Xinu—module 15

Module XV

An Example
Device Driver

1

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Our Example

e (Consider a basic console device that
— Digplays output in a text window on a user’s screen
— Accepts input from the user’ s keyboard
e The device Is character-oriented
e |nput consists of characters that come from the keyboard
e Qutput consists of characters sent to the screen

e Following the Unix convention, we used the term tty to describe the type of device

Xinu—module 15 2 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Hardware For The Example Device

e The underlying hardware consists of a Universal Asynchronous Receiver and
Transmitter (UART)

e A UART transfers a single character (bytes) at a time, but the hardware has on-board
Input and output buffers that hardware engineers call FIFOs

e \When an input interrupt occurs

— One or more characters are available in the input FIFO

— The interrupt handler must extract all the available characters
e Qur driver also maintains its own buffers for input and output

e QOur driver uses semaphores to synchronize upper and lower halves

Xinu—module 15 3 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

General |dea

e \When an application writes characters to a console device, the device driver
— Places outgoing characters in a buffer

— Starts the device

e Note: aprocess can generate characters faster than the hardware can send them, and
using a buffer in the device driver allows a process to write one or more lines of text
before being blocked to wait for the device

e The console device interrupts when it has finished sending a character

e During the Interrupt

— The lower-half of the device driver repeatedly removes an outgoing character from
the buffer and sends it to the device FIFO until the FIFO fills

— In essence, the device driver keeps the device busy as long as output exists

Xinu—module 15 4 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Tty Device Driver Functions

Upper-Half Lower-Half

ttyinit ttyhandler (interrupt handler)
ttyopen ttyhandle_in (input interrupt)
ttyclose ttyhandle out (output interrupt)
ttyread

ttywrite

ttyputc

ttygetc

ttycontrol

Xinu —module 15 5 2025
Copyright 0 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Actions Taken For Character Output

e An output semaphore counts spaces in the device driver buffer

e When it Is given a character to send, the upper-half
— Waits on the output semaphore to guarantee buffer space is available
— Deposits the character in next buffer slot
— “Kicks’ the device, which causes the device to interrupt

e \When the device generates an interrupt, the lower-half

— Extracts a character from next filled dot in the buffer, and stores the character in the
device output FIFO

— Signals the semaphore to indicate that the buffer now has one more empty slot

Xinu—module 15 6 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Tty Driver Complexity

e The hardware is farly “dumb’
e The device driver provides modes similar to the modes Unix offers
e Raw mode sends and receives individual bytes with no processing at all

e Cooked mode echoes input characters, allows a user to backspace or erase an entire line,
handles flow control, and delivers an entire line of input at a time

e Chreak mode handles some of the cooked mode functions

Xinu—module 15 7 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Tty Driver Complexity
(continued)

e |n addition to a mode that sets many parameters, the driver allows many parameters to
be controlled individually at any time

— Whether CRLF mapping is in effect

— Whether input character echo is turned on

— Whether flow control (*S/”Q) is enabled

— Whether control characters are visualized (e.g., A for control-A)

— Whether backspacing over a character “erases’ the character from the display

Xinu —module 15 8 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Summary Of Tty Modes

Mode Meaning

The driver delivers each incoming character as it arrives
raw without echoing the character, buffering a line of text,
performing translation, or controlling the output flow

The driver buffers input, echoes characters in a readable
cooked | form, honors backspace and line kill, allows type-ahead,
handles flow control, and delivers an entire line of text

The driver handles character translation, echoing, and
cbreak flow control, but instead of buffering an entire line of text,
the driver delivers each incoming character as it arrives

e The mode determines how input characters are processed

e An application can change the mode at any time

Xinu —module 15 9 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Circular Input And Output Buffers

e The tty driver maintains three buffers
— One for incoming characters
— One for outgoing characters
— One for echoed characters

e Conceptually, each buffer is circular

e The implementation uses an array where the head and tail are pointers to positions in
the array, which wrap around when they go beyond the end of the array

Xinu—module 15 10 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Circular Buffer Implemented With An Array

next slot next item

10 f-i|” tohse(rj\d next item next slot
i :
(tail) (head) to send to fill

" .“ / i ;

-l -|lQo|W|E|R|[T]|Y|U|-|-]-

(@) (b)

e The figure shows

(@) A circular buffer

(b) An implementation with an array using head and tail integers to indicate positions

