Xinu—module 16

Module XVI

DMA Devices And
DMA Device Drivers

1

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Direct Memory Access (DMA)

e A hardware technology
e Allows device hardware to communicate directly with memory

e Purpose: provide high-speed transfer of data

Xinu—module 16 2 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

How DM A works (Output)

e A devicedriver
— Places outgoing data in memory
— Tellsa DMA device the address of the data (and possibly the size)
— Continues with other processing
e DMA hardware in the device
— Extracts data from memory and sends it

— Interrupts when the transfer is complete

Xinu—module 16 3 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

How DMA works (Input)

e A devicedriver
— Creates a buffer in memory
— Tellsa DMA device the address of the buffer (and possibly the size)
— Continues with other processing
e DMA hardware in the device
— Walts for data to arrive and places the data in the buffer

— Interrupts when the transfer is complete

Xinu—module 16 4 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

More Advanced DM A

e Uses multiple buffers arranged in a ring

e FEach buffer has a header that contains
— A bit that specifies whether the buffer is full
— The address of the next buffer in the ring

e DMA hardware

— Either sends data and marks the buffer empty (output) or fills a buffer and marks the
buffer full (input)

— Moves to the next buffer in the ring

— Only stops when it reaches an empty output buffer or a full input buffer

Xinu —module 16 5 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

lllustration Of Buffersin A Ring

Transmit ring Receive ring
f'\/ j j - 7t’_> f'\/ j j - 7t’_>
| | | | | | | | | |
U J U J
' '
Transmit buffers Receive buffers
Xinu—module 16 6 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Primary Uses Of DMA

e DMA works best for “block” transfer

e Examples:
— A disk driver that transfers 512-byte disk blocks
— A network driver that transfers network packets

7 2025

Xinu —module 16
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Optimizing DMA Transfers

e Goal: keep adevice busy
e Technique: avoid waiting until an interrupt to set up the next transfer

— For output, continue to place outgoing data in output buffers before the DMA device
reaches the buffer

— For input, consume incoming data and make the buffer empty before the DMA
device reaches the buffer

Xinu—module 16 8 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

An Example Of Optimized DM A Processing (I nput)

e Xinu hasaDMA Ethernet driver
e Thedeviceisgiven aset of DMA buffers
e A high-priority network input process reads and handles each incoming network packet

e The driver switches to the input process immediately when the device interrupts to
specify that a packet has been placed in a buffer

e Note: adisk driver uses the same general approach

Xinu—module 16 9 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Complexity Of DMA Drivers

e The driver must understand
— Exactly what the DMA device expects in the memory buffer
— How to coordinate to avoid changing a buffer that the device is using

e Consequence: writing a DMA driver can be incredibly complex

Xinu—module 16 10 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Example Code For A DMA Driver

e To show the complexity of a DMA interface, we will examine code for the am335x_eth
device used on BeagleBone Black

— Définitions of constants and CSR registers
— Initialization code

— Theinput function (read)

— The output function (write)

e Note: just look at the overall size and complexity, not the details

Xinu—module 16 11 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Example Definitions For A
DMA Ethernet Device (am335x)

[* anB35x _eth.h -

Definitions For An am335x Driver (Part 1)

Et her net device definitions for AM335X SoC */

struct eth_a ale {
uint32 idver;
uint32 resl;
uint32 ctrl;
uint32 res2;
ui nt 32 prescal e;
uint32 res3;
ui nt 32 unknown_vl an;
ui nt 32 res4;
uint32 tblctl;
uint32 res5[4];
uint32 tblw2;
uint32 tblwl;
uint32 tblwo;
uint32 portctl][6];

uint32 tx_ intmask _set;
uint32 tx_ intmask cl ear;
uint32 in_vector;

uint32 eoi _vector;

byt e res2[8];

uint32 rx_intstat_raw,
uint32 rx_intstat masked,;
uint32 rx_intmask _set;
uint32 rx_intmask cl ear;
uint32 dna_intstat _raw
uint32 dnma_i ntstat_nasket;
uint32 dnma_i nt mask_set ;
uint32 dna_i ntmask cl ear;

