
Module XVII

Networking And
Protocol Implementation

Xinu – module 17 1 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Location Of Networking In The Hierarchy

Xinu – module 17 2 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Is The Hierarchical Level Correct?

d There are two possible approaches

– Build a conventional operating system and add networking

– Build networking code first and ensure all pieces of the operating system are
distributed (e.g., a distributed process manager)

d Xinu places networking code at a high level of the hierarchy because most of the
operating system is not distributed

Xinu – module 17 3 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Fundamental Observation

One cannot undertake an operating system
design without including network communication
protocols, even in the embedded systems world.

Xinu – module 17 4 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Communication Systems

d A variety of network technologies have been devised

– Wired (e.g., Ethernet)

– Wireless (e.g., Wi-Fi and 5G)

d A computer can use

– Local network communication: communicate directly over a network with other
systems on the same network

– Internet communication: communicate over a local network, but send packets
through a router to an arbitrary computer on the Internet

d Internet communication has become the standard except for small, special-purpose
embedded systems

Xinu – module 17 5 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Communication Protocols

d We use the term communication protocols to describe the standards that specify
communication details such as

– Message formats

– Data representation (e.g., endianness)

– Rules for message exchange

– How to handle errors (e.g., lost packets)

d Protocols used in the Internet are known by the name TCP/IP protocols

Xinu – module 17 6 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Communication Protocols And This Course

d We will not discuss protocol details

d We will consider only a minimalistic subset of Internet protocols and focus on aspects
pertinent to operating systems design

– How applications use the communication system

– The processes that are needed

– The need for buffering

d To learn more

– Read a leading text on TCP /IP

– Take an internetworking course that uses an expert’s text

Xinu – module 17 7 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Synchronous Interface For Network Hardware

d As in most operating systems, Xinu has a device driver for each network interface

d For example, Xinu defines an ETHER device for an Ethernet interface

d The device driver for the device provides

– Synchronous read that blocks until a packet arrives and then returns the packet

– Synchronous write that blocks until a buffer is available and then accepts an
outgoing packet

d Our example code assumes all communication uses an Ethernet

Xinu – module 17 8 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

DMA Device Drivers

d Ethernet device hardware uses Direct Memory Access (DMA)

d The operating system

– Allocates a set of input buffers and a set of output buffers in memory and gives the
device the addresses of the buffers

– Marks the input buffers empty and starts device input

– Places outgoing packets in the output buffers and starts device output

d The device hardware

– Picks up outgoing packets directly from the output buffers

– Delivers incoming packets directly to the input buffer

d See Chapter 16 in the text for explanation of how a DMA driver works

Xinu – module 17 9 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Network I/O

d Except for special-purpose embedded systems, application processes

– Never read or write directly to a network device

– Always invoke network protocol software functions to perform network
communication

d Network protocol software in the operating system

– Accepts requests from applications to contact a remote site, forms outgoing packets
as needed, and sends them

– Blocks applications that request network input until a message and/or data arrives

– Uses a dedicated process to read incoming packets, process them, and deliver the
results to waiting applications

Xinu – module 17 10 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Protocols In Our Example

d You do not need to understand protocols, but you will see the following names

IP Internet Protocol – defines an Internet Protocol address (IP address) for
each computer on the global Internet plus the format of Internet packets

UDP User Datagram Protocol – defines protocol port numbers used to identify
individual applications on a given computer and a message format used
when UDP messages travel across the Internet

ARP Address Resolution Protocol – allows a computer to find the
Ethernet address of a computer on a local network given its IP address

DHCP Dynamic Host Configuration Protocol – used by a computer at
startup to obtain its IP address and related information

ICMP Internet Control Message Protocol – in our implementation, only
used by the ping program to see if a computer is alive

Xinu – module 17 11 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Protocol Headers And Message Formats

d Each packet starts with a series of headers followed by data

d In our implementation, a packet being sent or received will have one of the following
forms:

Ether Hdr ARP message

Ether Hdr IP Header UDP Hdr UDP message (data sent by a local or remote application)

Ether Hdr IP Header UDP Hdr DHCP Message (only used by the OS at startup)

