.e., a block number
is not duplicated in both the request queue and cache)

Xinu – module 18 28 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Constants For The Remote Disk (from rdisksys.h)

/* Constants for remote disk device control block */

#define RD_IDLEN 64 /* Size of a remote disk ID */
#define RD_STACK 16384 /* Stack size for comm. process */
#define RD_PRIO 600 /* Priorty of comm. process */

/* (Must be higher than any */
/* process that reads/writes */

/* Constants for state of the device */

#define RD_CLOSED 0 /* Device is not in use */
#define RD_OPEN 1 /* Device is open */
#define RD_PEND 2 /* Device is being opened */
#define RD_DELETING 3 /* Device is being deleted */

Xinu – module 18 29 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Structure Of A Remote Disk Control Block (from rdisksys.h)

/* Device control block for a remote disk */

struct rdscblk { /* Remote disk control block */
int32 rd_state; /* State of device */
char rd_id[RD_IDLEN]; /* Disk ID currently being used */
int32 rd_seq; /* Next sequence number to use */
struct rdcnode *rd_chead; /* Head of cache */
struct rdcnode *rd_ctail; /* Tail of cache */
struct rdcnode *rd_cfree; /* Free list of cache nodes */
struct rdqnode *rd_qhead; /* Head of request queue */
struct rdqnode *rd_qtail; /* Tail of request queue */
struct rdqnode *rd_qfree; /* Free list of request nodes */
struct rdsent rd_sq[RD_SSIZE];/* Serial queue circular buffer */
int32 rdshead; /* Head of the serial queue */
int32 rdstail; /* Tail of the serial queue */
int32 rdscount; /* Count serial queue items */
pid32 rd_comproc; /* Process ID of comm. process */
uint32 rd_ser_ip; /* Server IP address */
uint16 rd_ser_port; /* Server UDP port */
uint16 rd_loc_port; /* Local (client) UPD port */
bool8 rd_registered; /* Has UDP port been registered?*/
int32 rd_udpslot; /* Registered UDP slot */

};

extern struct rdscblk rdstab[]; /* Remote disk control block */

Xinu – module 18 30 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Messages Exchanged With The Remote Disk Server

d The remote disk system uses five message types when communicating between the local
operating system and the remote disk server

Open – Prepare the remote disk for use and specify a name

Close – Discontinue use of the remote disk

Read – Read a block from the remote disk

Write – Write a block to the remote disk

Delete – Remove the entire remote disk from the remote server

Xinu – module 18 31 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Names For Remote Disks

d A remote disk server

– Retains disk contents across server reboots

– Maintains multiple virtual disks

– Can handle requests from multiple clients

d To prevent interference, each disk is given a unique name

d A disk name must be passed to the server in each request

d Possibilities

– Students in a class could each use their login ID as a unique disk name

– The IP address of a Xinu back-end computer (converted to a text string) could be
used as a disk name

Xinu – module 18 32 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Message Formats

d The remote disk software in an operating system and the server software must agree on
the format of messages and values used in the messages

d One possible approach

– Write the definitions in a document

– Have software engineers who build pieces of the software follow the document

d A better approach

– Place the definitions in an include (.h) file, and use the same file in both client and
server software

– Instead of defining individual hex values for each possible request and response,
define a “response” bit and use it in the definition of message types

d Xinu uses the latter approach

Xinu – module 18 33 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Message Formats
(continued)

d For each operation, two message formats must be defined, such as

– Open request and reply

– Read request and reply

– Write request and reply

d Note that the format of a reply often differs from the format of a request

d Example

– A read request merely specifies the block number to fetch

– A read reply contains actual data in addition to the block number

Xinu – module 18 34 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Declarations For Message Types (from rdisksys.h)

/**/
/* Definition of messages exchanged with the remote disk server */
/**/
/* Values for the type field in messages */

#define RD_MSG_RESPONSE 0x0100 /* Bit that indicates response */

#define RD_MSG_RREQ 0x0010 /* Read request and response */
#define RD_MSG_RRES (RD_MSG_RREQ | RD_MSG_RESPONSE)

#define RD_MSG_WREQ 0x0020 /* Write request and response */
#define RD_MSG_WRES (RD_MSG_WREQ | RD_MSG_RESPONSE)

#define RD_MSG_OREQ 0x0030 /* Open request and response */
#define RD_MSG_ORES (RD_MSG_OREQ | RD_MSG_RESPONSE)

#define RD_MSG_CREQ 0x0040 /* Close request and response */
#define RD_MSG_CRES (RD_MSG_CREQ | RD_MSG_RESPONSE)

#define RD_MSG_DREQ 0x0050 /* Delete request and response */
#define RD_MSG_DRES (RD_MSG_DREQ | RD_MSG_RESPONSE)

#define RD_MIN_REQ RD_MSG_RREQ /* Minimum request type */
#define RD_MAX_REQ RD_MSG_DREQ /* Maximum request type */

Xinu – module 18 35 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Message Formats (from rdisksys.h)

/* Message header fields present in each message */

#define RD_MSG_HDR /* Common message fields */\
uint16 rd_type; /* Message type */\
uint16 rd_status; /* 0 in req, status in response */\
uint32 rd_seq; /* Message sequence number */\
char rd_id[RD_IDLEN]; /* Null-terminated disk ID */

/**/
/* Header */
/**/
/* The standard header present in all messages with no extra fields */
#pragma pack(2)
struct rd_msg_hdr { /* Header fields present in each*/

RD_MSG_HDR /* remote disk system message */
};
#pragma pack()

Xinu – module 18 36 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Message Formats (from rdisksys.h)

/**/
/* Read */
/**/
#pragma pack(2)
struct rd_msg_rreq { /* Remote disk read request */

RD_MSG_HDR /* Header fields */
uint32 rd_blk; /* Block number to read */

};
#pragma pack()

#pragma pack(2)
struct rd_msg_rres { /* Remote disk read reply */

RD_MSG_HDR /* Header fields */
uint32 rd_blk; /* Block number that was read */
char rd_data[RD_BLKSIZ]; /* Array containing one block */

};
#pragma pack()

Xinu – module 18 37 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Message Formats (from rdisksys.h)

/**/
/* Write */
/**/
#pragma pack(2)
struct rd_msg_wreq { /* Remote disk write request */

RD_MSG_HDR /* Header fields */
uint32 rd_blk; /* Block number to write */
char rd_data[RD_BLKSIZ]; /* Array containing one block */

};
#pragma pack()

#pragma pack(2)
struct rd_msg_wres { /* Remote disk write response */

RD_MSG_HDR /* Header fields */
uint32 rd_blk; /* Block number that was written*/

};
#pragma pack()

Xinu – module 18 38 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Importance Of Disk Block Caching

d Disk I/O, even for a local disk, is much slower than memory accesses

d Communication to a remote disk server makes disk access extremely slow

d Reminder: disk accesses exhibit temporal locality in which a given block is accessed
repeatedly

d Keeping a disk block in a memory cache speeds up access times substantially

d Result: all disk drivers (even for SSDs) rely on a cache to achieve reasonable
performance

Xinu – module 18 39 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Next Steps

d Look through the files for the remote disk driver (in directory device/rds or online) to
see how

– A call to rdsread works

– A call to rdswrite works

– What happens when a process calls

control(RDISK, RD_CTL_SYNC, 0);

d Either ask questions now or come to the next class with questions

Note: be sure to look at the latest Xinu code.

Xinu – module 18 40 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Questions?