Xinu—module 16

13
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

ui nt 32
ui nt 32
byt e

ui nt 32
ui nt 32
ui nt 32
ui nt 32
ui nt 32
ui nt 32
ui nt 32
ui nt 32
ui nt 32
ui nt 32

Definitions For An am335x Driver (Part 2)

I n_vect or;

eoi _vector;

res2[8];
rx_intstat _raw,
rx_intstat masked,;
rx_intmask _set;
rx_intmask cl ear;
dma_intstat _raw,

dma_i nt st at _masket ;

dma_i nt mask_set;
dma_i nt mask_cl ear;
rx_pendt hresh[8] ;
rx_freebuffer[8];

struct eth_a stateram{

ui nt 32
ui nt 32
ui nt 32
ui nt 32

Xinu—module 16

t x_hdp[8] ;
rx_hdpl[8] ;
tx_cp[8];
rx_cpl[8];

14
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

struct

};

#def i ne
#def i ne
#def i ne
#def i ne

struct

Definitions For An am335x Driver (Part 3)

eth_a sl {

uint 32 1dver;
uint32 nacctrl;
uint 32 nacst at;
uint32 reset;
uint32 rx_maxl en;
uint32 bofftest;
ui nt 32 rx_pause;
uint32 tx_pause;
uint32 enctrl;
uint32 rx_pri_map;
uint32 tx _gap

ETH AMB35X_SLCTL_FD
ETH_AMB35X_SLCTL_LB
ETH_AMB35X_SLCTL_EN
ETH_AMB35X_SLCTL_G G

eth _a ss {

uint 32 i1dver;

uint32 ctrl;

uint32 reset;

uint32 stat_port_en;
ui nt 32 ptype;

Xinu—module 16

0x00000001
0x00000002
0x00000020
0x00000080

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

N~ TS YN

* ok ok ok

Ful | Duplex */
Loopback */
Rx/ Tx Enable */
G gabit node */

15

2025

u
u
u
u
u
u
ui
ui

Hi

nt 32
nt 32
nt 32
nt 32
nt 32
nt 32
nt 32
nt 32

Definitions For An am335x Driver (Part 4)

soft _idle;
thru rate;
gap_t hresh;
tx_start_wds;
flow ctrl;

vl an_type;

ts |type;

dir _Itype;

struct eth_a w {

u
u
u
u
u
u
ui
ui
ui
ui
ui
ui
ui

Xinu—module 16

nt 32
nt 32
nt 32
nt 32
nt 32
nt 32
nt 32
nt 32
nt 32
nt 32
nt 32
nt 32
nt 32

| dver ;

reset;

ctrl;

int_ctrl;

cO rx _thresh_en;
cO rx _en;

cO _tx _en;

cO _m sc_en;
resif 8];

cO rx thresh_stat;
cO rx_stat;

cO tx stat,;

cO _m sc_stat;

16
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Definitions For An am335x Driver (Part 5)

struct eth_a ndio {

ui nt 32 ver;

uint32 ctrl;

uint32 alive;

uint 32 |ink;

uint32 |inkintraw,

ui nt 32 |inki nt mnasked:;

byt e reslf 8];

ui nt 32 userintraw,

ui nt 32 useri nt msked;

ui nt 32 useri nt maskset

ui nt 32 useri nt maskclr;

byt e res2[80] ;

ui nt 32 useraccessoO;

ui nt 32 user physel 0;

ui nt 32 useraccessl;

ui nt 32 user physel 1;
};
#define ETH AMB35X MDI OCTL_EN 0x40000000
#define ETH AM335X MDI QUA GO 0x80000000 /* Perorm MDI O access*/
#define ETH AM335X MDI OQUA WR 0x40000000 /* Wite access */
#define ETH AM335X MDI OQUA ACK 0x20000000 /* Read Ack */
#define ETH AM335X NMDI OQUA DM Ox0000ffff /* MDI O Data Mask */
Xinu—module 16 17 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

struct

Hi

struct

};

