
Module XVI

DMA Devices And
DMA Device Drivers

Xinu – module 16 1 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Direct Memory Access (DMA)

d A hardware technology

d Allows device hardware to communicate directly with memory

d Purpose: provide high-speed transfer of data

Xinu – module 16 2 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

How DMA works (Output)

d A device driver

– Places outgoing data in memory

– Tells a DMA device the address of the data (and possibly the size)

– Continues with other processing

d DMA hardware in the device

– Extracts data from memory and sends it

– Interrupts when the transfer is complete

Xinu – module 16 3 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

How DMA works (Input)

d A device driver

– Creates a buffer in memory

– Tells a DMA device the address of the buffer (and possibly the size)

– Continues with other processing

d DMA hardware in the device

– Waits for data to arrive and places the data in the buffer

– Interrupts when the transfer is complete

Xinu – module 16 4 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

More Advanced DMA

d Uses multiple buffers arranged in a ring

d Each buffer has a header that contains

– A bit that specifies whether the buffer is full

– The address of the next buffer in the ring

d DMA hardware

– Either sends data and marks the buffer empty (output) or fills a buffer and marks the
buffer full (input)

– Moves to the next buffer in the ring

– Only stops when it reaches an empty output buffer or a full input buffer

Xinu – module 16 5 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Illustration Of Buffers In A Ring

.

.

Transmit ring Receive ring

Transmit buffers Receive buffers

Xinu – module 16 6 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Primary Uses Of DMA

d DMA works best for “block” transfer

d Examples:

– A disk driver that transfers 512-byte disk blocks

– A network driver that transfers network packets

Xinu – module 16 7 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Optimizing DMA Transfers

d Goal: keep a device busy

d Technique: avoid waiting until an interrupt to set up the next transfer

– For output, continue to place outgoing data in output buffers before the DMA device
reaches the buffer

– For input, consume incoming data and make the buffer empty before the DMA
device reaches the buffer

Xinu – module 16 8 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

An Example Of Optimized DMA Processing (Input)

d Xinu has a DMA Ethernet driver

d The device is given a set of DMA buffers

d A high-priority network input process reads and handles each incoming network packet

d The driver switches to the input process immediately when the device interrupts to
specify that a packet has been placed in a buffer

d Note: a disk driver uses the same general approach

Xinu – module 16 9 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Complexity Of DMA Drivers

d The driver must understand

– Exactly what the DMA device expects in the memory buffer

– How to coordinate to avoid changing a buffer that the device is using

d Consequence: writing a DMA driver can be incredibly complex

Xinu – module 16 10 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Example Code For A DMA Driver

d To show the complexity of a DMA interface, we will examine code for the am335x_eth
device used on BeagleBone Black

– Definitions of constants and CSR registers

– Initialization code

– The input function (read)

– The output function (write)

d Note: just look at the overall size and complexity, not the details

Xinu – module 16 11 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Example Definitions For A
DMA Ethernet Device (am335x)

Definitions For An am335x Driver (Part 1)

/* am335x_eth.h - Ethernet device definitions for AM335X SoC */

struct eth_a_ale {
uint32 idver;
uint32 res1;
uint32 ctrl;
uint32 res2;
uint32 prescale;
uint32 res3;
uint32 unknown_vlan;
uint32 res4;
uint32 tblctl;
uint32 res5[4];
uint32 tblw2;
uint32 tblw1;
uint32 tblw0;
uint32 portctl[6];

};
uint32 tx_intmask_set;
uint32 tx_intmask_clear;
uint32 in_vector;
uint32 eoi_vector;
byte res2[8];
uint32 rx_intstat_raw;
uint32 rx_intstat_masked;
uint32 rx_intmask_set;
uint32 rx_intmask_clear;
uint32 dma_intstat_raw;
uint32 dma_intstat_masket;
uint32 dma_intmask_set;
uint32 dma_intmask_clear;

Xinu – module 16 13 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Definitions For An am335x Driver (Part 2)

uint32 in_vector;
uint32 eoi_vector;
byte res2[8];
uint32 rx_intstat_raw;
uint32 rx_intstat_masked;
uint32 rx_intmask_set;
uint32 rx_intmask_clear;
uint32 dma_intstat_raw;
uint32 dma_intstat_masket;
uint32 dma_intmask_set;
uint32 dma_intmask_clear;
uint32 rx_pendthresh[8];
uint32 rx_freebuffer[8];