Xinu —module 15 11 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Definitions Used By The Tty Driver (Part 1)

/* Mn space in buffer before */
[* processes awakened to wite*/
/* Size of echo queue */
/* Nunber of serial tty |ines */

/* Num chars in input queue */

/* Num chars in output queue */

constants for input and out put nodes */

[* tty.h */

#define TY_OBM NSP 20
#define TY_EBUFLEN 20
[* Size constants */
#ifndef Nty

#define Nty 1
#endi f

#i f ndef TY_I| BUFLEN

#define TY_ I BUFLEN 128
#endi f

#1 f ndef TY_OBUFLEN

#define TY_OBUFLEN 64
#endi f

/[* Nbde

#define TY_I MRAW 'R
#define TY_ | MCOOKED 'C
#define TY_ I MCBREAK 'K
#define TY_OVRAW 'R

Xinu—module 15

/* Raw i nput node => no edits */
/| * Cooked nobde => line editing */
/* Honor echo, etc, no line edit*/
/* Raw out put node => no edits */

12
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Definitions Used By The Tty Driver (Part 2)

struct ttycblk {

char
char
char
S| d32
char
char
char
S| d32
char
char
char
char
bool 8
bool 8
bool 8
bool 8
bool 8
bool 8
char
char
bool 8
char
bool 8
char

Xinu—module 15

*tyi head;
*tyitail;

tyi buf f[TY_I BUFLEN] ;

tyi sem
*t yohead;
*tyotail;

t yobuf f[TY OBUFLEN] ;

t yosem
*t yehead;
*tyetail;

tyebuf f[TY_EBUFLEN] ;

t yi node;
tyi echo;
tyi eback;
tyevis;
tyecrl f;
tyicrlf;
tyi erase;
tyi erasec;
tyi erasec2;
t yeof ;

t yeof ch;
tyikill;
tyikillc;

~N NN NN NN N TN TN TN T N N Tt TN Tt N Tt N N N~

* % ok Kk % ok Kk %k ok ok ¥ ok X % ok X ok ok X ok * ¥ * * *

Tty line control block */
Next input char to read */
Next slot for arriving char */
| nput buffer (holds one line)*/

| nput semaphore */
Next output char to xmt */
Next slot for outgoing char */
Qut put buffer */
Qut put semaphore */
Next echo char to xmt */
Next slot to deposit echo ch */
Echo buffer */
| nput node raw cbreak/ cooked */
| s i nput echoed? */

Do erasi ng backspace on echo?*/
Echo control chars as "X ? */

Echo CR-LF for newl i ne? */
Map '\r' to '\n" on input? */
Honor erase character? */
Primary erase character */
Al ternate erase character * [
Honor EOF char acter? */
EOF character (usually D) */
Honor |ine kill character? */
Li ne kill character */

13

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

'

extern

| nt 32
bool 8
bool 8
char
char
bool 8
char

struct

Definitions Used By The Tty Driver (Part 3)

tyicursor;

tyofl ow,
t yohel d;
t yost op;

tyostart;

tyocrl f;

tyifullc;

/* Current cursor position

/* Honor ostop/ostart?

/* Qutput currently being hel d?
/* Character that stops out put
/* Character that starts out put
/* Qutput CR/LF for LF ?

/* Char to send when input full

ttycblk ttytab[];

/* Characters with neaning to the tty driver */

#def |
#def |
#def |
#def |
#def |
#def |
#def |
#def |
#def |
#def |
#def |
#def |

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

TY _BACKSP
TY _BACKSP2

TY_BELL

TY_EOFCH
TY BLANK
TY_NEWLI NE
TY_RETURN
TY_STOPCH
TY_STRTCH
TY Kl LLCH
TY_UPARROW
TY _FULLCH

Xinu—module 15

7!