#def i ne
#def i ne
#def i ne
#def i ne

#def i ne

eth a cs
vol atil e
vol atil e
vol atil e
vol atil e
vol atile
vol atile
vol atil e

eth _a rx
struct
ui nt 32
uint 16
ui nt 16
ui nt 16
ui nt 16

Definitions For An am335x Driver (Part 6)

reg {
struct

struct
struct
struct
struct
struct
struct

_desc {

eth a ale
eth _a cpdma
eth a stateram
eth a sl

eth a_ss
eth a w
eth a ndio

eth a rx_desc *next;

buf f er;
buf | en;
buf of f;
packl en;
stat;

ETH_AMB35X_RDS_SOP 0x8000
ETH_AMB35X_RDS_EOP 0x4000
ETH_AMB35X_RDS_OWN 0x2000
ETH_AMB35X_RDS_EOQ 0x1000

ETH_AMB35X_RX_RI NG S| ZE 32

Xinu—module 16

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

*al e;
*cpdns;
*st at er am

/* Start of packet

18

*/

2025

Definitions For An am335x Driver (Part 7)

struct eth_a tx desc {
struct eth_a tx _desc *next;
ui nt 32 buffer;
uint 16 bufl en;
uint 16 buf of f;
uint 16 packl en;
uint16 stat;

}s

#define ETH AM335X TDS SOP 0x8000

#defi ne ETH AMB35X TDS EOP 0x4000

#define ETH AM335X TDS OMN 0x2000

#define ETH AMB35X TDS EOQ 0x1000

#define ETH AMB35X TDS DI R 0x0010

#define ETH AMB35X TDS P1 0x0001

#define ETH AMB35X TX RI NG SI ZE 16

#defi ne ETH AMB35X ALE ADDR 0x4A100D00
#defi ne ETH AMB35X CPDVA ADDR 0x4A100800
#define ETH AM335X STATERAM ADDR 0x4A100A00
#define ETH AMB35X SL1 ADDR 0x4A100D80
#define ETH AM335X MDI O ADDR 0x4A101000
#define ETH AM335X SS ADDR 0x4A100000
#define ETH AMB35X VR ADDR 0x4A101200
#define ETH AMB35X RXI NT 41

#define ETH AMB35X TXI NT 42

#define ETH AM335X | NI T_DELAY 1000000

Xinu—module 16 19 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Initialization Of A DMA
Ethernet Device (am335x)

Initialization Of An am335x (Part 1)

/* ethinit.c - ethinit, eth phy read, eth phy wite */

#i ncl ude <xi nu. h>

struct eth_a csreg eth_a_regs;
struct ethcblk ethertab[1];
| * o o eeeeeeaa
* eth phy read - read a PHY register
K o o o o e Y Y Y Y e e oo
*/
I nt 32 eth_phy read (
volatile struct eth a ndio *ndio,/* MDI O CSR poi nt er
byt e regadr, /* PHY Regi ster nunber */
byt e phyadr, /* PHY address */
uint32 *value /* Pointer to val ue */
)
{
/* Ethernet PHY has only 32 registers */
i f(regadr > 31) {
return SYSERR,
}
Xinu—module 16 21

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Initialization Of An am335x (Part 2)

/* Only 32 possible PHY addresses */
I f (phyadr > 31) {
return SYSERR;
}
/* Wait for the previous access to conplete */
whi | e((ndi o- >useraccess0 & ETH AMB35X MDIOQUA GO !'= 0);
/* Start the access */
ndi o- >useraccess0 = (ETH AM335X MDI QUA GO |
(regadr << 21) |
(phyadr << 16);
/* Wait until the access is conplete */
whi | e((nmdi o- >useraccess0 & ETH AM335X MDIQUA GO) =0);

