Module XVII

Networking And
Protocol | mplementation

Xinu—module 17 1 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

L ocation Of Networking In The Hierarchy

Xinu—module 17 2 2025
Copyright 0 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

|s The Hierarchical Level Correct?

e There are two possible approaches
— Build a conventional operating system and add networking

— Build networking code first and ensure all pieces of the operating system are
distributed (e.g., a distributed process manager)

e Xinu places networking code at a high level of the hierarchy because most of the
operating system is not distributed

Xinu—module 17 3 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Fundamental Observation

One cannot undertake an operating system
design without including network communication
protocols, even in the embedded systems world.

Xinu—module 17 4 2025
Copyright 0 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Communication Systems

e A variety of network technologies have been devised
— Wired (e.g., Ethernet)
— Wirdess (e.g., Wi-Fi and 5G)

e A computer can use

— Local network communication: communicate directly over a network with other
systems on the same network

— Internet communication: communicate over a local network, but send packets
through a router to an arbitrary computer on the Internet

e |nternet communication has become the standard except for small, special-purpose
embedded systems

Xinu—module 17 5 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Communication Protocols

e \We use the term communication protocols to describe the standards that specify
communication details such as

— Message formats

— Data representation (e.g., endianness)

— Rules for message exchange

— How to handle errors (e.g., lost packets)

e Protocols used in the Internet are known by the name TCP/IP protocols

Xinu—module 17 6 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Communication Protocols And This Course

e We will not discuss protocol details

e We will consider only a minimalistic subset of Internet protocols and focus on aspects
pertinent to operating systems design

— How applications use the communication system
— The processes that are needed
— The need for buffering
e Tolearn more
— Read aleading text on TCP/IP

— Take an internetworking course that uses an expert’s text

Xinu—module 17 7 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Synchronous Interface For Network Hardware

e Asin most operating systems, Xinu has a device driver for each network interface
e [or example, Xinu defines an ETHER device for an Ethernet interface
e The device driver for the device provides

— Synchronous read that blocks until a packet arrives and then returns the packet

— Synchronous write that blocks until a buffer is available and then accepts an
outgoing packet

e Our example code assumes all communication uses an Ethernet

Xinu—module 17 8 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

DMA Device Drivers

e FEthernet device hardware uses Direct Memory Access (DMA)
e The operating system

— Allocates a set of input buffers and a set of output buffers in memory and gives the
device the addresses of the buffers

— Marks the input buffers empty and starts device input

— Places outgoing packets in the output buffers and starts device output
e The device hardware

— Picks up outgoing packets directly from the output buffers

— Dédlivers incoming packets directly to the input buffer

e See Chapter 16 in the text for explanation of how a DMA driver works

Xinu—module 17 9 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Network /O

e Except for special-purpose embedded systems, application processes
— Never read or write directly to a network device

— Always invoke network protocol software functions to perform network
communication

e Network protocol software in the operating system

— Accepts requests from applications to contact a remote site, forms outgoing packets
as needed, and sends them

— Blocks applications that request network input until a message and/or data arrives

— Uses a dedicated process to read incoming packets, process them, and deliver the
results to waiting applications

Xinu—module 17 10 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Protocols In Our Example

e You do not need to understand protocols, but you will see the following names

|P

UDP

ARP

DHCP

ICMP

Xinu—module 17

Internet Protocol — defines an Internet Protocol address (IP address) for
each computer on the global Internet plus the format of Internet packets

User Datagram Protocol — defines protocol port numbers used to identify
Individual applications on a given computer and a message format used
when UDP messages travel across the Internet

Address Resolution Protocol — allows a computer to find the
Ethernet address of a computer on a local network given its IP address

Dynamic Host Configuration Protocol — used by a computer at
startup to obtain its |P address and related information

Internet Control Message Protocol — in our implementation, only
used by the ping program to see if a computer is alive

11
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Protocol Headers And Message For mats

e Each packet starts with a series of headers followed by data

e |n our implementation, a packet being sent or received will have one of the following

forms:

Ether Hdr ARP message

Ether Hdr IP Header [UDP Hdr UDP message (data sent by a local or remote application)
Ether Hdr IP Header [UDP Hdr DHCP Message (only used by the OS at startup)

