
Module XV

An Example
Device Driver

Xinu – module 15 1 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Our Example

d Consider a basic console device that

– Displays output in a text window on a user’s screen

– Accepts input from the user’s keyboard

d The device is character-oriented

d Input consists of characters that come from the keyboard

d Output consists of characters sent to the screen

d Following the Unix convention, we used the term tty to describe the type of device

Xinu – module 15 2 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Hardware For The Example Device

d The underlying hardware consists of a Universal Asynchronous Receiver and
Transmitter (UART)

d A UART transfers a single character (bytes) at a time, but the hardware has on-board
input and output buffers that hardware engineers call FIFOs

d When an input interrupt occurs

– One or more characters are available in the input FIFO

– The interrupt handler must extract all the available characters

d Our driver also maintains its own buffers for input and output

d Our driver uses semaphores to synchronize upper and lower halves

Xinu – module 15 3 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

General Idea

d When an application writes characters to a console device, the device driver

– Places outgoing characters in a buffer

– Starts the device

d Note: a process can generate characters faster than the hardware can send them, and
using a buffer in the device driver allows a process to write one or more lines of text
before being blocked to wait for the device

d The console device interrupts when it has finished sending a character

d During the Interrupt

– The lower-half of the device driver repeatedly removes an outgoing character from
the buffer and sends it to the device FIFO until the FIFO fills

– In essence, the device driver keeps the device busy as long as output exists

Xinu – module 15 4 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Tty Device Driver Functions

Upper-Half Lower-Half2222222222222 22222222222222222222222222222222

ttyinit ttyhandler (interrupt handler)
ttyopen ttyhandle_in (input interrupt)
ttyclose ttyhandle_out (output interrupt)
ttyread
ttywrite
ttyputc
ttygetc
ttycontrol

Xinu – module 15 5 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Actions Taken For Character Output

d An output semaphore counts spaces in the device driver buffer

d When it is given a character to send, the upper-half

– Waits on the output semaphore to guarantee buffer space is available

– Deposits the character in next buffer slot

– “Kicks” the device, which causes the device to interrupt

d When the device generates an interrupt, the lower-half

– Extracts a character from next filled slot in the buffer, and stores the character in the
device output FIFO

– Signals the semaphore to indicate that the buffer now has one more empty slot

Xinu – module 15 6 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Tty Driver Complexity

d The hardware is fairly “dumb”

d The device driver provides modes similar to the modes Unix offers

d Raw mode sends and receives individual bytes with no processing at all

d Cooked mode echoes input characters, allows a user to backspace or erase an entire line,
handles flow control, and delivers an entire line of input at a time

d Cbreak mode handles some of the cooked mode functions

Xinu – module 15 7 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Tty Driver Complexity
(continued)

d In addition to a mode that sets many parameters, the driver allows many parameters to
be controlled individually at any time

– Whether CRLF mapping is in effect

– Whether input character echo is turned on

– Whether flow control (^S /^Q) is enabled

– Whether control characters are visualized (e.g., ^A for control-A)

– Whether backspacing over a character “erases” the character from the display

Xinu – module 15 8 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Summary Of Tty Modes

22

Mode Meaning22

The driver delivers each incoming character as it arrives
raw without echoing the character, buffering a line of text,

performing translation, or controlling the output flow
22

The driver buffers input, echoes characters in a readable
cooked form, honors backspace and line kill, allows type-ahead,

handles flow control, and delivers an entire line of text
22

The driver handles character translation, echoing, and
cbreak flow control, but instead of buffering an entire line of text,

the driver delivers each incoming character as it arrives
221
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

d The mode determines how input characters are processed

d An application can change the mode at any time

Xinu – module 15 9 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Circular Input And Output Buffers

d The tty driver maintains three buffers

– One for incoming characters

– One for outgoing characters

– One for echoed characters

d Conceptually, each buffer is circular

d The implementation uses an array where the head and tail are pointers to positions in
the array, which wrap around when they go beyond the end of the array

Xinu – module 15 10 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Circular Buffer Implemented With An Array

–
–

Q

W

E
RT

Y

U

–

–
–

– – Q W E R T Y U – – –

next item
to send
(head)

next slot
to fill
(tail) next item

to send
(head)

next slot
to fill
(tail)