[* Check I f the access was successful */

I f((nmdi o->useraccess0 & ETH AM335X MDI OQUA ACK) == 0) {
return SYSERR;
}

Xinu—module 16 22 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Initialization Of An am335x (Part 3)

/| * Copy the value read */
(*val ue) = ndi o->useraccess0 & ETH AM335X NMDI OQUA DM

return OK;

*/
I nt 32 eth phy wite (
volatile struct eth a ndio *ndio, /* MDI O CSR poi nter */
byt e regadr, /* PHY register nunber */
byt e phyadr, /* PHY address */
uint 32 val ue [* Value to be witten */

)
{
/* There are only 32 PHY registers */
i f(regadr > 31) {
return SYSERR,
}
Xinu—module 16 23 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Initialization Of An am335x (Part 4)

/* There are only 32 possi bl e PHY addresses */

I f (phyadr > 31) {

return SYSERR;

}

/* Wait for the previous access to conplete */

whi | e((ndi o- >useraccess0 & ETH AM335X MDIQUA GO !'= 0);

/* Start the access */

mdi o- >user accessO

= ETH _AMB35X_MDI OUA _
ETH AM335X MDI OUA
(regadr << 21) |
(phyadr << 16) |
(value & Oxffff);

GO |
VR |

/* Wait for the access to conplete */

whi | e((ndi o- >useraccess0 & ETH AM335X MDIQUA GO !'= 0);

return OK

Xinu—module 16

24
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Initialization Of An am335x (Part 5)

*/
*/

*/
*/
*/

| * o e
* eth _phy reset - Reset an Et hernet PHY
*/
I nt 32 et h_phy reset (
volatile struct eth a ndio *ndio, /* MDI O CSR poi nter
byt e phyadr /* PHY Address
{)
uint32 phyreg; /* Variable to hold ETH PHY register val ue
i nt 32 retries;/* Nunmber of retries
i nt 32 retval; /* Return value of functions called here
/* Read the PHY Control Register */
retval = eth_phy read(ndi o, ETH PHY CTLREG phyadr, &phyreq);
i f(retval == SYSERR) {
return SYSERR,
}
/* Set the Reset bit and wite the register */
phyreg | = ETH PHY CTLREG RESET,;
eth_phy wite(ndi o, ETH PHY CTLREG phyadr, phyreg);
Xinu—module 16 25

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Initialization Of An am335x (Part 6)

/* Check if Reset operation is conplete */

for(retries = 0; retries < 10; retries++) {
| f(eth_phy_read(ndi o, ETH PHY CTLREG, phyadr, &phyreg) == SYSERR) {
return SYSERR

}

i f ((phyreg & ETH_PHY_CTLREG RESET) == 0) {
br eak;

}

el se {
retri es++;
DELAY(ETH _AMB35X | NI T_DELAY) ;
conti nue;

}

}

if(retries >= 3) {
return SYSERR,
}

Xinu—module 16 26 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Initialization Of An am335x (Part 7)

/* Check if the Link is established */
for(retries = 0; retries < 10; retries++) {
i f(eth_phy read(ndi o, ETH PHY STATREG phyadr, &phyreg) == SYSERR) {
return SYSERR

}
i f (phyreg & ETH PHY STATREG LI NK) {

br eak;
}
el se {
retri es++;
DELAY(ETH _AMB35X | NI T_DELAY) ;
conti nue;
}

}
if(retries >= 3) {
return SYSERR

}
return OK;
}
Xinu —module 16 27 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Initialization Of An am335x (Part 8)

/S
* ethinit - initialize the TI AMB35X et hernet hardware
K o o o o e Y Y Y e e e Y e Y e e Y Y Y e o
*/
I nt 32 ethinit (
struct dentry *devptr
)
{

struct ethcblk *ethptr;