};

struct eth_a_stateram {
uint32 tx_hdp[8];
uint32 rx_hdp[8];
uint32 tx_cp[8];
uint32 rx_cp[8];

};

Xinu – module 16 14 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Definitions For An am335x Driver (Part 3)

struct eth_a_sl {
uint32 idver;
uint32 macctrl;
uint32 macstat;
uint32 reset;
uint32 rx_maxlen;
uint32 bofftest;
uint32 rx_pause;
uint32 tx_pause;
uint32 emctrl;
uint32 rx_pri_map;
uint32 tx_gap;

};

#define ETH_AM335X_SLCTL_FD 0x00000001 /* Full Duplex */
#define ETH_AM335X_SLCTL_LB 0x00000002 /* Loopback */
#define ETH_AM335X_SLCTL_EN 0x00000020 /* Rx/Tx Enable */
#define ETH_AM335X_SLCTL_GIG 0x00000080 /* Gigabit mode */

struct eth_a_ss {
uint32 idver;
uint32 ctrl;
uint32 reset;
uint32 stat_port_en;
uint32 ptype;

Xinu – module 16 15 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Definitions For An am335x Driver (Part 4)

uint32 soft_idle;
uint32 thru_rate;
uint32 gap_thresh;
uint32 tx_start_wds;
uint32 flow_ctrl;
uint32 vlan_type;
uint32 ts_ltype;
uint32 dlr_ltype;

};

struct eth_a_wr {
uint32 idver;
uint32 reset;
uint32 ctrl;
uint32 int_ctrl;
uint32 c0_rx_thresh_en;
uint32 c0_rx_en;
uint32 c0_tx_en;
uint32 c0_misc_en;
uint32 res1[8];
uint32 c0_rx_thresh_stat;
uint32 c0_rx_stat;
uint32 c0_tx_stat;
uint32 c0_misc_stat;

};

Xinu – module 16 16 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Definitions For An am335x Driver (Part 5)

struct eth_a_mdio {
uint32 ver;
uint32 ctrl;
uint32 alive;
uint32 link;
uint32 linkintraw;
uint32 linkintmasked;
byte res1[8];
uint32 userintraw;
uint32 userintmasked;
uint32 userintmaskset;
uint32 userintmaskclr;
byte res2[80];
uint32 useraccess0;
uint32 userphysel0;
uint32 useraccess1;
uint32 userphysel1;

};

#define ETH_AM335X_MDIOCTL_EN 0x40000000

#define ETH_AM335X_MDIOUA_GO 0x80000000 /* Perorm MDIO access*/
#define ETH_AM335X_MDIOUA_WR 0x40000000 /* Write access */
#define ETH_AM335X_MDIOUA_ACK 0x20000000 /* Read Ack */
#define ETH_AM335X_MDIOUA_DM 0x0000ffff /* MDIO Data Mask */

Xinu – module 16 17 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Definitions For An am335x Driver (Part 6)

struct eth_a_csreg {
volatile struct eth_a_ale *ale;
volatile struct eth_a_cpdma *cpdma;
volatile struct eth_a_stateram *stateram;
volatile struct eth_a_sl *sl;
volatile struct eth_a_ss *ss;
volatile struct eth_a_wr *wr;
volatile struct eth_a_mdio *mdio;

};

struct eth_a_rx_desc {
struct eth_a_rx_desc *next;
uint32 buffer;
uint16 buflen;
uint16 bufoff;
uint16 packlen;
uint16 stat;

};

#define ETH_AM335X_RDS_SOP 0x8000 /* Start of packet */
#define ETH_AM335X_RDS_EOP 0x4000
#define ETH_AM335X_RDS_OWN 0x2000
#define ETH_AM335X_RDS_EOQ 0x1000

#define ETH_AM335X_RX_RING_SIZE 32

Xinu – module 16 18 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Definitions For An am335x Driver (Part 7)
struct eth_a_tx_desc {

struct eth_a_tx_desc *next;
uint32 buffer;
uint16 buflen;
uint16 bufoff;
uint16 packlen;
uint16 stat;