(a) (b)

d The figure shows

(a) A circular buffer

(b) An implementation with an array using head and tail integers to indicate positions

Xinu – module 15 11 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Definitions Used By The Tty Driver (Part 1)

/* tty.h */

#define TY_OBMINSP 20 /* Min space in buffer before */
/* processes awakened to write*/

#define TY_EBUFLEN 20 /* Size of echo queue */

/* Size constants */

#ifndef Ntty
#define Ntty 1 /* Number of serial tty lines */
#endif
#ifndef TY_IBUFLEN
#define TY_IBUFLEN 128 /* Num. chars in input queue */
#endif
#ifndef TY_OBUFLEN
#define TY_OBUFLEN 64 /* Num. chars in output queue */
#endif

/* Mode constants for input and output modes */

#define TY_IMRAW 'R' /* Raw input mode => no edits */
#define TY_IMCOOKED 'C' /* Cooked mode => line editing */
#define TY_IMCBREAK 'K' /* Honor echo, etc, no line edit*/
#define TY_OMRAW 'R' /* Raw output mode => no edits */

Xinu – module 15 12 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Definitions Used By The Tty Driver (Part 2)

struct ttycblk { /* Tty line control block */
char *tyihead; /* Next input char to read */
char *tyitail; /* Next slot for arriving char */
char tyibuff[TY_IBUFLEN]; /* Input buffer (holds one line)*/
sid32 tyisem; /* Input semaphore */
char *tyohead; /* Next output char to xmit */
char *tyotail; /* Next slot for outgoing char */
char tyobuff[TY_OBUFLEN]; /* Output buffer */
sid32 tyosem; /* Output semaphore */
char *tyehead; /* Next echo char to xmit */
char *tyetail; /* Next slot to deposit echo ch */
char tyebuff[TY_EBUFLEN]; /* Echo buffer */
char tyimode; /* Input mode raw/cbreak/cooked */
bool8 tyiecho; /* Is input echoed? */
bool8 tyieback; /* Do erasing backspace on echo?*/
bool8 tyevis; /* Echo control chars as ^X ? */
bool8 tyecrlf; /* Echo CR-LF for newline? */
bool8 tyicrlf; /* Map '\r' to '\n' on input? */
bool8 tyierase; /* Honor erase character? */
char tyierasec; /* Primary erase character */
char tyierasec2; /* Alternate erase character */
bool8 tyeof; /* Honor EOF character? */
char tyeofch; /* EOF character (usually ^D) */
bool8 tyikill; /* Honor line kill character? */
char tyikillc; /* Line kill character */

Xinu – module 15 13 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Definitions Used By The Tty Driver (Part 3)

int32 tyicursor; /* Current cursor position */
bool8 tyoflow; /* Honor ostop/ostart? */
bool8 tyoheld; /* Output currently being held? */
char tyostop; /* Character that stops output */
char tyostart; /* Character that starts output */
bool8 tyocrlf; /* Output CR/LF for LF ? */
char tyifullc; /* Char to send when input full */

};
extern struct ttycblk ttytab[];

/* Characters with meaning to the tty driver */

#define TY_BACKSP '\b' /* Backspace character */
#define TY_BACKSP2 '\177' /* Alternate backspace char. */
#define TY_BELL '\07' /* Character for audible beep */
#define TY_EOFCH '\04' /* Control-D is EOF on input */
#define TY_BLANK ' ' /* Blank */
#define TY_NEWLINE '\n' /* Newline == line feed */
#define TY_RETURN '\r' /* Carriage return character */
#define TY_STOPCH '\023' /* Control-S stops output */
#define TY_STRTCH '\021' /* Control-Q restarts output */
#define TY_KILLCH '\025' /* Control-U is line kill */
#define TY_UPARROW '^' /* Used for control chars (^X) */
#define TY_FULLCH TY_BELL /* Char to echo when buffer full*/

Xinu – module 15 14 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Definitions Used By The Tty Driver (Part 4)