— — — —
TOORL,T
AN

'\ 023
'\ 021"
'\ 025
1 /\l

TY BELL

-
- 35

Backspace character

Al t ernat e backspace char.
Character for audi ble beep
Control-D is EOF on input
Bl ank

Newl i ne == |ine feed
Carriage return character
Control -S stops out put
Control -Q restarts out put
Control-Uis line kill
Used for control chars ("X

X % ok X X X F o X X X *

e T T e e e e e

14
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Char to echo when buffer full*/

2025

Definitions Used By The Tty Driver (Part 4)

/* Tty control function codes */

#define TC NEXTC 3 /* Look ahead 1 character */
#defi ne TC_MODER 4 /* Set input node to raw */
#define TC MODEC 5 /* Set input node to cooked */
#defi ne TC MODEK 6 /* Set input node to cbreak */
#defi ne TC | CHARS 8 /* Return nunber of input chars */
#define TC ECHO 9 /* Turn on echo */
#defi ne TC _NOECHO 10 [* Turn off echo */
Xinu —module 15 15 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Driver Definitions

e Note the complexity of the definitions

e Conclusion: although a tty device seems straightforward, the parameters used to control
character processing complicate the driver

e Now consider driver functions to transfer data, perform control functions, and handle
Interrupts

Xinu —module 15 16 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ttyputc (Part 1))

/* ttyputc.c - ttyputc */

#1 ncl ude <xi nu. h>

| ® o L L e o
* ttyputc - Wite one character to a tty device (interrupts disabl ed)
*_ _ e - - —-—_—— Y e Y Y Y L Lo
*/

devcal | ttyputc(

struct dentry *devptr, /[* Entry in device swtch table */
char ch /* Character to wite */

:)

struct ttycblk *typtr; /* Pointer to tty control block */
typtr = & tytab[devptr->dvm nor];
/* Handl e out put CRLF by sending CR first */
I f (ch==TY_NEW.INE && typtr->tyocrlf) {
ttyputc(devptr, TY RETURN);
}
Xinu —module 15 17

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Xinu Ttyputc (Part 2)

wait(typtr->tyosem; /* Wait for space in queue */
*typtr->tyotail ++ = ch;

/* Wap around to beginning of buffer, if needed */

i f (typtr->tyotail >= & yptr->tyobuff[TY_OBUFLEN]) {
typtr->tyotail = typtr->tyobuff;

}

/[* Start output in case device is idle */

ttyki ckout ((struct uart _csreg *)devptr->dvcsr);

return OK;

Xinu—module 15 18 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ttygetc (Part 1)

/* ttygetc.c - ttygetc */

#1 ncl ude <xi nu. h>

/2
* ttygetc - Read one character froma tty device (interrupts disabl ed)
*/
devcal | ttygetc(
struct dentry *devptr /[* Entry in device swtch table */
{)
char ch; /* Character to return */
struct ttycblk *typtr; /* Pointer to ttytab entry */
typtr = & tytab[devptr->dvm nor];
/* Wait for a character in the buffer and extract one character */
wait (typtr->tyisen;
ch = *typtr->tyi head++;
/* Wap around to begi nning of buffer, if needed */
i f (typtr->tyihead >= & yptr->tyibuff[TY_I BUFLEN]) {
typtr->tyi head = typtr->tyi buff;
}
Xinu —module 15 19 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ttygetc (Part 2)

/[* I n cooked nbde, check for the EOF character */

i f ((typtr->tyinode == TY_ | MCOOKED) && (typtr->tyeof) &&
(ch == typtr->tyeofch)) {
return (devcall) EOCF;
}

return (devcall)(Oxff & ch);

Xinu —module 15 20 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ttywrite

/[* ttywite.c - ttywite */

#1 ncl ude <xi nu. h>

* |
devcal | ttywite(
struct dentry *devptr, /[* Entry in device swtch table */
char *buff, /* Buffer of characters */
/*

| nt 32 count Count of characters to wite */
{)
/* Handl e negative and zero counts */
I f (count < 0)
return SYSERR:
} else if (count == 0){
return OK;
}
/[* Wite count characters one at a time */
for (; count>0 ; count--) {
ttyputc(devptr, *buff++);
return OK;
}
Xinu —module 15 21

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Xinu Ttyread (Part 1)

/* ttyread.c - ttyread */

#1 ncl ude <xi nu. h>

* |
devcal | ttyread(

struct dentry *devptr, /[* Entry in device swtch table */
char *buff, /* Buffer of characters */
/*

| nt 32 count Count of characters to read */
{)
struct ttycblk *typtr; /* Pointer to tty control block */
I nt 32 avail ; [* Characters available in buff.*/
| nt 32 nr ead; /[* Nunber of characters read *
i nt 32 firstch; /* First input character on |ine*/
char ch; /* Next | nput character */
i f (count < 0) {
return SYSERR
}
Xinu—module 15 22 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ttyread (Part 2)

typtr= & tytab[devptr->dvm nor];
I f (typtr->tyinode !'= TY_ | MCOOKED) ({
[* For count of zero, return all avail abl e characters */

i f (count == 0) {

avai |l = sentount (typtr->tyisem;
if (avail == 0) {

return O,
} else {

count = avail;
} }
for (nread = 0; nread < count; nread++) {
*pbuff++ = (char) ttygetc(devptr);
}

return nread;