Ether Hdr IP Header ICMP Hdr ICMP Message (either a ping request or response)

Xinu – module 17 12 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Implementing Concatenated Headers

d Most systems build a packet dynamically, adding headers one at a time as needed

d Xinu takes a shortcut: define two structures

– One for an Ethernet header followed by an arp message

– Another for the three cases of an Internet packet

* Ethernet header, IP header, UDP header, UDP message

* Ethernet header, IP header, UDP header, DHCP message

* Ethernet header, IP header, ICMP header, ICMP message

d A further simplification: the only ICMP messages are echo request and echo reply (i.e.,
ping messages)

d The point is merely to illustrate protocols in an operating system

Xinu – module 17 13 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Packet Format Declarations

d The struct arppacket defines the format of an Ethernet packet carrying ARP messages

d The struct netpacket defines two cases of an Internet packet

d The netpacket struct starts with an Ethernet packet header followed by an IP header, and
then has a union to define

– A UDP packet encapsulated in the IP packet

– An ICMP echo request or reply packet encapsulated in the IP packet

d A separate struct defines a DHCP message (which has many fields)

Xinu – module 17 14 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Network Definitions In net.h (Part 1)

/* net.h */

#define NETSTK 8192 /* Stack size for network setup */
#define NETPRIO 500 /* Network startup priority */
#define NETBOOTFILE 128 /* Size of the netboot filename */

/* Constants used in the networking code */

#define ETH_ARP 0x0806 /* Ethernet type for ARP */
#define ETH_IP 0x0800 /* Ethernet type for IP */
#define ETH_IPv6 0x86DD /* Ethernet type for IPv6 */

/* Format of an Ethernet packet carrying IPv4 and UDP */

#pragma pack(2)
struct netpacket {

byte net_ethdst[ETH_ADDR_LEN];/* Ethernet dest. MAC address */
byte net_ethsrc[ETH_ADDR_LEN];/* Ethernet source MAC address */
uint16 net_ethtype; /* Ethernet type field */
byte net_ipvh; /* IP version and hdr length */
byte net_iptos; /* IP type of service */
uint16 net_iplen; /* IP total packet length */
uint16 net_ipid; /* IP datagram ID */
uint16 net_ipfrag; /* IP flags & fragment offset */
byte net_ipttl; /* IP time-to-live */
byte net_ipproto; /* IP protocol (actually type) */
uint16 net_ipcksum; /* IP checksum */
uint32 net_ipsrc; /* IP source address */
uint32 net_ipdst; /* IP destination address */

Xinu – module 17 15 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Network Definitions In net.h (Part 2)

union {
struct {
uint16 net_udpsport; /* UDP source protocol port */
uint16 net_udpdport; /* UDP destination protocol port*/
uint16 net_udplen; /* UDP total length */
uint16 net_udpcksum; /* UDP checksum */
byte net_udpdata[1500-28];/* UDP payload (1500-above)*/

};
struct {
byte net_ictype; /* ICMP message type */
byte net_iccode; /* ICMP code field (0 for ping) */
uint16 net_iccksum; /* ICMP message checksum */
uint16 net_icident; /* ICMP identifier */
uint16 net_icseq; /* ICMP sequence number */
byte net_icdata[1500-28];/* ICMP payload (1500-above)*/

};
};

};
#pragma pack()

#define PACKLEN sizeof(struct netpacket)

extern bpid32 netbufpool; /* ID of net packet buffer pool */

Xinu – module 17 16 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Network Definitions In net.h (Part 3)

struct network { /* Network information */
uint32 ipucast; /* Computer's IP unicast address*/
uint32 ipbcast; /* IP broadcast address */
uint32 ipmask; /* IP address mask */
uint32 ipprefix; /* IP (network) prefix */
uint32 iprouter; /* Default router address */
uint32 bootserver; /* Boot server address */
uint32 dnsserver; /* DNS server address */
uint32 ntpserver; /* NTP (time) server address */
bool8 ipvalid; /* Nonzero => above are valid */
byte ethucast[ETH_ADDR_LEN]; /* Ethernet multicast address */
byte ethbcast[ETH_ADDR_LEN]; /* Ethernet broadcast address */
char bootfile[NETBOOTFILE]; /* Name of boot file */