Ether Hdr IP Header [ICMP Hdr ICMP Message (either a ping request or response)

Xinu—module 17

12 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

| mplementing Concatenated Headers

e Most systems build a packet dynamically, adding headers one at a time as needed
e Xinu takes a shortcut: define two structures
— One for an Ethernet header followed by an arp message
— Another for the three cases of an Internet packet
* Ethernet header, IP header, UDP header, UDP message
* Ethernet header, IP header, UDP header, DHCP message
* Ethernet header, |P header, ICMP header, ICMP message

e A further smplification: the only ICMP messages are echo request and echo reply (i.e,,
piNg Messages)
e The point is merely to illustrate protocols in an operating system

Xinu —module 17 13 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Packet Format Declarations

e The struct arppacket defines the format of an Ethernet packet carrying ARP messages
e The struct netpacket defines two cases of an Internet packet

e The netpacket struct starts with an Ethernet packet header followed by an IP header, and
then has a union to define

— A UDP packet encapsulated in the IP packet
— An ICMP echo request or reply packet encapsulated in the |P packet
e A separate struct defines a DHCP message (which has many fields)

Xinu—module 17 14 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Network Definitions In net.nh (Part 1)

/* net.h */

#defi ne NETSTK 8192 /* Stack size for network setup */
#defi ne NETPRI O 500 /* Network startup priority */
#defi ne NETBOOTFI LE 128 /* Size of the netboot filename */

/* Constants used in the networking code */

#defi ne ETH ARP 0x0806 /* Ethernet type for ARP */
#define ETH IP 0x0800 /* Ethernet type for IP */
#define ETH | Pv6 0x86DD /* Ethernet type for |Pv6 */

/* Format of an Et hernet packet carrying |IPv4d and UDP */

#pragma pack(2)

struct netpacket {
byt e net ethdst[ETH ADDR LEN];/* Ethernet dest. MAC address */
byt e net ethsrc[ETH ADDR LEN];/* Ethernet source MAC address */

uint 16 net et htype; /* Ethernet type field */
byt e net i pvh; /* 1P version and hdr |ength */
byt e net i ptos; /* IP type of service */
uint16 net _iplen; /* IP total packet |ength */
uint 16 net i pid; /* I P datagram | D */
uint 16 net _ipfrag; [* IP flags & fragnent offset */
byt e net ipttl; /[* IP time-to-live */
byt e net i pprot o; /* I P protocol (actually type) */
uint 16 net i pcksum /* I P checksum */
uint 32 net _ipsrc; /* | P source address */
ui nt 32 net i pdst; [* | P destination address */

Xinu—module 17 15
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Network Definitions In net.nh (Part 2)

uni on {
struct {
ui nt 16 net udpsport; /* UDP source protocol port
ui nt 16 net udpdport; /* UDP destination protocol port
ui nt 16 net udpl en; /* UDP total |ength
ui nt 16 net _udpcksum /* UDP checksum
byt e net _udpdat a[1500-28];/* UDP payl oad (1500- above)
¥
struct {
byt e net ictype; /* | CMP nessage type
byt e net i ccode; /* ICMP code field (0 for ping)
ui nt 16 net i ccksum /* | CMP nessage checksum
ui nt 16 net icident; /* 1CVP identifier
ui nt 16 net icseq; /* | CMP sequence nunber
byt e net icdata[1500-28];/* |ICVP payl oad (1500-above)
¥
b

b
#pragma pack()

#defi ne PACKLEN si zeof (struct net packet)

extern bpid32 netbufpool; /* I D of net packet buffer pool

Xinu—module 17 16
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/

2025

Network Definitions In net.h (Part 3)

Net wor k i nformati on */
Conputer's | P uni cast address*/

struct network {
ui nt 32 i pucast;

ui nt 32 i pbcast; | P br oadcast address */
ui nt 32 i pmask; | P address nask */
uint32 i pprefix; | P (network) prefix */
uint32 iprouter; Default router address */
ui nt 32 boot server; Boot server address */
ui nt 32 dnsserver; DNS server address */
ui nt 32 nt pserver; NTP (tine) server address */