}

/* Block until input arrives */

firstch = ttygetc(devptr);

23 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu—module 15

Xinu Ttyread (Part 3)

[* Check for End-OF-File */

i f (firstch == EOF) {
return EOCF;
}

/* Read up to a line */

ch = (char) firstch;
*puff ++ = ch;
nread = 1;
while ((nread < count) && (ch !'= TY_NEW.I NE) &&
(ch '= TY RETURN)) {
ch = ttygetc(devptr);
*pbuff ++ = ch;

nr ead++;
return nread;
Xinu—module 15 24 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ttycontrol (Part 1)

/* ttycontrol.c - ttycontrol */

#1 ncl ude <xi nu. h>

*/
devcal |l ttycontrol (

struct dentry *devptr, /[* Entry in device swtch table */
int32 func, /* Function to perform */
int32 argl, /* Argunent 1 for request */
int32 arg2 /* Argunment 2 for request */
{)
struct ttycblk *typtr; /* Pointer to tty control block */
char ch; /* Character for | ookahead */
typtr = & tytab[devptr->dvm nor];
Xinu —module 15 25 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ttycontrol (Part 2)

/* Process the request */

swtch (func) {

case TC NEXTC

case

case

case

case

Xinu—module 15

wait (typtr->tyisen;

ch = *typtr->tyitail;

signal (typtr->tyisem;
return (devcall)(Oxff & ch);

TC_ MODER:
typtr->tyi node = TY_ | MRAW
return (devcal l) CK;

TC_MODEC.
typtr->tyi node = TY_ | MCOOKED;
return (devcal) OK;

TC_ MODEK:
typtr->tyi node = TY_ | MCBREAK;
return (devcal |) OK;

TC_| CHARS:

return(sencount (typtr->tyisem);

26

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Xinu Ttycontrol (Part 3)

case TC ECHO
typtr->tyi echo = TRUE;
return (devcal |) CK;

case TC_ NOECHO
typtr->tyi echo = FALSE;
return (devcal) OK;

def aul t:
return (devcal |) SYSERR;
}

27 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu—module 15

Xinu Tty Handler (Part 1)

/* ttyhandler.c - ttyhandler */

#1 ncl ude <xi nu. h>

* ttyhandler - Handle an interrupt for a tty (serial) device

* |
voi d ttyhandl er (
i nt 32 arg

)

struct dentry *devptr
struct ttycblk *typtr;

/* Interrupt handl er argunent */

: /[* Address of device control
/* Pointer to ttytab entry

struct uart_csreg *csrptr; /* Address of UART's CSR

byt e iir = 0;

/[* Get CSR address of the device (assune console for

/* Interrupt identification

devptr = (struct dentry *) arg;

csrptr

(struct uart _csreg *) devptr->dvcsr;

[* Cbtain a pointer to the tty control block */

typtr = & tytab[devptr->dvm nor];

Xinu—module 15

28
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

now)

2025

Xinu Tty Handler (Part 2)

/[* Decode hardware interrupt request from UART device */

/* Check interrupt identification register */
iir = csrptr->iir;
if (iir & UART_IIR IRQ {

return;
}
/* Decode the interrupt cause based upon the val ue extracted */
/* fromthe UART interrupt identification register. Cear * [
/[* the interrupt source and performthe appropriate handling */
/* to coordinate with the upper half of the driver */

/* Decode the interrupt cause */

iir &= UART_I I R | DMASK; /* Mask off the interrupt ID */
swtch (iir) {

/* Receiver line status interrupt (error) */

case UART Il R RLSI:
return;

Xinu—module 15 29 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Tty Handler (Part 3)

/| * Recelver data avail able or tinmed out */

case UART || R RDA:
case UART || R RTO:

resched _cnt| (DEFER_START) ;

/[* While chars avail. in UART buffer, call ttyhandle in */

while ((csrptr->lsr & UART LSR DR) != 0) {
ttyhandl e in(typtr, csrptr);

}

resched cntl| (DEFER _STOP) ;

return;

Xinu—module 15 30 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Tty Handler (Part 4)