};

extern struct network NetData; /* Local Network Interface info */

d Global variable NetData holds network information obtained at startup, including

– The computer’s IP address (needed for outgoing as well as incoming packets)

– The address mask for the local network

– The address of an Internet router to use (needed for outgoing packets)

– The address of an NTP time server (used to obtain the time of day)
Xinu – module 17 17 2025

Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Services An Application Can Use

d In this version of Xinu, an application can either

– Use UDP to exchange messages with another application running on a computer on
the Internet

– Use ICMP to send a ping packet and receive a reply from an arbitrary computer on
the Internet

d The other protocols (ARP and DHCP) merely provide support; they are handled by the
network code and invisible to an application

Xinu – module 17 18 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Identifying An Application

d UDP allows multiple applications on a given computer to communicate with other
applications running on computers attached to the Internet

d To identify a remote application, a sending application must specify two items

– The computer on which the remote application runs

– An ID that identifies a specific application on the computer

d For the two items, UDP uses

– The 32-bit IP address of the remote computer

– A 16-bit integer called a UDP protocol port number that identifies an application

d For this course, you do not need to know how IP addresses and port numbers are
obtained; just understand that two items are needed to identify each application

Xinu – module 17 19 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Features Of Networks Related To Operating Systems

d Three aspects of Internet software relate directly to the operating system

– The interface that applications use to communicate over the Internet

– The process structure used internally to implement protocols

– The need for buffering

d We will consider all three

Xinu – module 17 20 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Interface To
Network Protocols

An Interface Used To Communicate Over The Internet

d Xinu follows the same approach as the well-known socket API

– Before sending data, an application calls a function to register information about a
remote destination (i.e., a specific application on a specific remote computer)

– Network code in the operating system responds by allocating an internal data
structure, placing the information in the data structure, and returning a small integer
descriptor that the application uses for communication

– Similar to other descriptors in Xinu, each descriptor used for network
communication is an index into an array, and is informally called a slot number

– The application uses the descriptor to send and receive data (there’s no need to
specify the remote application each time the application sends or receives data)

– When finished, the application releases the descriptor

Xinu – module 17 22 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Interface Functions That Applications Use for UDP

d udp_register – called by an application to register endpoint information, a remote
computer (IP address), remote UDP port, and a local UDP port

d udp_send – called by an application to send a UDP packet to a previously-registered
endpoint

d udp_recv – called by an application to receive a UDP packet from a previously-
registered remote endpoint

d udp_recvaddr – called by a server application to receive a UDP packet and record the
sender’s address (allows an application to receive messages from an arbitrary
application)

d udp_release – called by an application to release a previously-registered endpoint

d Note: the descriptor returned by udp_register must be passed to the other functions

Xinu – module 17 23 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Processing An Incoming UDP Packet

d When a packet arrives, the network code calls internal function udp_in

d Udp_in searches the table of registered endpoints

– If the incoming packet matches a registered endpoint, the packet is enqueued on the
entry, and the semaphore for the entry is signaled to allow a waiting process (if any)
to become ready and read the message

– Else no match is found in the table, and the incoming packet is ignored (silently
dropped)

Xinu – module 17 24 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Timeout And Retransmission

d Retransmission of a packet is fundamental in networking

d Retransmission handles packet loss by sending a second copy if the original is lost

d The idea: repeat the following K times

– Send a request

– Wait up to N milliseconds for a reply

d If a reply arrives, process the reply immediately

d If no reply arrives after K times declare failure

d Typically, (K is a small number, such as 3)