};

#define ETH_AM335X_TDS_SOP 0x8000
#define ETH_AM335X_TDS_EOP 0x4000
#define ETH_AM335X_TDS_OWN 0x2000
#define ETH_AM335X_TDS_EOQ 0x1000
#define ETH_AM335X_TDS_DIR 0x0010
#define ETH_AM335X_TDS_P1 0x0001

#define ETH_AM335X_TX_RING_SIZE 16

#define ETH_AM335X_ALE_ADDR 0x4A100D00
#define ETH_AM335X_CPDMA_ADDR 0x4A100800
#define ETH_AM335X_STATERAM_ADDR 0x4A100A00
#define ETH_AM335X_SL1_ADDR 0x4A100D80
#define ETH_AM335X_MDIO_ADDR 0x4A101000
#define ETH_AM335X_SS_ADDR 0x4A100000
#define ETH_AM335X_WR_ADDR 0x4A101200

#define ETH_AM335X_RXINT 41
#define ETH_AM335X_TXINT 42

#define ETH_AM335X_INIT_DELAY 1000000

Xinu – module 16 19 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Initialization Of A DMA
Ethernet Device (am335x)

Initialization Of An am335x (Part 1)

/* ethinit.c - ethinit, eth_phy_read, eth_phy_write */

#include <xinu.h>

struct eth_a_csreg eth_a_regs;

struct ethcblk ethertab[1];

/*---
* eth_phy_read - read a PHY register
*---
*/

int32 eth_phy_read (
volatile struct eth_a_mdio *mdio,/* MDIO CSR pointer */
byte regadr, /* PHY Register number */
byte phyadr, /* PHY address */
uint32 *value /* Pointer to value */

)
{

/* Ethernet PHY has only 32 registers */

if(regadr > 31) {
return SYSERR;

}

Xinu – module 16 21 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Initialization Of An am335x (Part 2)

/* Only 32 possible PHY addresses */

if(phyadr > 31) {
return SYSERR;

}

/* Wait for the previous access to complete */

while((mdio->useraccess0 & ETH_AM335X_MDIOUA_GO) != 0);

/* Start the access */

mdio->useraccess0 = (ETH_AM335X_MDIOUA_GO) |
(regadr << 21) |
(phyadr << 16);

/* Wait until the access is complete */

while((mdio->useraccess0 & ETH_AM335X_MDIOUA_GO) != 0);

/* Check if the access was successful */

if((mdio->useraccess0 & ETH_AM335X_MDIOUA_ACK) == 0) {
return SYSERR;

}

Xinu – module 16 22 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Initialization Of An am335x (Part 3)

/* Copy the value read */

(*value) = mdio->useraccess0 & ETH_AM335X_MDIOUA_DM;

return OK;
}

/*---
* eth_phy_write - write a PHY register
*---
*/

int32 eth_phy_write (
volatile struct eth_a_mdio *mdio, /* MDIO CSR pointer */
byte regadr, /* PHY register number */
byte phyadr, /* PHY address */
uint32 value /* Value to be written */

)
{

/* There are only 32 PHY registers */

if(regadr > 31) {
return SYSERR;

}

Xinu – module 16 23 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Initialization Of An am335x (Part 4)

/* There are only 32 possible PHY addresses */

if(phyadr > 31) {
return SYSERR;

}

/* Wait for the previous access to complete */

while((mdio->useraccess0 & ETH_AM335X_MDIOUA_GO) != 0);

/* Start the access */

mdio->useraccess0 = ETH_AM335X_MDIOUA_GO |
ETH_AM335X_MDIOUA_WR |
(regadr << 21) |
(phyadr << 16) |
(value & 0xffff);

/* Wait for the access to complete */

while((mdio->useraccess0 & ETH_AM335X_MDIOUA_GO) != 0);

return OK;
}

Xinu – module 16 24 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Initialization Of An am335x (Part 5)

/*---
* eth_phy_reset - Reset an Ethernet PHY
*---
*/

int32 eth_phy_reset (
volatile struct eth_a_mdio *mdio, /* MDIO CSR pointer */
byte phyadr /* PHY Address */