/[* Transmtter output FIFOis enmpty (i.e., ready for nore) */

case UART || R THRE:
ttyhandl e out (typtr, csrptr);
return,

/* Modem status change (sinply ignore) */

case UART || R _MSC
return;
}

Xinu—module 15 31 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Input Interrupt Handling

e Recall that when an input interrupt occurs
— One or more characters have arrived at the device
— Thedriver must drain all characters from the device

e |f multiple processes are waiting for input, the driver cannot let any of them proceed
until all characters have been extracted from the device

e Technique used: defer rescheduling while extracting characters

Xinu —module 15 32 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ttyhandle in (Part 1)

/* ttyhandle in.c - ttyhandle_in, erasel, eputc, echoch */

#1 ncl ude <xi nu. h>

voi d ttyhandl e in (

erasel(struct ttycblk *, struct uart_csreg *);

echoch(char,
eput c(char,

struct ttycblk *, struct uart _csreg *);
struct ttycblk *, struct uart _csreg *);

- Handl e one arriving char (interrupts disabl ed)

struct ttycblk *typtr, /* Pointer to ttytab entry

struct uart_csreg *csrptr

| ocal voi d
| ocal voi d
| ocal vol d
* ttyhandle_in
*
*

)
{

char

| nt 32

ch =

csrptr->buffer;

ch;
avai |l ;

[* Address of UART's CSR

Next char from devi ce
Chars avail able in buffer

S~ T~
*

/* Conmpute chars avail able */

avai |

I f (avail

}

Xinu—module 15

sencount (typtr->tyisem;

avai |

< 0) {

= ();

*/
*/

*/
*/

/* One or nore processes waiting*/

33
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Xinu Ttyhandle in (Part 2)

[* Handl e raw node */

I f (typtr->tyinode == TY_| MRAW {
if (avail >= TY IBUFLEN) { /* No space => ignore input */
return;
}

/* Place char in buffer with no editing */
*typtr->tyitail ++ = ch;

/[* Wap buffer pointer */

I f (typtr->tyitail >= &yptr->tyibuff[TY_I BUFLEN]) {

typtr->tyitail = typtr->tyibuff;
}

/* Signal input semaphore and return */

signal (typtr->tyisem;
return;

}

/* Handl e cooked and cbreak nodes (commopbn part) */

i f ((ch == TY_RETURN) && typtr->tyicrlf) {
ch = TY_NEW.I NE;
}

Xinu —module 15 34 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ttyhandle in (Part 3)

/[* If flow control is in effect, handle S and "Q */

i f (typtr->tyoflow) {
if (ch == typtr->tyostart) { [* ~"Q starts output */
typtr->tyoheld = FALSE;
ttyki ckout (csrptr);
return;
} else if (ch == typtr->tyostop) { /* ~S stops output */
typtr->tyoheld = TRUE;

return;
}
}
typtr->tyoheld = FALSE; /* Any other char starts output */
Xinu—module 15 35 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ttyhandle in (Part 4)

I f (typtr->tyinode == TY_| MCBREAK) { /[* Just cbreak node */
[* If input buffer is full, send bell to user */

i f (avail >= TY_I BUFLEN) {
eputc(typtr->tyifullc, typtr, csrptr);

} else { /[* I nput buffer has space for this char */
*typtr->tyitail ++ = ch;

/* Wap around buffer */

I f (typtr->tyitail>=& yptr->tyi buff[TY_ | BUFLEN]) {
typtr->tyitail = typtr->tyibuff;
}

I f (typtr->tyiecho) { /* Are we echoi ng chars?*/
echoch(ch, typtr, csrptr);
}

signal (typtr->tyisenm;
}

return;

Xinu —module 15 36 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ttyhandle in (Part 5)

} else { /* Just cooked node (see conmobn code above) */
/* Line kill character arrives - kill entire line */

if (ch == typtr->tyikillc & typtr->tyikill) {
typtr->tyitail -= typtr->tyicursor;
if (typtr->tyitail < typtr->tyibuff) {
typtr->tyitail += TY_| BUFLEN;
}

typtr->tyi cursor = 0;

eput c(TY RETURN, typtr, csrptr);
eput c(TY_NEWLINE, typtr, csrptr);
return;