/[* Ethernet control blk pointer */

struct eth a tx desc *tdescptr;/* Tx descriptor pointer
struct eth_a rx _desc *rdescptr;/* Rx descriptor pointer

struct netpacket *pktptr;
struct eth_a csreg *csrptr;
ui nt 32 phyreg;

i nt 32 retval ;

/| * Packet pointer
/* Ethernet CSR pointer

/* Variable to store PHY reg val

/* Return val ue

i nt 32 I /[* I ndex vari abl e
/|* Get the Ethernet control bl ock address */
/* fromthe device table entry */

ethptr = ðertab[devptr->dvm nor];

/* Store the address of CSRs in the Ethernet control bl ock

csrptr = &th_a regs;
et hptr->csr = csrptr;

Xinu—module 16

28
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

*/
*/
*/
*/
*/
*/
*/

*/

2025

Initialization Of An am335x (Part 9)

/* Initialize the addresses of all the subnbdul es * [

csrptr->ale = (struct eth a ale *)ETH AM335X ALE ADDR;
csrptr->cpdma = (struct eth_a cpdma *) ETH AM335X CPDVA ADDR;
csrptr->s|l = (struct eth_a sl *)ETH AMB35X SL1 ADDR,
csrptr->stateram = (struct eth_a_stateram *)

ETH AMB35X STATERAM ADDR;
csrptr->ss = (struct eth a ss *)ETH AM335X SS ADDR;
csrptr->w = (struct eth_a w *)ETH AMB35X WR_ADDR
csrptr->ndio = (struct eth_a ndio *) ETH AMB35X MDI O ADDR;

/* Reset all the subnodul es */

csrptr->cpdma->reset = 1;

whi | e(csrptr->cpdma->reset == 1);
csrptr->sl->reset = 1;
whi |l e(csrptr->sl->reset == 1);
csrptr->w->reset = 1;
whi | e(csrptr->w->reset == 1) ;
cSrptr->ss->reset = 1;
whi | e(csrptr->ss->reset == 1) ;
/* Enable MDIO */
csrptr->ndio->ctrl |= ETH AM335X _MDI OCTL_EN;
Xinu —module 16 29 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Initialization Of An am335x (Part 10)

/| * Reset the PHY */

retval = eth_phy reset(csrptr->ndio,
i f(retval == SYSERR) {

0);

kprintf("Cannot reset Ethernet PHY\n");

return SYSERR
}

retval = eth_phy read(csrptr->nmdio, ETH PHY CTLREG 0, &phyreg);

i f(retval == SYSERR) {
return SYSERR,
}

i f((phyreg & ETH PHY CTLREG SM) == ETH PHY_10M) {

kprintf("Ethernet Link is Up.

}
el se if((phyreg & ETH PHY CTLREG SM
kprintf("Ethernet Link is Up.

}

el se if((phyreg & ETH PHY_ _CTLREG _SM
kprintf("Ethernet Link is Up.

}

el se {

}

return SYSERR

Xinu—module 16

Speed is 10NMops\n");

== ETH_PHY_100M) {
Speed is 100Mops\n");

== ETH_PHY_1000M) {
Speed is 1000Mops\n");

30

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Initialization Of An am335x (Part 11)

i f(phyreg & ETH PHY _CTLREG FD) {
kprintf("Link is Full Duplex\n");

csrptr->sl->macctrl | = ETH AM335X SLCTL_FD;
}
el se {

kprintf("Link is Half Duplex\n");
}

/| * Read the device MAC address */
for(i =0; i <2; i++) {

et hptr->devAddress[4+i] = *((byte *)(0x44e10630+i));
}

for(i =0; i < 4; i++) {
et hptr->devAddress[i] = *((byte *)(0x44e10634+i));
}

kprintf("MAC Address is: ");
for(i = 0; i <5; i++) {
kprintf("%02X: ", ethptr->devAddress[i]);