)
{

uint32 phyreg; /* Variable to hold ETH PHY register value */
int32 retries;/* Number of retries */
int32 retval; /* Return value of functions called here */

/* Read the PHY Control Register */

retval = eth_phy_read(mdio, ETH_PHY_CTLREG, phyadr, &phyreg);
if(retval == SYSERR) {

return SYSERR;
}

/* Set the Reset bit and write the register */

phyreg |= ETH_PHY_CTLREG_RESET;
eth_phy_write(mdio, ETH_PHY_CTLREG, phyadr, phyreg);

Xinu – module 16 25 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Initialization Of An am335x (Part 6)

/* Check if Reset operation is complete */

for(retries = 0; retries < 10; retries++) {
if(eth_phy_read(mdio, ETH_PHY_CTLREG, phyadr, &phyreg) == SYSERR) {

return SYSERR;
}
if((phyreg & ETH_PHY_CTLREG_RESET) == 0) {

break;
}
else {

retries++;
DELAY(ETH_AM335X_INIT_DELAY);
continue;

}
}

if(retries >= 3) {
return SYSERR;

}

Xinu – module 16 26 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Initialization Of An am335x (Part 7)

/* Check if the Link is established */

for(retries = 0; retries < 10; retries++) {
if(eth_phy_read(mdio, ETH_PHY_STATREG, phyadr, &phyreg) == SYSERR) {

return SYSERR;
}
if(phyreg & ETH_PHY_STATREG_LINK) {

break;
}
else {

retries++;
DELAY(ETH_AM335X_INIT_DELAY);
continue;

}
}
if(retries >= 3) {

return SYSERR;
}

return OK;
}

Xinu – module 16 27 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Initialization Of An am335x (Part 8)

/*---
* ethinit - initialize the TI AM335X ethernet hardware
*---
*/

int32 ethinit (
struct dentry *devptr

)
{

struct ethcblk *ethptr; /* Ethernet control blk pointer */
struct eth_a_tx_desc *tdescptr;/* Tx descriptor pointer */
struct eth_a_rx_desc *rdescptr;/* Rx descriptor pointer */
struct netpacket *pktptr; /* Packet pointer */
struct eth_a_csreg *csrptr; /* Ethernet CSR pointer */
uint32 phyreg; /* Variable to store PHY reg val*/
int32 retval; /* Return value */
int32 i; /* Index variable */

/* Get the Ethernet control block address */
/* from the device table entry */

ethptr = ðertab[devptr->dvminor];

/* Store the address of CSRs in the Ethernet control block */

csrptr = ð_a_regs;
ethptr->csr = csrptr;

Xinu – module 16 28 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Initialization Of An am335x (Part 9)

/* Initialize the addresses of all the submodules */

csrptr->ale = (struct eth_a_ale *)ETH_AM335X_ALE_ADDR;
csrptr->cpdma = (struct eth_a_cpdma *)ETH_AM335X_CPDMA_ADDR;
csrptr->sl = (struct eth_a_sl *)ETH_AM335X_SL1_ADDR;
csrptr->stateram = (struct eth_a_stateram *)

ETH_AM335X_STATERAM_ADDR;
csrptr->ss = (struct eth_a_ss *)ETH_AM335X_SS_ADDR;
csrptr->wr = (struct eth_a_wr *)ETH_AM335X_WR_ADDR;
csrptr->mdio = (struct eth_a_mdio *)ETH_AM335X_MDIO_ADDR;

/* Reset all the submodules */

csrptr->cpdma->reset = 1;
while(csrptr->cpdma->reset == 1);

csrptr->sl->reset = 1;
while(csrptr->sl->reset == 1);

csrptr->wr->reset = 1;
while(csrptr->wr->reset == 1) ;

csrptr->ss->reset = 1;
while(csrptr->ss->reset == 1) ;

/* Enable MDIO */

csrptr->mdio->ctrl |= ETH_AM335X_MDIOCTL_EN;

Xinu – module 16 29 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Initialization Of An am335x (Part 10)

/* Reset the PHY */

retval = eth_phy_reset(csrptr->mdio, 0);
if(retval == SYSERR) {

kprintf("Cannot reset Ethernet PHY\n");
return SYSERR;