Xinu – module 17 25 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Network Functions And Timeout

d The network interface functions allow an application to specify a maximum time to wait
for a reply

d Example

– When calling udp_recv, an application specifies a maximum time to wait

– The call either returns a message that was received or TIMEOUT

d The ICMP (ping) interface operates the same way as the UDP interface

d The network code for UDP and ICMP implements the timeout

Xinu – module 17 26 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Implementation Of Timeout

d Functions that read an incoming message uses recvtime to implement timeout (recall
that recvtime was covered previously)

d When it calls udp_recv, a process specifies a maximum wait time

d The code in udp_recv performs the following steps

– If no packet has arrived in the slot, the code

* Places the current process ID in the data structure for the slot

* Calls recvtime to block the calling process (note:when a packet arrives for the
slot, the network code uses send to send a message to the waiting process)

* If a TIMEOUT occurs, returns TIMEOUT to the caller

– Copies the contents of the packet to the callers buffer

Xinu – module 17 27 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

An Example Of Using UDP: Time Of Day

d The first time a process requests the time of day, the gettime function

– Calls getutime to contact an NTP time server and obtains the current time of day
(seconds since January 1, 1900)

– Converts the time to Xinu time (seconds since January 1, 1970)

– Computes and stores the time of day when the system booted (i.e., subtracts clktime
from the current time of day)

d Once the time of day at which the system booted has been stored, Xinu never needs to
contact a time server again

d Instead, getutime merely adds clktime to the time of day at which the system booted

Xinu – module 17 28 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Obtaining The Time Of Day From A Server

d Communication with an NTP server uses UDP

d To send an NTP message, a sender must know

– The Internet address of a computer running an NTP server

– The UDP port protocol number that the NTP server uses

– A local UDP protocol port number that can be used

d Either DHCP returns the IP address for an NTP server or the code uses the address
given by constant TIMESERVER

d The local and remote protocol port numbers to use are given by constants

– Constant TIMELPORT defines a local UDP protocol port number to use

– Constant TIMERPORT define the protocol port number for an NTP server (123)

Xinu – module 17 29 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Obtaining The Time Of Day From A Server
(continued)

d Steps taken to obtain the current time

– Call udp_register to obtain a slot number

– Form an NTP request message and use udp_send to send the request to the server

– Call udp_recv, specifying a maximum wait time of TIMETIMEOUT milliseconds

– Call udp_release to release the slot

– If a timeout occurred, return SYSERR; otherwise, store the time the system booted
and return the current time

d Note:

– Function getutime always returns OK or SYSERR

– An argument specifies where to store the time of day if successful
Xinu – module 17 30 2025

Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Getutime: A Function That Uses UDP (Part 1)

/* getutime.c - getutime */

#include <xinu.h>
#include <stdio.h>

/*--
* getutime - Obtain time in seconds past Jan 1, 1970, UCT (GMT)
*--
*/

status getutime(
uint32 *timvar /* Location to store the result */

)
{

uint32 now; /* Current time in xinu format */
int32 retval; /* Return value from call */
uid32 slot; /* Slot in UDP table */
struct ntp { /* Format of an NTP message */

byte livn; /* LI:2 VN:3 and mode:3 fields */
byte strat; /* Stratum */
byte poll; /* Poll interval */
byte precision; /* Precision */
uint32 rootdelay; /* Root delay */
uint32 rootdisp; /* Root dispersion */
uint32 refid; /* Reference identifier */
uint32 reftimestamp[2];/* Reference timestamp */

Xinu – module 17 31 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Getutime: A Function That Uses UDP (Part 2)

uint32 oritimestamp[2];/* Originate timestamp */
uint32 rectimestamp[2];/* Receive timestamp */
uint32 trntimestamp[2];/* Transmit timestamp */

} ntpmsg;

if (Date.dt_bootvalid) { /* Return time from local info */
*timvar = Date.dt_boot + clktime;
return OK;

}

/* Verify that we have obtained an IP address */

if (getlocalip() == SYSERR) {
return SYSERR;

}

/* If the DHCP response did not contain an NTP server address */
/* use the default server */

if (NetData.ntpserver == 0) {
if (dnslookup(TIMESERVER, &NetData.ntpserver) == SYSERR) {

return SYSERR;
}

}

Xinu – module 17 32 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Getutime: A Function That Uses UDP (Part 3)