}
kprintf("%02X\n", ethptr->devAddress[5]);

/* Initialize the rx ring size field */
et hptr->rxRingSi ze = ETH AMB35X RX RI NG_SI ZE;

Xinu—module 16 31 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Initialization Of An am335x (Part 12)

/* Allocate nmenory for the rx ring */
ethptr->rxRing = (void*)getnen(sizeof(struct eth_a rx_desc)*
et hptr->rxRi ngSi ze) ;
if((int32)ethptr->rxRi ng == SYSERR) {
return SYSERR;
}

/* Zero out the rx ring */
nmenset ((char*) et hptr->rxRi ng, NULLCH,
si zeof (struct eth _a rx_desc)*et hptr->rxRi ngSi ze);

/* Allocate nmenory for rx buffers */
et hptr->rxBufs = (voi d*)get mem{ ETH BUF_SI ZE *
et hptr->rxRi ngSi ze) ;
i f((int32)ethptr->rxBufs == SYSERR) {
return SYSERR;
}

/* Zero out the rx buffers */
menset ((char *)ethptr->rxBufs, NULLCH ETH BUF SIZE *
et hptr->r xRi ngSi ze) ;

Xinu—module 16 32 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Initialization Of An am335x (Part 13)

/* Initialize the rx ring */

rdescptr = (struct eth _a rx _desc *)ethptr->rxRing;
pkt ptr = (struct netpacket *)ethptr->rxBufs;

for(i = 0; i < ethptr->rxRingSize; i++) {
rdescptr->next = rdescptr + 1;
rdescptr->buffer (ui nt 32) pkt ptr->net et hdst,;
rdescptr->bufl en ETH BUF_SI ZE;
rdescptr - >buf of f 0;
rdescptr->stat = ETH AM335X RDS OWN;
rdescptr ++;
pkt pt r ++;

}
(--rdescptr)->next = NULL;

et hptr->rxHead = O;

ethptr->rxTail = 0;

et hptr->i sem = sencreate(0);

I f((int32)ethptr->isem == SYSERR) {
return SYSERR

}

/* initialize the tx ring size */
et hptr->txRi ngSi ze = ETH AM335X_TX_ RI NG_SI ZE;

Xinu—module 16 33 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Initialization Of An am335x (Part 14)

/* Allocate nenory for tx ring */
ethptr->txRing = (void*)getnen(sizeof(struct eth_a tx desc)*
et hptr->t XRi ngSi ze) ;
if((int32)ethptr->txRi ng == SYSERR) {
return SYSERR;
}

/* Zero out the tx ring */
nmenset ((char*) et hptr->t xRi ng, NULLCH,
si zeof (struct eth _a tx desc)*ethptr->txRi ngSi ze);

/* Allocate menory for tx buffers */
et hptr->txBufs = (voi d*)get mem{ ETH BUF_SI ZE *
et hptr->t xRi ngSi ze) ;
if((int32)ethptr->txBufs == SYSERR) {
return SYSERR;
}

/* Zero out the tx buffers */
menset ((char*) et hptr->txBufs, NULLCH, ETH BUF _SI ZE *
et hptr- >t xRi ngSi ze) ;

/* Initialize the tx ring */

tdescptr = (struct eth _a tx desc *)ethptr->txRi ng;
pktptr = (struct netpacket *)ethptr->txBufs;

Xinu—module 16 34 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Initialization Of An am335x (Part 15)

for(i = 0; i < ethptr->txRingSize; i++) {

tdescptr->next = NULL;
tdescptr->buffer = (uint32)pktptr->net et hdst;
tdescptr->buflen = ETH BUF_SI ZE;
tdescptr->bufoff = O;
tdescptr->stat = (ETH AMB35X TDS SOP |