Nonzero => above are valid * [
Et hernet nulticast address */
Et her net br oadcast address */
Nane of boot file * [

bool 8 | pval i d;

byt e et hucast [ETH ADDR LEN] ;
byt e et hbcast [ETH _ADDR LEN] ;
char boot fi | e[NETBOOTFI LE] ;

~ N N NN NN NN NN YN NN YN YN YN
* Ok %k ok X o ok X * * X ok F

}s

extern struct network NetDat a; /* Local Network Interface info */

e Global variable NetData holds network information obtained at startup, including
— The computer’s |P address (needed for outgoing as well as incoming packets)
— The address mask for the local network
— The address of an Internet router to use (needed for outgoing packets)
— The address of an NTP time server (used to obtain the time of day)

Xinu—module 17 17 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Services An Application Can Use

e |nthisversion of Xinu, an application can either

— Use UDP to exchange messages with another application running on a computer on
the Internet

— Use ICMP to send a ping packet and receive a reply from an arbitrary computer on
the Internet

e The other protocols (ARP and DHCP) merely provide support; they are handled by the
network code and invisible to an application

Xinu —module 17 18 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

| dentifying An Application
e UDP alows multiple applications on a given computer to communicate with other
applications running on computers attached to the Internet
e To identify aremote application, a sending application must specify two items
— The computer on which the remote application runs
— An ID that identifies a specific application on the computer
e For the two items, UDP uses
— The 32-bit IP address of the remote computer
— A 16-bit integer called a UDP protocol port number that identifies an application

e [or this course, you do not need to know how IP addresses and port numbers are
obtained; just understand that two items are needed to identify each application

Xinu—module 17 19 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Features Of Networks Related To Operating Systems

e Three aspects of Internet software relate directly to the operating system
— The interface that applications use to communicate over the Internet
— The process structure used internally to implement protocols
— The need for buffering

e Wewill consider all three

Xinu—module 17 20 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Interface To
Network Protocols

An Interface Used To Communicate Over The Internet

e Xinu follows the same approach as the well-known socket API

Before sending data, an application calls a function to register information about a
remote destination (i.e., a specific application on a specific remote computer)

Network code in the operating system responds by allocating an internal data
structure, placing the information in the data structure, and returning a small integer
descriptor that the application uses for communication

Similar to other descriptors in Xinu, each descriptor used for network
communication is an index into an array, and is informally called a slot number

The application uses the descriptor to send and receive data (there’s no need to
specify the remote application each time the application sends or receives data)

When finished, the application releases the descriptor

Xinu —module 17 22 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Interface Functions That Applications Use for UDP

e udp register — called by an application to register endpoint information, a remote
computer (IP address), remote UDP port, and a local UDP port

e udp send — called by an application to send a UDP packet to a previously-registered
endpoint

e udp recv — called by an application to receive a UDP packet from a previously-
registered remote endpoint

e udp recvaddr — called by a server application to recelve a UDP packet and record the
sender’ s address (allows an application to receive messages from an arbitrary
application)

e udp release — called by an application to release a previoudy-registered endpoint
e Note: the descriptor returned by udp register must be passed to the other functions

Xinu—module 17 23 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Processing An Incoming UDP Packet

e When a packet arrives, the network code calls internal function udp in

e Udp In searches the table of registered endpoints

— If the iIncoming packet matches a registered endpoint, the packet is enqueued on the
entry, and the semaphore for the entry is signaled to allow a waiting process (if any)
to become ready and read the message

— Else no match is found in the table, and the incoming packet is ignored (silently
dropped)

Xinu—module 17 24 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Timeout And Retransmission

e Retransmission of a packet is fundamental in networking
e Retransmission handles packet |oss by sending a second copy if the original is lost
e Theidea repeat the following K times
— Send areguest
— Wait upto N milliseconds for a reply
e |f areply arrives, process the reply immediately
e |f noreply arrives after K times declare failure

e Typicaly, (K isasmall number, such as 3)