/* Tty control function codes */

#define TC_NEXTC 3 /* Look ahead 1 character */
#define TC_MODER 4 /* Set input mode to raw */
#define TC_MODEC 5 /* Set input mode to cooked */
#define TC_MODEK 6 /* Set input mode to cbreak */
#define TC_ICHARS 8 /* Return number of input chars */
#define TC_ECHO 9 /* Turn on echo */
#define TC_NOECHO 10 /* Turn off echo */

Xinu – module 15 15 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Driver Definitions

d Note the complexity of the definitions

d Conclusion: although a tty device seems straightforward, the parameters used to control
character processing complicate the driver

d Now consider driver functions to transfer data, perform control functions, and handle
interrupts

Xinu – module 15 16 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ttyputc (Part 1))

/* ttyputc.c - ttyputc */

#include <xinu.h>

/*--
* ttyputc - Write one character to a tty device (interrupts disabled)
*--
*/

devcall ttyputc(
struct dentry *devptr, /* Entry in device switch table */
char ch /* Character to write */
)

{
struct ttycblk *typtr; /* Pointer to tty control block */

typtr = &ttytab[devptr->dvminor];

/* Handle output CRLF by sending CR first */

if (ch==TY_NEWLINE && typtr->tyocrlf) {
ttyputc(devptr, TY_RETURN);

}

Xinu – module 15 17 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ttyputc (Part 2)

wait(typtr->tyosem); /* Wait for space in queue */
*typtr->tyotail++ = ch;

/* Wrap around to beginning of buffer, if needed */

if (typtr->tyotail >= &typtr->tyobuff[TY_OBUFLEN]) {
typtr->tyotail = typtr->tyobuff;

}

/* Start output in case device is idle */

ttykickout((struct uart_csreg *)devptr->dvcsr);

return OK;
}

Xinu – module 15 18 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ttygetc (Part 1)

/* ttygetc.c - ttygetc */

#include <xinu.h>

/*--
* ttygetc - Read one character from a tty device (interrupts disabled)
*--
*/

devcall ttygetc(
struct dentry *devptr /* Entry in device switch table */

)
{

char ch; /* Character to return */
struct ttycblk *typtr; /* Pointer to ttytab entry */

typtr = &ttytab[devptr->dvminor];

/* Wait for a character in the buffer and extract one character */

wait(typtr->tyisem);
ch = *typtr->tyihead++;

/* Wrap around to beginning of buffer, if needed */

if (typtr->tyihead >= &typtr->tyibuff[TY_IBUFLEN]) {
typtr->tyihead = typtr->tyibuff;

}

Xinu – module 15 19 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ttygetc (Part 2)

/* In cooked mode, check for the EOF character */

if ((typtr->tyimode == TY_IMCOOKED) && (typtr->tyeof) &&
(ch == typtr->tyeofch)) {

return (devcall)EOF;
}

return (devcall)(0xff & ch);
}

Xinu – module 15 20 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ttywrite

/* ttywrite.c - ttywrite */

#include <xinu.h>

/*--
* ttywrite - Write character(s) to a tty device (interrupts disabled)
*--
*/

devcall ttywrite(
struct dentry *devptr, /* Entry in device switch table */
char *buff, /* Buffer of characters */
int32 count /* Count of characters to write */

)
{

/* Handle negative and zero counts */

if (count < 0) {
return SYSERR;

} else if (count == 0){
return OK;

}

/* Write count characters one at a time */

for (; count>0 ; count--) {
ttyputc(devptr, *buff++);

}
return OK;

}

Xinu – module 15 21 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ttyread (Part 1)

/* ttyread.c - ttyread */

#include <xinu.h>

/*--
* ttyread - Read character(s) from a tty device (interrupts disabled)
*--
*/

devcall ttyread(
struct dentry *devptr, /* Entry in device switch table */
char *buff, /* Buffer of characters */
int32 count /* Count of characters to read */

)
{

struct ttycblk *typtr; /* Pointer to tty control block */
int32 avail; /* Characters available in buff.*/
int32 nread; /* Number of characters read */
int32 firstch; /* First input character on line*/
char ch; /* Next input character */

if (count < 0) {
return SYSERR;