}

retval = eth_phy_read(csrptr->mdio, ETH_PHY_CTLREG, 0, &phyreg);
if(retval == SYSERR) {

return SYSERR;
}

if((phyreg & ETH_PHY_CTLREG_SM) == ETH_PHY_10M) {
kprintf("Ethernet Link is Up. Speed is 10Mbps\n");

}
else if((phyreg & ETH_PHY_CTLREG_SM) == ETH_PHY_100M) {

kprintf("Ethernet Link is Up. Speed is 100Mbps\n");
}
else if((phyreg & ETH_PHY_CTLREG_SM) == ETH_PHY_1000M) {

kprintf("Ethernet Link is Up. Speed is 1000Mbps\n");
}
else {

return SYSERR;
}

Xinu – module 16 30 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Initialization Of An am335x (Part 11)

if(phyreg & ETH_PHY_CTLREG_FD) {
kprintf("Link is Full Duplex\n");
csrptr->sl->macctrl |= ETH_AM335X_SLCTL_FD;

}
else {

kprintf("Link is Half Duplex\n");
}

/* Read the device MAC address */
for(i = 0; i < 2; i++) {

ethptr->devAddress[4+i] = *((byte *)(0x44e10630+i));
}
for(i = 0; i < 4; i++) {

ethptr->devAddress[i] = *((byte *)(0x44e10634+i));
}

kprintf("MAC Address is: ");
for(i = 0; i < 5; i++) {

kprintf("%02X:", ethptr->devAddress[i]);
}
kprintf("%02X\n", ethptr->devAddress[5]);

/* Initialize the rx ring size field */
ethptr->rxRingSize = ETH_AM335X_RX_RING_SIZE;

Xinu – module 16 31 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Initialization Of An am335x (Part 12)

/* Allocate memory for the rx ring */
ethptr->rxRing = (void*)getmem(sizeof(struct eth_a_rx_desc)*

ethptr->rxRingSize);
if((int32)ethptr->rxRing == SYSERR) {

return SYSERR;
}

/* Zero out the rx ring */
memset((char*)ethptr->rxRing, NULLCH,

sizeof(struct eth_a_rx_desc)*ethptr->rxRingSize);

/* Allocate memory for rx buffers */
ethptr->rxBufs = (void*)getmem(ETH_BUF_SIZE *

ethptr->rxRingSize);
if((int32)ethptr->rxBufs == SYSERR) {

return SYSERR;
}

/* Zero out the rx buffers */
memset((char *)ethptr->rxBufs, NULLCH, ETH_BUF_SIZE *

ethptr->rxRingSize);

Xinu – module 16 32 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Initialization Of An am335x (Part 13)

/* Initialize the rx ring */

rdescptr = (struct eth_a_rx_desc *)ethptr->rxRing;
pktptr = (struct netpacket *)ethptr->rxBufs;

for(i = 0; i < ethptr->rxRingSize; i++) {
rdescptr->next = rdescptr + 1;
rdescptr->buffer = (uint32)pktptr->net_ethdst;
rdescptr->buflen = ETH_BUF_SIZE;
rdescptr->bufoff = 0;
rdescptr->stat = ETH_AM335X_RDS_OWN;
rdescptr++;
pktptr++;

}
(--rdescptr)->next = NULL;

ethptr->rxHead = 0;
ethptr->rxTail = 0;
ethptr->isem = semcreate(0);
if((int32)ethptr->isem == SYSERR) {

return SYSERR;
}

/* initialize the tx ring size */
ethptr->txRingSize = ETH_AM335X_TX_RING_SIZE;

Xinu – module 16 33 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Initialization Of An am335x (Part 14)

/* Allocate memory for tx ring */
ethptr->txRing = (void*)getmem(sizeof(struct eth_a_tx_desc)*

ethptr->txRingSize);
if((int32)ethptr->txRing == SYSERR) {

return SYSERR;
}

/* Zero out the tx ring */
memset((char*)ethptr->txRing, NULLCH,

sizeof(struct eth_a_tx_desc)*ethptr->txRingSize);

/* Allocate memory for tx buffers */
ethptr->txBufs = (void*)getmem(ETH_BUF_SIZE *

ethptr->txRingSize);
if((int32)ethptr->txBufs == SYSERR) {

return SYSERR;
}

/* Zero out the tx buffers */
memset((char*)ethptr->txBufs, NULLCH, ETH_BUF_SIZE *

ethptr->txRingSize);