Xinu—module 17 25 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Network Functions And Timeout

e The network interface functions allow an application to specify a maximum time to wait
for areply

e Example
— When calling udp_recv, an application specifies a maximum time to wait
— The call either returns a message that was received or TIMEOUT

e ThelCMP (ping) interface operates the same way as the UDP interface

e The network code for UDP and ICMP implements the timeout

Xinu—module 17 26 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

| mplementation Of Timeout

e [unctions that read an incoming message uses recvtime to implement timeout (recall
that recvtime was covered previously)

e When it calls udp recv, a process specifies a maximum wait time
e The code in udp recv performs the following steps
— If no packet has arrived in the slot, the code
* Places the current process ID in the data structure for the slot

* Cdls recvtime to block the calling process (note:when a packet arrives for the
sot, the network code uses send to send a message to the waiting process)

* |f aTIMEOUT occurs, returns TIMEOUT to the caller

— Copies the contents of the packet to the callers buffer

27 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu—module 17

An Example Of Using UDP: Time Of Day

e Thefirst time a process requests the time of day, the gettime function

— Calls getutime to contact an NTP time server and obtains the current time of day
(seconds since January 1, 1900)

— Converts the time to Xinu time (seconds since January 1, 1970)

— Computes and stores the time of day when the system booted (i.e., subtracts clktime
from the current time of day)

e Once thetime of day at which the system booted has been stored, Xinu never needs to
contact a time server again

e |nstead, getutime merely adds clktime to the time of day at which the system booted

Xinu—module 17 28 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Obtaining The Time Of Day From A Server

e Communication with an NTP server uses UDP

e To send an NTP message, a sender must know
— The Internet address of a computer running an NTP server
— The UDP port protocol number that the NTP server uses
— A local UDP protocol port number that can be used

e Either DHCP returns the IP address for an NTP server or the code uses the address
given by constant TIMESERVER

e Thelocal and remote protocol port numbers to use are given by constants
— Constant TIMELPORT defines alocal UDP protocol port number to use
— Constant TIMERPORT define the protocol port number for an NTP server (123)

Xinu—module 17 29 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Obtaining The Time Of Day From A Server
(continued)

e Steps taken to obtain the current time

Call udp register to obtain a slot number

Form an NTP reguest message and use udp_send to send the request to the server
Call udp _recv, specifying a maximum wait time of TIMETIMEOUT milliseconds
Call udp _release to release the ot

If atimeout occurred, return SY SERR; otherwise, store the time the system booted
and return the current time

e Note

Function getutime always returns OK or SYSERR

— An argument specifies where to store the time of day if successful

Xinu —module 17 30 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Getutime: A Function That Uses UDP (Part 1)

/* getutinme.c - getutine */

#i ncl ude <xi nu. h>
#i ncl ude <stdi o. h>

/2

* getutinme - Obtain tinme in seconds past Jan 1, 1970, UCT (GWI)

*

*/

status getutinme(

uint32 *tinvar /* Location to store the result
)

{

ui nt 32 now,

| nt 32 retval ;

ui d32 sl ot ;

struct ntp {
byt e
byt e
byt e
byt e
ui nt 32
ui nt 32
ui nt 32
ui nt 32

Xinu—module 17

[* Current tinme in xinu format
/[* Return value from call

/[* Slot 1n UDP table

/* Format of an NTP nessage

livn; /* LI:2 VN 3 and node: 3 fields
strat; /* Stratum

pol | ; /* Poll interval

preci si on; /* Precision

r oot del ay; /* Root del ay

r oot di sp; /* Root dispersion

refid; /* Reference identifier

reftimestanp[2];/* Reference tinestanp

31
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

2025

Getutime: A Function That Uses UDP (Part 2)

uint32 oritinmestanp[2];/* Originate tinestanp */
uint32 rectinestanp[2];/* Receive tinestanp */
uint32 trntinmestanp[2];/* Transmt tinmestanp */
} ntpnsg;
| f (Date.dt _bootvalid) { /[* Return time fromlocal info */
*tinvar = Date.dt boot + clkting;
return CK;

}

/[* Verify that we have obtained an | P address */

i f (getlocalip() == SYSERR) {
return SYSERR;

}
/[* 1If the DHCP response did not contain an NTP server address */
/* use the default server */

i f (NetData.ntpserver == 0) {
I f (dnsl ookup(Tl MESERVER, &Net Dat a. nt pserver) == SYSERR) {
return SYSERR
}

Xinu—module 17 32 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu—module 17