}

/| * Erase (backspace) character */

if (((ch==typtr->tyierasec) || (ch==typtr->tyierasec2))
&& typtr->tyierase) {
i f (typtr->tyicursor > 0) {
typtr->tyicursor--;
erasel(typtr, csrptr);
}

return;

Xinu—module 15 37 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ttyhandle in (Part 6)

[* End of line */

if ((ch == TY_NEW.INE) || (ch == TY_RETURN)) {
i f (typtr->tyiecho) {
echoch(ch, typtr, csrptr);
}

*typtr->tyitail ++ = ch;

if (typtr->tyitail>=& yptr->tyi buff[TY | BUFLEN]) {
typtr->tyitail = typtr->tyibuff;

}

/* Make entire line (plus \n or \r) avail able */
signal n(typtr->tyisem typtr->tyicursor + 1);

typtr->tyicursor = 0O; /* Reset for next line */
return;
}
[* Character to be placed in buffer - send bell if */
[* buf f er has overfl owed */
avail = sencount (typtr->tyi sem;
i f (avail < 0) {
avail = 0;

}

i f ((avail + typtr->tyicursor) >= TY_ | BUFLEN-1) {
eputc(typtr->tyifullc, typtr, csrptr);
ret urn;

Xinu—module 15 38 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu—module 15

Xinu Ttyhandle in (Part 7)

/* EOF character: recognize at begi nning of
[* print and ignore otherw se.

if (ch == typtr->tyeofch && typtr->tyeof) {

I f (typtr->tyiecho) {
echoch(ch, typtr,
}

I f (typtr->tyicursor !'=0) {

return;

}
*typtr->tyitail ++ = ch;

signal (typtr->tyisen);
return;

[* Echo the character */
i f (typtr->tyiecho) {
}

/* Insert in the input buffer */

echoch(ch, typtr, csrptr);

typtr->tyi cursor++;
*typtr->tyitail ++ = ch;

39

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

csrptr);

2025

Xinu Ttyhandle in (Part 8)

[* Wap around if needed */

i f (typtr->tyitail >= &yptr->tyibuff[TY_I| BUFLEN]) {

typtr->tyitail = typtr->tyibuff;
}
return;
}
}
| ® o L L e o
* erasel - FErase one character honoring erasing backspace
*_ _ ... - - -, e b b e b Y Y e e e e Y e Y Y Y Y L L o
*/
| ocal voi d erasel(
struct ttycblk *typtr, /* Ptr to ttytab entry */
struct uart _csreg *csrptr /* Address of UART's CSRs */
)
{
char ch; /* Character to erase */
if ((--typtr->tyitail) < typtr->tyibuff) {
typtr->tyitail += TY_I BUFLEN;
}
Xinu —module 15 40 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ttyhandle in (Part 9)

[* Pick up char to erase */

ch = *typtr->tyitail;

i f (typtr->tyiecho) { /* Are we echoi ng? */
if (ch < TY_ BLANK || ch == 0177) { /* Nonprintabl e */
I f (typtr->tyevis) { /[* Visual cntl chars */

eput c(TY_BACKSP, typtr, csrptr);

I f (typtr->tyieback) { /* Erase char */
eput c(TY_BLANK, typtr, csrptr);
eput c(TY _BACKSP, typtr, csrptr);

} }
eput c(TY _BACKSP, typtr, csrptr);/* Bypass up arr*/
I f (typtr->tyi eback) {

eput c(TY _BLANK, typtr, csrptr);

eput c(TY _BACKSP, typtr, csrptr);

} else { /* A nornmal character that is printable */
eput c(TY _BACKSP, typtr, csrptr);
I f (typtr->tyieback) { /* Erase the character */
eput c(TY _BLANK, typtr, csrptr);
eput c(TY_BACKSP, typtr, csrptr);

}
}
}
return;
}
Xinu—module 15 41

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Xinu Ttyhandle in (Part 10)

*/
*/

/2
* echoch - Echo a character with visual and output crlf options
T

| ocal voi d echoch(

char ch, /* Character to echo
struct ttycblk *typtr, /[* Ptr to ttytab entry
struct uart _csreg *csrptr /* Address of UART's CSRs

{)

i f ((ch==TY_NEW.INE || ch==TY_RETURN) && typtr->tyecrlf) {
eput c(TY RETURN, typtr, csrptr);
eput c(TY_NEWLINE, typtr, csrptr);
} else if ((ch<TY_BLANK||ch==0177) && typtr->tyevis) {
eput c(TY _UPARROW typtr, csrptr);/* print X
eput c(ch+0100, typtr, csrptr); [* Make it printable
} else {
eputc(ch, typtr, csrptr);
}
}
Xinu —module 15 42