/* Initialize the tx ring */

tdescptr = (struct eth_a_tx_desc *)ethptr->txRing;
pktptr = (struct netpacket *)ethptr->txBufs;

Xinu – module 16 34 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Initialization Of An am335x (Part 15)

for(i = 0; i < ethptr->txRingSize; i++) {
tdescptr->next = NULL;
tdescptr->buffer = (uint32)pktptr->net_ethdst;
tdescptr->buflen = ETH_BUF_SIZE;
tdescptr->bufoff = 0;
tdescptr->stat = (ETH_AM335X_TDS_SOP |

ETH_AM335X_TDS_EOP |
ETH_AM335X_TDS_DIR |
ETH_AM335X_TDS_P1);

tdescptr++;
pktptr++;

}

ethptr->txHead = 0;
ethptr->txTail = 0;
ethptr->osem = semcreate(ethptr->txRingSize);
if((int32)ethptr->osem == SYSERR) {

return SYSERR;
}

/* Enable the ALE and put it into bypass mode */
csrptr->ale->ctrl = (ETH_AM335X_ALECTL_EN |

ETH_AM335X_ALECTL_BY);

Xinu – module 16 35 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Initialization Of An am335x (Part 16)
/* Put the ports 0, 1 in forwarding state */
csrptr->ale->portctl[0] = ETH_AM335X_ALEPCTL_FWD;
csrptr->ale->portctl[1] = ETH_AM335X_ALEPCTL_FWD;

/* Start the rx and tx processes in DMA */
csrptr->cpdma->tx_ctrl = 1;
csrptr->cpdma->rx_ctrl = 1;

/* Initialize the head desc pointers for tx and rx */
csrptr->stateram->tx_hdp[0] = 0;
csrptr->stateram->rx_hdp[0] = (uint32)ethptr->rxRing;

/* Enable Rx and Tx in MAC */
csrptr->sl->macctrl |= ETH_AM335X_SLCTL_EN;

/* Set interrupt vectors */
set_evec(ETH_AM335X_TXINT, (uint32)devptr->dvintr);
set_evec(ETH_AM335X_RXINT, (uint32)devptr->dvintr);

/* Enable the CPDMA interrupts */
csrptr->cpdma->tx_intmask_set = 0x1;
csrptr->cpdma->rx_intmask_set = 0x1;

/* Route the interrupts to core 0 */
csrptr->wr->c0_tx_en = 0x1;
csrptr->wr->c0_rx_en = 0x1;

return OK;
}

Xinu – module 16 36 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Reading From A DMA
Ethernet Device (am335x)

Ethread For An am335x (Part 1)

/* ethread.c - ethread */

#include <xinu.h>

/*--
* ethread - read an incoming packet on TI AM335X Ethernet
*--
*/

devcall ethread (
struct dentry *devptr,
char *buf,
int32 count

)
{

struct ethcblk *ethptr; /* Ethernet ctl blk ptr */
struct eth_a_csreg *csrptr; /* Ethernet CSR pointer */
struct eth_a_rx_desc *rdescptr;/* Rx Desc. pointer */
struct eth_a_rx_desc *prev; /* Prev Rx desc pointer */
uint32 retval; /* Num of bytes returned*/

ethptr = ðertab[devptr->dvminor];

/* Get the pointer to Ethernet CSR */
csrptr = (struct eth_a_csreg *)ethptr->csr;

Xinu – module 16 38 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Ethread For An am335x (Part 2)

/* Wait for a packet */
wait(ethptr->isem);
/* Get pointer to the descriptor */
rdescptr = (struct eth_a_rx_desc *)ethptr->rxRing +

ethptr->rxHead;

/* Read the packet length */
retval = rdescptr->packlen;
if(retval > count) {

retval = count;
}

/* Copy the packet into user provided buffer */
memcpy((char *)buf, (char *)rdescptr->buffer, retval);

/* Initialize the descriptor for next packet */
rdescptr->stat = ETH_AM335X_RDS_OWN;
rdescptr->bufoff = 0;
rdescptr->buflen = ETH_BUF_SIZE;
rdescptr->packlen = 0;
rdescptr->next = NULL;