Getutime: A Function That Uses UDP (Part 3)

/* Contact the tine server to get the date and tine */

sl ot = udp_register(NetData.ntpserver, TINMERPORT, TIMELPORT);
I f (slot == SYSERR) {
fprintf(stderr,"getutine: cannot register a udp port %\n",
T MERPORT) ;
return SYSERR,

}

/* Send a request nessage to the NTP server */

menset ((char *)&ntpnsg, 0x00, sizeof (ntpnsg));

nt pneg.livn = 0x1b; /* Cient request, protocol version 3 */
retval = udp_send(slot, (char *)&ntpnsg, sizeof(ntpnsg));
I f (retval == SYSERR) {

fprintf(stderr,"getutinme: cannot send to the server\n");
udp _rel ease(sl ot);
return SYSERR,

}

/* Read the response fromthe NTP server */

retval = udp_recv(slot, (char *) &ntpnsg, sizeof(ntpnsg), TIMTI MEOUT);

33
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Getutime: A Function That Uses UDP (Part 4)

if ((retval == SYSERR) || (retval == TIMEQUT)) {
udp_rel ease(sl ot);
return SYSERR

udp_rel ease(slot);

[* Extract the seconds since Jan 1900 and convert */

now = ntin2xtim ntohl (ntpnsg.trntimestanp[0]));
Dat e. dt _boot = now - cl kti ne;

Dat e. dt _bootvalid = TRUE;

*timvar = now,

return OK;
}
e Notes
— Only afew lines of code call the network functions
— The Internet protocols send integers in network byte order, and function ntohl
converts from network byte order to host byte order for along integer
Xinu—module 17 34 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The ICMP Interface (For Ping)

e Follows the same approach as UDP

e An application

Calls icmp_register to register the remote address and receive a descriptor
Generates an ICMP request packet and calls icmp_send to send the packet
Calls icmp _recv to receive areply, specifying a timeout

Handles the reply, if avalid reply was received

Calls icmp_release to release the registered endpoint

Either reports success or an error, if the request timed out

Xinu —module 17 35

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

The Process Model
For Network Code

DHCP, Network Processes, And Delayed Use

A computer uses DHCP at startup to obtain an IP address and related information

— DHCP isonly used once (i.e., it is only run during startup)

— A DHCP message is sent using UDP (i.e., DHCP uses the UDP interface)

— Sending a UDP message normally requires the sender to know its IP address
How can a computer send a DHCP message before the computer has an |P address?
Answer: the computer

— Uses an al-0s |P address as the sender’ s address (0.0.0.0 in dotted decimal)

— Sendsitsinitial DHCP reguest to a special all-1s IP broadcast address
(255.255.255.255 In dotted decimal)

The resulting packet is broadcast across the local network and a DHCP server responds
without needing the computer’s | P address

Xinu —module 17 37 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

DHCP, Network Processes, And Delayed Use
(continued)

e An interesting process coordination problem arises with DHCP
— To use DHCP, network processes must be running (explained later)
— Network processes are not started until late in the bootstrap sequence

e Our solution: delay using DHCP until an application needs to use the Internet
— Start the network processes at the end during system initialization

— Wait until the first time an application calls getlocalip to obtain the local |P address,
use the call to trigger sending a DHCP reguest, obtain the reply and store the |P
address locally

— Note: successive calls to getlocalip obtain the stored value locally

e |nessence, DHCP runs as a side effect of requesting the local |P address

Xinu—module 17 38 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Need For Networ k Processes

e Most operating system functions are merely called by application processes

e Network code requires independent processes to ensure that an incoming packet is
handled, even if no application is waiting for the packet

e Examples

— When a ping reguest arrives from another computer, the recelver must generate and
send areply even if no application is running

— When an ARP reguest arrives from another computer, the receiver must send a reply
before Internet packets can arrive from the computer

e The device driver for a network hardware device allows processes to read incoming
packets and write outgoing packets, but does not interpret the packets or send replies

e Conseguence: a process must always be waiting to read and handle incoming packets

Xinu—module 17 39 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu’'s Network Input Process

e To handle asynchronous packet arrivals, Xinu keeps a network input process running at
al times

e The network input process repeatedly
— Callsread on the ETHER device to block and walit for the next incoming packet