}

Xinu – module 15 22 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ttyread (Part 2)

typtr= &ttytab[devptr->dvminor];

if (typtr->tyimode != TY_IMCOOKED) {

/* For count of zero, return all available characters */

if (count == 0) {
avail = semcount(typtr->tyisem);
if (avail == 0) {

return 0;
} else {

count = avail;
}

}
for (nread = 0; nread < count; nread++) {

*buff++ = (char) ttygetc(devptr);
}
return nread;

}

/* Block until input arrives */

firstch = ttygetc(devptr);

Xinu – module 15 23 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ttyread (Part 3)

/* Check for End-Of-File */

if (firstch == EOF) {
return EOF;

}

/* Read up to a line */

ch = (char) firstch;
*buff++ = ch;
nread = 1;
while ((nread < count) && (ch != TY_NEWLINE) &&

(ch != TY_RETURN)) {
ch = ttygetc(devptr);
*buff++ = ch;
nread++;

}
return nread;

}

Xinu – module 15 24 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ttycontrol (Part 1)

/* ttycontrol.c - ttycontrol */

#include <xinu.h>

/*--
* ttycontrol - Control a tty device by setting modes
*--
*/

devcall ttycontrol(
struct dentry *devptr, /* Entry in device switch table */
int32 func, /* Function to perform */
int32 arg1, /* Argument 1 for request */
int32 arg2 /* Argument 2 for request */

)
{

struct ttycblk *typtr; /* Pointer to tty control block */
char ch; /* Character for lookahead */

typtr = &ttytab[devptr->dvminor];

Xinu – module 15 25 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ttycontrol (Part 2)

/* Process the request */

switch (func) {

case TC_NEXTC:
wait(typtr->tyisem);
ch = *typtr->tyitail;
signal(typtr->tyisem);
return (devcall)(0xff & ch);

case TC_MODER:
typtr->tyimode = TY_IMRAW;
return (devcall)OK;

case TC_MODEC:
typtr->tyimode = TY_IMCOOKED;
return (devcall)OK;

case TC_MODEK:
typtr->tyimode = TY_IMCBREAK;
return (devcall)OK;

case TC_ICHARS:
return(semcount(typtr->tyisem));

Xinu – module 15 26 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ttycontrol (Part 3)

case TC_ECHO:
typtr->tyiecho = TRUE;
return (devcall)OK;

case TC_NOECHO:
typtr->tyiecho = FALSE;
return (devcall)OK;

default:
return (devcall)SYSERR;

}
}

Xinu – module 15 27 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Tty Handler (Part 1)

/* ttyhandler.c - ttyhandler */

#include <xinu.h>

/*--
* ttyhandler - Handle an interrupt for a tty (serial) device
*--
*/

void ttyhandler(
int32 arg /* Interrupt handler argument */
)

{
struct dentry *devptr; /* Address of device control blk*/
struct ttycblk *typtr; /* Pointer to ttytab entry */
struct uart_csreg *csrptr; /* Address of UART's CSR */
byte iir = 0; /* Interrupt identification */

/* Get CSR address of the device (assume console for now) */

devptr = (struct dentry *) arg;
csrptr = (struct uart_csreg *) devptr->dvcsr;

/* Obtain a pointer to the tty control block */

typtr = &ttytab[devptr->dvminor];

Xinu – module 15 28 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Tty Handler (Part 2)

/* Decode hardware interrupt request from UART device */

/* Check interrupt identification register */
iir = csrptr->iir;
if (iir & UART_IIR_IRQ) {

return;
}

/* Decode the interrupt cause based upon the value extracted */
/* from the UART interrupt identification register. Clear */
/* the interrupt source and perform the appropriate handling */
/* to coordinate with the upper half of the driver */

/* Decode the interrupt cause */

iir &= UART_IIR_IDMASK; /* Mask off the interrupt ID */
switch (iir) {

/* Receiver line status interrupt (error) */

case UART_IIR_RLSI:
return;

Xinu – module 15 29 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Tty Handler (Part 3)

/* Receiver data available or timed out */

case UART_IIR_RDA:
case UART_IIR_RTO:

resched_cntl(DEFER_START);

/* While chars avail. in UART buffer, call ttyhandle_in */

while ((csrptr->lsr & UART_LSR_DR) != 0) {
ttyhandle_in(typtr, csrptr);

}

resched_cntl(DEFER_STOP);

return;