ETH AM335X TDS EOP |

ETH AMB35X TDS DI R |

ETH AMB35X TDS P1);
t descptr ++;

pkt pt r ++;
}
et hptr->t xHead = O;
ethptr->txTail = O0;

et hptr->o0sem = serr;:r eat e(et hptr->t xRi ngSi ze) ;
I f((int32)ethptr->0sem == SYSERR) {

return SYSERR,
}

/* Enable the ALE and put it into bypass node */
csrptr->ale->ctrl = (ETH AMB35X ALECTL_EN |
ETH AM335X ALECTL_BY);

Xinu—module 16 35 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Initialization Of An am335x (Part 16)

/* Put the ports O, 1 in forwarding state */
csrptr->al e->portctl[0] ETH AMB35X ALEPCTL_ FWD;
csrptr->al e->portctl[1] ETH AMB35X ALEPCTL_ FWD;

/* Start the rx and tx processes in DVA */
csrptr->cpdma->tx_ctrl 1;
csrptr->cpdma->rx_ctrl 1;

/* Initialize the head desc pointers for tx and rx */
csrptr->stateram >t x_hdp[0] 0;
csrptr->stateram >rx_hdp[0] (ui nt 32) et hptr->rxRi ng;

/* Enable Rx and Tx in MAC */
csrptr->sl->macctrl | = ETH AM335X SLCTL_EN,

/* Set interrupt vectors */
set _evec(ETH AM335X TXI NT, (uint32)devptr->dvintr);
set _evec(ETH AMB35X RXI NT, (uint32)devptr->dvintr);

/* Enable the CPDMA interrupts */
csrptr->cpdma->tx_int mask_set = 0x1;
csrptr->cpdma->rx_intmask _set = 0x1;

/* Route the interrupts to core 0 */

csrptr->w->c0_tx_en = 0Ox1;
csrptr->w->c0 rx_en = 0x1;
return OK;
}
Xinu—module 16 36 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Reading From A DMA
Ethernet Device (am335x)

Ethread For An am335x (Part 1)

/* ethread.c - ethread */

#i ncl ude <xi nu. h>

* ethread - read an incom ng packet on TI AM335X Et her net
K
devcal |l ethread (
struct dentry *devptr,
char *buf,
I nt 32 count

{)
struct ethcblk *ethptr; /* Ethernet ctl blk ptr */
struct eth a csreg *csrptr; /* Ethernet CSR pointer */
struct eth_a rx _desc *rdescptr;/* Rx Desc. pointer */
struct eth_a rx _desc *prev; /* Prev Rx desc pointer */
uint32 retval; /* Num of bytes returned*/
et hptr = ðertab[devptr->dvm nor];
/* Get the pointer to Ethernet CSR */
csrptr = (struct eth_a csreg *)ethptr->csr;
Xinu —module 16 38 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Ethread For An am335x (Part 2)

/* Wait for a packet */
wai t (et hptr->i sem;
/* Get pointer to the descriptor */
rdescptr = (struct eth _a rx desc *)ethptr->rxRing +
et hptr - >r xHead;

/* Read the packet |ength */

retval = rdescptr->packl en;
if(retval > count) {

retval = count;
}

/| * Copy the packet into user provided buffer */
mencpy((char *)buf, (char *)rdescptr->buffer, retval);

/* Initialize the descriptor for next packet */
rdescptr->stat = ETH AMB35X RDS OWN;
rdescptr->bufoff = 0O;

rdescptr->bufl en = ETH BUF_SI ZE;
rdescptr->packlen = O;

rdescptr->next = NULL;

Xinu—module 16 39 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Ethread For An am335x (Part 4)

/* Insert the descriptor into Rx queue */
prev = (struct eth_a rx _desc *)csrptr->stateram >rx_hdp[0];
I f(prev == NULL) {

kprintf("hdp 0, adding %\n", rdescptr);

csrptr->stateram >rx_hdp[0] = (uint32)rdescptr;
}
el se {

whi | e(prev->next != NULL) {

prev = prev->next;