/* Contact the time server to get the date and time */

slot = udp_register(NetData.ntpserver, TIMERPORT, TIMELPORT);
if (slot == SYSERR) {

fprintf(stderr,"getutime: cannot register a udp port %d\n",
TIMERPORT);

return SYSERR;
}

/* Send a request message to the NTP server */

memset((char *)&ntpmsg, 0x00, sizeof(ntpmsg));
ntpmsg.livn = 0x1b; /* Client request, protocol version 3 */
retval = udp_send(slot, (char *)&ntpmsg, sizeof(ntpmsg));
if (retval == SYSERR) {

fprintf(stderr,"getutime: cannot send to the server\n");
udp_release(slot);
return SYSERR;

}

/* Read the response from the NTP server */

retval = udp_recv(slot, (char *) &ntpmsg, sizeof(ntpmsg), TIMETIMEOUT);

Xinu – module 17 33 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Getutime: A Function That Uses UDP (Part 4)

if ((retval == SYSERR) || (retval == TIMEOUT)) {
udp_release(slot);
return SYSERR;

}
udp_release(slot);

/* Extract the seconds since Jan 1900 and convert */

now = ntim2xtim(ntohl(ntpmsg.trntimestamp[0]));
Date.dt_boot = now - clktime;
Date.dt_bootvalid = TRUE;
*timvar = now;
return OK;

}

d Notes

– Only a few lines of code call the network functions

– The Internet protocols send integers in network byte order, and function ntohl
converts from network byte order to host byte order for a long integer

Xinu – module 17 34 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The ICMP Interface (For Ping)

d Follows the same approach as UDP

d An application

– Calls icmp_register to register the remote address and receive a descriptor

– Generates an ICMP request packet and calls icmp_send to send the packet

– Calls icmp_recv to receive a reply, specifying a timeout

– Handles the reply, if a valid reply was received

– Calls icmp_release to release the registered endpoint

– Either reports success or an error, if the request timed out

Xinu – module 17 35 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Process Model
For Network Code

DHCP, Network Processes, And Delayed Use

d A computer uses DHCP at startup to obtain an IP address and related information

– DHCP is only used once (i.e., it is only run during startup)

– A DHCP message is sent using UDP (i.e., DHCP uses the UDP interface)

– Sending a UDP message normally requires the sender to know its IP address

d How can a computer send a DHCP message before the computer has an IP address?

d Answer: the computer

– Uses an all-0s IP address as the sender’s address (0.0.0.0 in dotted decimal)

– Sends its initial DHCP request to a special all-1s IP broadcast address
(255.255.255.255 in dotted decimal)

d The resulting packet is broadcast across the local network and a DHCP server responds
without needing the computer’s IP address

Xinu – module 17 37 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

DHCP, Network Processes, And Delayed Use
(continued)

d An interesting process coordination problem arises with DHCP

– To use DHCP, network processes must be running (explained later)

– Network processes are not started until late in the bootstrap sequence

d Our solution: delay using DHCP until an application needs to use the Internet

– Start the network processes at the end during system initialization

– Wait until the first time an application calls getlocalip to obtain the local IP address,
use the call to trigger sending a DHCP request, obtain the reply and store the IP
address locally

– Note: successive calls to getlocalip obtain the stored value locally

d In essence, DHCP runs as a side effect of requesting the local IP address

Xinu – module 17 38 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Need For Network Processes

d Most operating system functions are merely called by application processes

d Network code requires independent processes to ensure that an incoming packet is
handled, even if no application is waiting for the packet

d Examples

– When a ping request arrives from another computer, the receiver must generate and
send a reply even if no application is running

– When an ARP request arrives from another computer, the receiver must send a reply
before Internet packets can arrive from the computer

d The device driver for a network hardware device allows processes to read incoming
packets and write outgoing packets, but does not interpret the packets or send replies

d Consequence: a process must always be waiting to read and handle incoming packets