Xinu – module 15 30 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Tty Handler (Part 4)

/* Transmitter output FIFO is empty (i.e., ready for more) */

case UART_IIR_THRE:
ttyhandle_out(typtr, csrptr);
return;

/* Modem status change (simply ignore) */

case UART_IIR_MSC:
return;

}
}

Xinu – module 15 31 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Input Interrupt Handling

d Recall that when an input interrupt occurs

– One or more characters have arrived at the device

– The driver must drain all characters from the device

d If multiple processes are waiting for input, the driver cannot let any of them proceed
until all characters have been extracted from the device

d Technique used: defer rescheduling while extracting characters

Xinu – module 15 32 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ttyhandle_in (Part 1)

/* ttyhandle_in.c - ttyhandle_in, erase1, eputc, echoch */

#include <xinu.h>

local void erase1(struct ttycblk *, struct uart_csreg *);
local void echoch(char, struct ttycblk *, struct uart_csreg *);
local void eputc(char, struct ttycblk *, struct uart_csreg *);

/*--
* ttyhandle_in - Handle one arriving char (interrupts disabled)
*--
*/

void ttyhandle_in (
struct ttycblk *typtr, /* Pointer to ttytab entry */
struct uart_csreg *csrptr /* Address of UART's CSR */

)
{

char ch; /* Next char from device */
int32 avail; /* Chars available in buffer */

ch = csrptr->buffer;

/* Compute chars available */

avail = semcount(typtr->tyisem);
if (avail < 0) { /* One or more processes waiting*/

avail = 0;
}

Xinu – module 15 33 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ttyhandle_in (Part 2)

/* Handle raw mode */

if (typtr->tyimode == TY_IMRAW) {
if (avail >= TY_IBUFLEN) { /* No space => ignore input */

return;
}

/* Place char in buffer with no editing */

*typtr->tyitail++ = ch;

/* Wrap buffer pointer */

if (typtr->tyitail >= &typtr->tyibuff[TY_IBUFLEN]) {
typtr->tyitail = typtr->tyibuff;

}

/* Signal input semaphore and return */
signal(typtr->tyisem);
return;

}

/* Handle cooked and cbreak modes (common part) */

if ((ch == TY_RETURN) && typtr->tyicrlf) {
ch = TY_NEWLINE;

}

Xinu – module 15 34 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ttyhandle_in (Part 3)

/* If flow control is in effect, handle ^S and ^Q */

if (typtr->tyoflow) {
if (ch == typtr->tyostart) { /* ^Q starts output */

typtr->tyoheld = FALSE;
ttykickout(csrptr);
return;

} else if (ch == typtr->tyostop) { /* ^S stops output */
typtr->tyoheld = TRUE;
return;

}
}

typtr->tyoheld = FALSE; /* Any other char starts output */

Xinu – module 15 35 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ttyhandle_in (Part 4)

if (typtr->tyimode == TY_IMCBREAK) { /* Just cbreak mode */

/* If input buffer is full, send bell to user */

if (avail >= TY_IBUFLEN) {
eputc(typtr->tyifullc, typtr, csrptr);

} else { /* Input buffer has space for this char */
*typtr->tyitail++ = ch;

/* Wrap around buffer */

if (typtr->tyitail>=&typtr->tyibuff[TY_IBUFLEN]) {
typtr->tyitail = typtr->tyibuff;

}
if (typtr->tyiecho) { /* Are we echoing chars?*/

echoch(ch, typtr, csrptr);
}
signal(typtr->tyisem);

}
return;

Xinu – module 15 36 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ttyhandle_in (Part 5)

} else { /* Just cooked mode (see common code above) */

/* Line kill character arrives - kill entire line */

if (ch == typtr->tyikillc && typtr->tyikill) {
typtr->tyitail -= typtr->tyicursor;
if (typtr->tyitail < typtr->tyibuff) {

typtr->tyitail += TY_IBUFLEN;
}
typtr->tyicursor = 0;
eputc(TY_RETURN, typtr, csrptr);
eputc(TY_NEWLINE, typtr, csrptr);
return;

}

/* Erase (backspace) character */

if (((ch==typtr->tyierasec) || (ch==typtr->tyierasec2))
&& typtr->tyierase) {

if (typtr->tyicursor > 0) {
typtr->tyicursor--;
erase1(typtr, csrptr);