— Handles the packet (e.g., if the packet contains UDP, the network input process calls
udp_in)

e Sending an ARP replay is trivial — the network input process calls a function that
forms areply and writes it to the ETHER device

e Unfortunately, sending a ping reply causes a problem

Xinu—module 17 40 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Problem With Ping Replies

e Ping repliestravel in an | P packet

e Sending an outgoing |IP packet may require an ARP exchange with another computer

e The steps are

Start with an outgoing I P packet

While holding the outgoing packet, send an ARP request to find the receiver’s
Ethernet address

Recelve an ARP reply
Add the information in the ARP reply to the original |P packet and send it

e The problem: if the network input process blocks to wait until the needed information
arrives, a deadlock will result because no process will be running to read the ARP reply
packet from the ETHER device

Xinu —module 17 41 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Avoiding Deadlock

e To avoid deadlock

The network input process must never call
a function that blocks to wait for a reply.

e To prevent the network input process from blocking, Xinu uses a separate | P output
process, and arranges for the network input process to deposit outgoing | P packets on a
gueue for the output process to handle

e The IP output process can block waiting for an ARP reply because the network input
[process remains running

Xinu—module 17 42 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Communication Between The Network Input And I P Output Processes

e Uses aqueue of packets and a semaphore for coordination
e The output process repeatedly
— Waits on the semaphore until an outgoing IP packet is placed in the queue

— Performs the ARP exchange if necessary, possibly blocking to wait until a reply has
been recelved and the information extracted

— Uses the information to send the | P packet

e Note: it is not important that you understand the protocol details, but it important that
you realize that protocols dictate the process structure that is needed

Xinu —module 17 43 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Simplified Illustration Of The Xinu Network Process M odel

e Netin handles incoming UDP and ARP packets

—_—
UDP table entries
(one per port)

packet
arrives

netin
process

A
! ARP table entries
(one per address)

\ ping reply ipout
process

e Netin enqueues ping replies for ipout, thereby preventing netin from blocking

Xinu—module 17 44 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Buffering Incoming Packets

The Need For Packet Queues

e The netin process has a high priority
e An application process may have alow priority

e Consequences

— An application that is waiting for a packet may not execute immediately after the
packet arrives

— A second packet may arrive for a given application before the first packet has been
handled

e To accommodate delayed processing, Xinu uses packet queues to absorb a small burst
of packets without discarding any

e Note: the above only applies to UDP and ICMP because ARP packets are processed
Immediately by the netin process

Xinu—module 17 46 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The ARP Cache And Cache Timeout Processing

e The ARP protocol specifies that the network code must keep a cache of recent address
bindings

e Entriesin the cache should be removed after 10 minutes
e |san additional process needed to implement ARP cache timeout?
e Using an additional process has disadvantages

— More context switching overhead

— Uses system resources, such as stack space, with little real value

Xinu —module 17 47 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Xinu Approach To Cache Timeout

e To avoid having an extra process handle cache timeout, Xinu uses a trick

e \When storing an entry in the cache, Xinu stores the current time in a timestamp field in
the entry

e Whenever searching the cache, the code examines the timestamp field in each entry, and
removes the entry if the time has expired

e The approach works well for an ARP cache because the cache is only expected to
contain a few entries, and the search proceeds sequentially

Xinu—module 17 48 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Choosing Process Priorities

e The easy part: network processes should run at higher priority than user processes

e The hard part: deciding whether the input process or output process should have higher
priority

e The choiceis not clear
— If the input process has higher priority, output may become a bottleneck

— If the output process has a higher priority, incoming packets may not be handled
quickly

Xinu—module 17 49 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Summary

e Networking is an essential part of any operating system, and three aspects are important
to OS designers

e The interface to protocols (Xinu's is similar to the socket interface)
— Register to specify a remote endpoint and obtain a descriptor to use
— Use the descriptor to send and receive data
— Release the descriptor
e The process structure for network processes
— Depends on protocols
— Aninput and output process are needed
e Packet buffers (queues to hold packets)

— Needed because packets arrive in bursts (typically, a small queue suffices)

Xinu —module 17 50 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Ouestions?