Xinu – module 17 39 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu’s Network Input Process

d To handle asynchronous packet arrivals, Xinu keeps a network input process running at
all times

d The network input process repeatedly

– Calls read on the ETHER device to block and wait for the next incoming packet

– Handles the packet (e.g., if the packet contains UDP, the network input process calls
udp_in)

d Sending an ARP replay is trivial — the network input process calls a function that
forms a reply and writes it to the ETHER device

d Unfortunately, sending a ping reply causes a problem

Xinu – module 17 40 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Problem With Ping Replies

d Ping replies travel in an IP packet

d Sending an outgoing IP packet may require an ARP exchange with another computer

d The steps are

– Start with an outgoing IP packet

– While holding the outgoing packet, send an ARP request to find the receiver’s
Ethernet address

– Receive an ARP reply

– Add the information in the ARP reply to the original IP packet and send it

d The problem: if the network input process blocks to wait until the needed information
arrives, a deadlock will result because no process will be running to read the ARP reply
packet from the ETHER device

Xinu – module 17 41 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Avoiding Deadlock

d To avoid deadlock

The network input process must never call
a function that blocks to wait for a reply.

d To prevent the network input process from blocking, Xinu uses a separate IP output
process, and arranges for the network input process to deposit outgoing IP packets on a
queue for the output process to handle

d The IP output process can block waiting for an ARP reply because the network input
process remains running

Xinu – module 17 42 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Communication Between The Network Input And IP Output Processes

d Uses a queue of packets and a semaphore for coordination

d The output process repeatedly

– Waits on the semaphore until an outgoing IP packet is placed in the queue

– Performs the ARP exchange if necessary, possibly blocking to wait until a reply has
been received and the information extracted

– Uses the information to send the IP packet

d Note: it is not important that you understand the protocol details, but it important that
you realize that protocols dictate the process structure that is needed

Xinu – module 17 43 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Simplified Illustration Of The Xinu Network Process Model

d Netin handles incoming UDP and ARP packets

packet
arrives netin

process

A1

A2

ping reply ipout
process

UDP table entries
(one per port)

ARP table entries
(one per address)

d Netin enqueues ping replies for ipout, thereby preventing netin from blocking

Xinu – module 17 44 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Buffering Incoming Packets

The Need For Packet Queues

d The netin process has a high priority

d An application process may have a low priority

d Consequences

– An application that is waiting for a packet may not execute immediately after the
packet arrives

– A second packet may arrive for a given application before the first packet has been
handled

d To accommodate delayed processing, Xinu uses packet queues to absorb a small burst
of packets without discarding any

d Note: the above only applies to UDP and ICMP because ARP packets are processed
immediately by the netin process

Xinu – module 17 46 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The ARP Cache And Cache Timeout Processing

d The ARP protocol specifies that the network code must keep a cache of recent address
bindings

d Entries in the cache should be removed after 10 minutes

d Is an additional process needed to implement ARP cache timeout?

d Using an additional process has disadvantages

– More context switching overhead

– Uses system resources, such as stack space, with little real value

Xinu – module 17 47 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Xinu Approach To Cache Timeout

d To avoid having an extra process handle cache timeout, Xinu uses a trick

d When storing an entry in the cache, Xinu stores the current time in a timestamp field in
the entry

d Whenever searching the cache, the code examines the timestamp field in each entry, and
removes the entry if the time has expired

d The approach works well for an ARP cache because the cache is only expected to
contain a few entries, and the search proceeds sequentially

Xinu – module 17 48 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Choosing Process Priorities

d The easy part: network processes should run at higher priority than user processes

d The hard part: deciding whether the input process or output process should have higher
priority

d The choice is not clear

– If the input process has higher priority, output may become a bottleneck

– If the output process has a higher priority, incoming packets may not be handled
quickly

Xinu – module 17 49 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Summary

d Networking is an essential part of any operating system, and three aspects are important
to OS designers

d The interface to protocols (Xinu’s is similar to the socket interface)

– Register to specify a remote endpoint and obtain a descriptor to use

– Use the descriptor to send and receive data

– Release the descriptor

d The process structure for network processes

– Depends on protocols

– An input and output process are needed

d Packet buffers (queues to hold packets)

– Needed because packets arrive in bursts (typically, a small queue suffices)

Xinu – module 17 50 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Questions?