Xinu – module 16 39 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Ethread For An am335x (Part 4)

/* Insert the descriptor into Rx queue */
prev = (struct eth_a_rx_desc *)csrptr->stateram->rx_hdp[0];
if(prev == NULL) {

kprintf("hdp 0, adding %x\n", rdescptr);
csrptr->stateram->rx_hdp[0] = (uint32)rdescptr;

}
else {

while(prev->next != NULL) {
prev = prev->next;

}
prev->next = rdescptr;

}

/* Increment the head index of rx ring */
ethptr->rxHead++;
if(ethptr->rxHead >= ethptr->rxRingSize) {

ethptr->rxHead = 0;
}

return retval;
}

Xinu – module 16 40 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Writing To A DMA
Ethernet Device (am335x)

Ethwrite For An am335x (Part 1)

/* ethwrite.c - ethwrite */

#include <xinu.h>

/*--
* ethwrite - enqueue a packet for transmission on TI AM335X Ethernet
*--
*/

int32 ethwrite (
struct dentry *devptr,
char *buf,
int32 count

)
{

struct ethcblk *ethptr; /* Ether entry pointer */
struct eth_a_csreg *csrptr; /* Ethernet CSR pointer */
struct eth_a_tx_desc *tdescptr;/* Tx Desc. pointer */
struct eth_a_tx_desc *prev; /* Prev. Desc. pointer */

ethptr = ðertab[devptr->dvminor];

/* Get the pointer to the Ethernet CSR */
csrptr = (struct eth_a_csreg *)ethptr->csr;

Xinu – module 16 42 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Ethwrite For An am335x (Part 2)

/* Wait for an empty slot in the queue */
wait(ethptr->osem);

/* Get the pointer to the next descriptor */
tdescptr = (struct eth_a_tx_desc *)ethptr->txRing +

ethptr->txTail;

/* Adjust count if greater than max. possible packet size */
if(count > PACKLEN) {

count = PACKLEN;
}

/* Initialize the descriptor */
tdescptr->next = NULL;
tdescptr->buflen = count;
tdescptr->bufoff = 0;
tdescptr->packlen = count;
tdescptr->stat = (ETH_AM335X_TDS_SOP | /* Start of packet */

ETH_AM335X_TDS_EOP | /* End of packet */
ETH_AM335X_TDS_OWN | /* Own flag set for DMA */
ETH_AM335X_TDS_DIR | /* Directed packet */
ETH_AM335X_TDS_P1); /* Output port is port1 */

/* Copy the packet into the Tx buffer */
memcpy((char *)tdescptr->buffer, buf, count);

Xinu – module 16 43 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Ethwrite For An am335x (Part 3)

/* TODO Figure out why we need this hack */
/* This ethernet device does not send packets smaller than 60 */
/* bytes; So pad a small packet to make it 60 bytes long */

if(count < 60) {
memset((char *)tdescptr->buffer+count, 0, 60-count);
tdescptr->buflen = 60;
tdescptr->packlen = 60;

}

/* Insert the descriptor into Tx queue */

if(csrptr->stateram->tx_hdp[0] == 0) {
/* Tx queue is empty, this desc. will be the first */
csrptr->stateram->tx_hdp[0] = (uint32)tdescptr;

}
else {

/* Tx queue not empty, insert at end */
prev = (struct eth_a_tx_desc *)

csrptr->stateram->tx_hdp[0];
while(prev->next != NULL) {

prev = prev->next;
}
prev->next = tdescptr;

}

Xinu – module 16 44 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Ethwrite For An am335x (Part 4)

/* Increment the tail index of the Tx ring */
ethptr->txTail++;
if(ethptr->txTail >= ethptr->txRingSize) {

ethptr->txTail = 0;
}

return count;
}

Xinu – module 16 45 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Summary

d Direct Memory Access makes it possible for a device to transfer large blocks of data to
or from memory

d DMA is most useful for devices such as disks or network interfaces where each transfer
is hundreds or thousands of bytes

d A device driver for a device that uses DMA contains many details and can be difficult
to write

Xinu – module 16 46 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Questions?