}
return;

}

Xinu – module 15 37 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ttyhandle_in (Part 6)

/* End of line */

if ((ch == TY_NEWLINE) || (ch == TY_RETURN)) {
if (typtr->tyiecho) {

echoch(ch, typtr, csrptr);
}
*typtr->tyitail++ = ch;
if (typtr->tyitail>=&typtr->tyibuff[TY_IBUFLEN]) {

typtr->tyitail = typtr->tyibuff;
}
/* Make entire line (plus \n or \r) available */
signaln(typtr->tyisem, typtr->tyicursor + 1);
typtr->tyicursor = 0; /* Reset for next line */
return;

}

/* Character to be placed in buffer - send bell if */
/* buffer has overflowed */

avail = semcount(typtr->tyisem);
if (avail < 0) {

avail = 0;
}
if ((avail + typtr->tyicursor) >= TY_IBUFLEN-1) {

eputc(typtr->tyifullc, typtr, csrptr);
return;

}

Xinu – module 15 38 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ttyhandle_in (Part 7)

/* EOF character: recognize at beginning of line, but */
/* print and ignore otherwise. */

if (ch == typtr->tyeofch && typtr->tyeof) {
if (typtr->tyiecho) {

echoch(ch, typtr, csrptr);
}
if (typtr->tyicursor != 0) {

return;
}
*typtr->tyitail++ = ch;
signal(typtr->tyisem);
return;

}

/* Echo the character */

if (typtr->tyiecho) {
echoch(ch, typtr, csrptr);

}

/* Insert in the input buffer */

typtr->tyicursor++;
*typtr->tyitail++ = ch;

Xinu – module 15 39 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ttyhandle_in (Part 8)

/* Wrap around if needed */

if (typtr->tyitail >= &typtr->tyibuff[TY_IBUFLEN]) {
typtr->tyitail = typtr->tyibuff;

}
return;

}
}

/*--
* erase1 - Erase one character honoring erasing backspace
*--
*/

local void erase1(
struct ttycblk *typtr, /* Ptr to ttytab entry */
struct uart_csreg *csrptr /* Address of UART's CSRs */

)
{

char ch; /* Character to erase */

if ((--typtr->tyitail) < typtr->tyibuff) {
typtr->tyitail += TY_IBUFLEN;

}

Xinu – module 15 40 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ttyhandle_in (Part 9)

/* Pick up char to erase */

ch = *typtr->tyitail;
if (typtr->tyiecho) { /* Are we echoing? */

if (ch < TY_BLANK || ch == 0177) { /* Nonprintable */
if (typtr->tyevis) { /* Visual cntl chars */

eputc(TY_BACKSP, typtr, csrptr);
if (typtr->tyieback) { /* Erase char */

eputc(TY_BLANK, typtr, csrptr);
eputc(TY_BACKSP, typtr, csrptr);

}
}
eputc(TY_BACKSP, typtr, csrptr);/* Bypass up arr*/
if (typtr->tyieback) {

eputc(TY_BLANK, typtr, csrptr);
eputc(TY_BACKSP, typtr, csrptr);

}
} else { /* A normal character that is printable */

eputc(TY_BACKSP, typtr, csrptr);
if (typtr->tyieback) { /* Erase the character */

eputc(TY_BLANK, typtr, csrptr);
eputc(TY_BACKSP, typtr, csrptr);

}
}

}
return;

}

Xinu – module 15 41 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ttyhandle_in (Part 10)

/*--
* echoch - Echo a character with visual and output crlf options
*--
*/

local void echoch(
char ch, /* Character to echo */
struct ttycblk *typtr, /* Ptr to ttytab entry */
struct uart_csreg *csrptr /* Address of UART's CSRs */

)
{

if ((ch==TY_NEWLINE || ch==TY_RETURN) && typtr->tyecrlf) {
eputc(TY_RETURN, typtr, csrptr);
eputc(TY_NEWLINE, typtr, csrptr);

} else if ((ch<TY_BLANK||ch==0177) && typtr->tyevis) {
eputc(TY_UPARROW, typtr, csrptr);/* print ^x */
eputc(ch+0100, typtr, csrptr); /* Make it printable */