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Xinu Ttyhandle In (Part 11)

/2
* eputc - Put one character in the echo queue
T

| ocal voi d eput c(

char ch, /* Character to echo */
struct ttycblk *typtr, /[* Ptr to ttytab entry */
struct uart _csreg *csrptr /* Address of UART's CSRs */
)
{ |
*typtr->tyetail ++ = ch;
/* Wap around buffer, if needed */
I f (typtr->tyetail >= & yptr->tyebuff[TY EBUFLEN]) {
typtr->tyetail = typtr->tyebuff;
ttyki ckout (csrptr);
return;
}
Xinu —module 15 43 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Kicking A Device

e \We said that kicking a device causes the device to interrupt
e The technigue ssimplifies device driver software
e Keyidea

— If hardware isidle, kicking it forces an interrupt

— If hardware is currently busy, kicking it has no effect (an interrupt will occur as
usual when the operation completes)

e The point: kicking avoids a race condition because the processor does not ask the
device whether it is idle before kicking it

Xinu—module 15 44 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ttykickout

/* ttykickout.c - ttykickout */

#1 ncl ude <xi nu. h>

| ® o L L e o
* ttykickout - "Kick" the hardware for a tty device, causing it to
* generate an output interrupt (interrupts disabl ed)
K o o o e Y Y Y Y e Y e Y e
*/
voi d ttyki ckout (
struct uart _csreg *csrptr /* Address of UART's CSRs */
:)
/* Force the UART hardware to generate an output interrupt */
csrptr->ier = UART | ER ERBFI | UART_I| ER ETBEI ;
return;
}
Xinu—module 15 45

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Xinu Ttyhandle out (Part 1)

/* ttyhandl e out.c - ttyhandl e out */

#1 ncl ude <xi nu. h>

*
* ttyhandle out - Handle an output on a tty device by sending nore
*

characters to the device FIFO (interrupts di sabl ed)

voi d ttyhandl e _out (
struct ttycblk *typtr,
struct uart_csreg *csrptr

)

I nt 32 ochars;

| nt 32 avail ;
I nt 32 uspace;

byt e ier = 0;

/*

| f output is currently held,

i f (typtr->tyoheld) {

}

Xinu—module 15

return;

/[* Ptr to ttytab entry */
/* Address of UART's CSRs */
/* Nunber of output chars sent */
/* to the UART */
/* Avail abl e chars in output buf*/
/* Space left in onboard UART */
/* out put FI FO */

sinply ignore the call */

46

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Xinu Ttyhandle out (Part 2)

/* | f echo and out put queues enpty, turn off interrupts */

I f ((typtr->tyehead == typtr->tyetail) &&
(sentount (typtr->tyosem >= TY _OBUFLEN)) {
i er = csrptr->ier;
csrptr->ier = ier & ~UART | ER ETBEI;
return;

}
/* Initialize uspace to the size of the transmt FIFO */

uspace = UART _FI FO Sl ZE;

/* While onboard FIFOis not full and the echo queue is */
[* nonenpty, xmt chars fromthe echo queue */

while ((uspace>0) && typtr->tyehead != typtr->tyetail) {
csrptr->buffer = *typtr->tyehead++;
i f (typtr->tyehead >= &t yptr->tyebuff[TY EBUFLEN]) {
typtr->tyehead = typtr->tyebuff;
}

uspace- -,

Xinu—module 15 47 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ttyhandle out (Part 3)

/* While onboard FIFO is not full and the output queue is */
[* nonenpty, transmt chars fromthe output queue */
ochars = 0;
avail = TY_OBUFLEN - sentount (typtr->tyosem ;
i f (avail > TY_OBUFLEN) { /* In case sencount < 0 */

avai | = TY_OBUFLEN;

}
while ((uspace>0) && (avail > 0)) {
csrptr->buffer = *typtr->tyohead++;
i f (typtr->tyohead >= &t yptr->tyobuff[TY OBUFLEN]) {
typtr->tyohead = typtr->tyobuff;
}

avail --:
uspace- - ;
ochar s++;

I f (ochars > 0)
signal n(typtr->tyosem ochars);

return;
Xinu —module 15 48 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

/[* ttyinit.c - ttyinit */
#i ncl ude <xi nu. h>

struct ttycblk ttytab[Ntty];