}

prev- >next = rdescptr;
}

/* Increment the head index of rx ring */

et hpt r - >r xHead++;

i f(ethptr->rxHead >= ethptr->rxRi ngSi ze) {
et hptr->rxHead = O;

return retval;
Xinu—module 16 40 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Writing To A DMA
Ethernet Device (am335x)

Ethwrite For An am335x (Part 1)

/[* ethwrite.c - ethwite */

#i ncl ude <xi nu. h>

* ethwite - enqueue a packet for transm ssion on TI AM335X Et her net

*/
I nt 32 ethwite (

struct dentry *devptr,
char *buf,
I nt 32 count

)
{ |
struct ethcblk *ethptr; /* Ether entry pointer */
struct eth a csreg *csrptr; /* Ethernet CSR pointer */
struct eth_a tx desc *tdescptr;/* Tx Desc. pointer */
struct eth_a tx desc *prev; /* Prev. Desc. pointer */
ethptr = ðertab[devptr->dvm nor];
/* Get the pointer to the Ethernet CSR */
csrptr = (struct eth_a csreg *)ethptr->csr;
Xinu—module 16 42 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

/* Wait for an enp
wai t (et hptr->o0sem

/* Get the pointer
tdescptr = (struct

/* Adjust count if

Ethwrite For An am335x (Part 2)

ty slot in the queue */
to the next descriptor */

eth _a tx _desc *)ethptr->txRing +
ethptr->txTail;

greater than max. possible packet size */

i f (count > PACKLEN) {
count = PACKLEN

}

/* Initialize the

descriptor */

tdescptr->next = NULL;

t descptr->buflen =
t descpt r - >buf of f

t descpt r->packl en
tdescptr->stat = (

/| * Copy the packet
mencpy((char *)tde

Xinu—module 16

count ;
0;
= count;
ETH AMB35X_TDS SOP

| Start of packet
ETH AM335X TDS EOP |

I

|

End of packet

Own flag set for DVA
Di rect ed packet

Qut put port is portl

ETH AMB35X_TDS OWN
ETH_AMB35X_TDS DI R
ETH _AMB35X_TDS P1);

N~ TS TS NS
* Ok ko *

into the Tx buffer */
scptr->buffer, buf, count);

43
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

*/
*/
*/
*/
*/

2025

Ethwrite For An am335x (Part 3)

/* TODO Fi gure out why we need this hack */
/* This ethernet device does not send packets smaller than 60 */
/* bytes; So pad a small packet to make it 60 bytes | ong */

i f(count < 60) {
menset ((char *)tdescptr->buffer+count, 0, 60-count);
tdescptr->buflen = 60;
t descptr->packl en = 60;

}

/* Insert the descriptor into Tx queue */

if(csrptr->stateram >tx_hdp[0] == 0) {
/* Tx queue is enpty, this desc. wll be the first */
csrptr->stateram >t x_hdp[0] = (uint32)tdescptr;

}

el se {
/* Tx queue not enpty, insert at end */
prev = (struct eth_a tx _desc *)

csrptr->stateram >t x_hdp[0] ;
whi | e(prev->next !'= NULL) {
prev = prev->next;

}
prev- >next = tdescptr;

}

Xinu —module 16 44 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Ethwrite For An am335x (Part 4)

/* Increment the tail index of the Tx ring */
et hptr->t xTai | ++;
if(ethptr->txTail >= ethptr->txRingSize) {

ethptr->txTail = O;
}
return count;
}
Xinu—module 16 45 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Summary

e Direct Memory Access makes it possible for a device to transfer large blocks of data to
or from memory

e DMA ismost useful for devices such as disks or network interfaces where each transfer
IS hundreds or thousands of bytes

e A devicedriver for adevice that uses DMA contains many details and can be difficult
to write

Xinu —module 16 46 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Ouestions?