} else {
eputc(ch, typtr, csrptr);

}
}

Xinu – module 15 42 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ttyhandle_in (Part 11)

/*--
* eputc - Put one character in the echo queue
*--
*/

local void eputc(
char ch, /* Character to echo */
struct ttycblk *typtr, /* Ptr to ttytab entry */
struct uart_csreg *csrptr /* Address of UART's CSRs */

)
{

*typtr->tyetail++ = ch;

/* Wrap around buffer, if needed */

if (typtr->tyetail >= &typtr->tyebuff[TY_EBUFLEN]) {
typtr->tyetail = typtr->tyebuff;

}
ttykickout(csrptr);
return;

}

Xinu – module 15 43 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Kicking A Device

d We said that kicking a device causes the device to interrupt

d The technique simplifies device driver software

d Key idea

– If hardware is idle, kicking it forces an interrupt

– If hardware is currently busy, kicking it has no effect (an interrupt will occur as
usual when the operation completes)

d The point: kicking avoids a race condition because the processor does not ask the
device whether it is idle before kicking it

Xinu – module 15 44 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ttykickout

/* ttykickout.c - ttykickout */

#include <xinu.h>

/*--
* ttykickout - "Kick" the hardware for a tty device, causing it to
* generate an output interrupt (interrupts disabled)
*--
*/

void ttykickout(
struct uart_csreg *csrptr /* Address of UART's CSRs */

)
{

/* Force the UART hardware to generate an output interrupt */

csrptr->ier = UART_IER_ERBFI | UART_IER_ETBEI;

return;
}

Xinu – module 15 45 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ttyhandle_out (Part 1)

/* ttyhandle_out.c - ttyhandle_out */

#include <xinu.h>

/*--
* ttyhandle_out - Handle an output on a tty device by sending more
* characters to the device FIFO (interrupts disabled)
*--
*/

void ttyhandle_out(
struct ttycblk *typtr, /* Ptr to ttytab entry */
struct uart_csreg *csrptr /* Address of UART's CSRs */

)
{

int32 ochars; /* Number of output chars sent */
/* to the UART */

int32 avail; /* Available chars in output buf*/
int32 uspace; /* Space left in onboard UART */

/* output FIFO */
byte ier = 0;

/* If output is currently held, simply ignore the call */

if (typtr->tyoheld) {
return;

}

Xinu – module 15 46 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ttyhandle_out (Part 2)

/* If echo and output queues empty, turn off interrupts */

if ((typtr->tyehead == typtr->tyetail) &&
(semcount(typtr->tyosem) >= TY_OBUFLEN)) {

ier = csrptr->ier;
csrptr->ier = ier & ~UART_IER_ETBEI;
return;

}

/* Initialize uspace to the size of the transmit FIFO */

uspace = UART_FIFO_SIZE;

/* While onboard FIFO is not full and the echo queue is */
/* nonempty, xmit chars from the echo queue */

while ((uspace>0) && typtr->tyehead != typtr->tyetail) {
csrptr->buffer = *typtr->tyehead++;
if (typtr->tyehead >= &typtr->tyebuff[TY_EBUFLEN]) {

typtr->tyehead = typtr->tyebuff;
}
uspace--;

}

Xinu – module 15 47 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ttyhandle_out (Part 3)

/* While onboard FIFO is not full and the output queue is */
/* nonempty, transmit chars from the output queue */

ochars = 0;
avail = TY_OBUFLEN - semcount(typtr->tyosem);
if (avail > TY_OBUFLEN) { /* In case semcount < 0 */

avail = TY_OBUFLEN;
}
while ((uspace>0) && (avail > 0)) {

csrptr->buffer = *typtr->tyohead++;
if (typtr->tyohead >= &typtr->tyobuff[TY_OBUFLEN]) {

typtr->tyohead = typtr->tyobuff;
}
avail--;
uspace--;
ochars++;

}
if (ochars > 0) {

signaln(typtr->tyosem, ochars);
}
return;

}

Xinu – module 15 48 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ttyinit (Part 1)

/* ttyinit.c - ttyinit */

#include <xinu.h>

struct ttycblk ttytab[Ntty];