Xinu Ttyinit (Part 1)

* |
devcal | ttyinit(
struct dentry *devptr

)
struct ttycblk *typtr;

/[* Entry in device switch table */

/* Pointer to ttytab entry

struct uart_csreg *uptr; /* Address of UART's CSRs

ui nt 32 pci dev;

[* Encoded PCl device

typtr = &tytab[devptr->dvninor];

/* Initialize values in the tty control bl ock */

typtr->tyihead = typtr->tyitail = [*
&yptr->tyi buff[O0]; [*
typtr->tyi sem = senctreate(0); [*
typtr->tyohead = typtr->tyotail = /*
& yptr->tyobuff[0]; [*

Xinu—module 15

Set up input queue
as enpty

| nput semaphore

Set up out put queue
as enpty

49
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

*/
*/
*/

*/
*/
*/
*/
*/

2025

Xinu Ttyinit (Part 2)

typtr->tyosem = sencreat e(TY_OBUFLEN); Qut put semaphore */
typtr->tyehead = typtr->tyetail = Set up echo queue */
& yptr->tyebuff[0]; as enpty */

Start in cooked node */
Echo consol e i nput */
Honor erasi ng bksp */
Vi sual control chars */
Echo CRLF for NEW.I NE*/
Map CR to NEW.I NE */
Do erasing backspace */
Primary erase char */
Al ternate erase char */
Honor eof on i nput */
End-of -fil e character*/

typtr->tyi node = TY_ | MCOOKED;
typtr->tyi echo TRUE;
typtr->tyi eback = TRUE;
typtr->tyevis = TRUE;
typtr->tyecrlf TRUE;
typtr->tyicrlf TRUE;
typtr->tyi erase = TRUE;
typtr->tyi erasec = TY_BACKSP;
typtr->tyi erasec2= TY_BACKSPZ2;
typtr->tyeof = TRUE;
typtr->tyeofch = TY ECFCH;

typtr->tyikill TRUE; Al low line kill */
typtr->tyikillc = TY_KI LLCH; Set line kill to AU */
typtr->tyicursor = O; Start of input line */
typtr->tyofl ow = TRUE; Handl e flow control */
typtr->tyoheld = FALSE; Cut put not held */
typtr->tyostop = TY _STOPCH; Stop char is *S */
typtr->tyostart = TY_STRTCH, Start char is *"Q */

Send CRLF for NEW.I NE*/
Send "G when buffer */
is full * [

typtr->tyocrlf TRUE;
typtr->tyifullc = TY_FULLCH,

L I T S T T T N I I R

B T T e T e e T

Xinu—module 15 50 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ttyinit (Part 3)

/[* Get the encoded PClI for the UART device */

pcidev = find pci_device(l NTEL QUARK UART_PClI DI D,
| NTEL_ QUARK _UART PCl VI D,
1§

/[* Initialize the UART */

uptr = (struct uart _csreg *)devptr->dvcsr;

[* Set baud rate */

uptr->lcr = UART _LCR DLAB;

uptr->dl m = 0x00;

uptr->dl I = 0x18;

uptr->lcr = UART_LCR 8NIi; /* 8 bit char, No Parity, 1 Stop*/
uptr->fcr = 0x00; /* Disable FIFO for now */

/* Register the interrupt handler for the tty device */

pci _set ivec(pcidev, devptr->dvirqg, devptr->dvintr,
(i nt32)devptr);

Xinu —module 15 51 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Per spective

e UART hardware is primitive

e The device driver software, not the hardware, displays characters on the screen as the
user enters them on a keyboard

e Most of the features a user expects, such as erasing backspace, are handled entirely by
software

e Unlike abstractions covered earlier (e.g., semaphores), a basic tty driver is incredibly
complex

e A driver has many parameters that control its operation

e Small details complicate the code

Xinu —module 15 52 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Per spective
(continued)

e A devicedriver
— Congists of functions that applications call to perform | /O on the device
— Also provides an interrupt handler for the device
— Must contend with low-level hardware
— Must map high-level functionality to low-level hardware
e The example tty driver illustrates that
— A hardware FIFO complicates the design
— Many lines of code are needed for basic functions, such as character erase

— Allowing dynamic parameters to control the behavior complicates a driver

Xinu—module 15 53 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Ouestions?