/*--
* ttyinit - Initialize buffers and modes for a tty line
*--
*/

devcall ttyinit(
struct dentry *devptr /* Entry in device switch table */

)
{

struct ttycblk *typtr; /* Pointer to ttytab entry */
struct uart_csreg *uptr; /* Address of UART's CSRs */
uint32 pcidev; /* Encoded PCI device */

typtr = &ttytab[devptr->dvminor];

/* Initialize values in the tty control block */

typtr->tyihead = typtr->tyitail = /* Set up input queue */
&typtr->tyibuff[0]; /* as empty */

typtr->tyisem = semcreate(0); /* Input semaphore */
typtr->tyohead = typtr->tyotail = /* Set up output queue */

&typtr->tyobuff[0]; /* as empty */

Xinu – module 15 49 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ttyinit (Part 2)

typtr->tyosem = semcreate(TY_OBUFLEN); /* Output semaphore */
typtr->tyehead = typtr->tyetail = /* Set up echo queue */

&typtr->tyebuff[0]; /* as empty */
typtr->tyimode = TY_IMCOOKED; /* Start in cooked mode */
typtr->tyiecho = TRUE; /* Echo console input */
typtr->tyieback = TRUE; /* Honor erasing bksp */
typtr->tyevis = TRUE; /* Visual control chars */
typtr->tyecrlf = TRUE; /* Echo CRLF for NEWLINE*/
typtr->tyicrlf = TRUE; /* Map CR to NEWLINE */
typtr->tyierase = TRUE; /* Do erasing backspace */
typtr->tyierasec = TY_BACKSP; /* Primary erase char */
typtr->tyierasec2= TY_BACKSP2; /* Alternate erase char */
typtr->tyeof = TRUE; /* Honor eof on input */
typtr->tyeofch = TY_EOFCH; /* End-of-file character*/
typtr->tyikill = TRUE; /* Allow line kill */
typtr->tyikillc = TY_KILLCH; /* Set line kill to ^U */
typtr->tyicursor = 0; /* Start of input line */
typtr->tyoflow = TRUE; /* Handle flow control */
typtr->tyoheld = FALSE; /* Output not held */
typtr->tyostop = TY_STOPCH; /* Stop char is ^S */
typtr->tyostart = TY_STRTCH; /* Start char is ^Q */
typtr->tyocrlf = TRUE; /* Send CRLF for NEWLINE*/
typtr->tyifullc = TY_FULLCH; /* Send ^G when buffer */

/* is full */

Xinu – module 15 50 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ttyinit (Part 3)

/* Get the encoded PCI for the UART device */

pcidev = find_pci_device(INTEL_QUARK_UART_PCI_DID,
INTEL_QUARK_UART_PCI_VID,
1);

/* Initialize the UART */

uptr = (struct uart_csreg *)devptr->dvcsr;

/* Set baud rate */
uptr->lcr = UART_LCR_DLAB;
uptr->dlm = 0x00;
uptr->dll = 0x18;

uptr->lcr = UART_LCR_8N1; /* 8 bit char, No Parity, 1 Stop*/
uptr->fcr = 0x00; /* Disable FIFO for now */

/* Register the interrupt handler for the tty device */

pci_set_ivec(pcidev, devptr->dvirq, devptr->dvintr,
(int32)devptr);

Xinu – module 15 51 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Perspective

d UART hardware is primitive

d The device driver software, not the hardware, displays characters on the screen as the
user enters them on a keyboard

d Most of the features a user expects, such as erasing backspace, are handled entirely by
software

d Unlike abstractions covered earlier (e.g., semaphores), a basic tty driver is incredibly
complex

d A driver has many parameters that control its operation

d Small details complicate the code

Xinu – module 15 52 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Perspective
(continued)

d A device driver

– Consists of functions that applications call to perform I / O on the device

– Also provides an interrupt handler for the device

– Must contend with low-level hardware

– Must map high-level functionality to low-level hardware

d The example tty driver illustrates that

– A hardware FIFO complicates the design

– Many lines of code are needed for basic functions, such as character erase

– Allowing dynamic parameters to control the behavior complicates a driver

Xinu – module 15 53 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Questions?

