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L ocation Of Device Management In The Hierarchy
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Conceptual Organization Of Device Software

e Three conceptual pieces
— Abstract interface (high-level | /O operations)
— Set of physical devices
— Device driver software that connects the two
e We will see that each device driver can be divided into two parts
— An upper-half that applications call
— A lower-half that handles interrupts
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| nterface And Driver Abstractions

e Two abstractions are needed
— The /O interface the operating system offers to applications

— The interface offered by the underlying device driver functions
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Goals For The Device Interface Applications Use

e |solation from hardware: ensure that applications do not contain details related to device
hardware

e Portability: allow applications to run on any brand or model of equivalent device
unchanged

e Elegance: limit the interface to a minimal number of orthogonal functions
e Generality: use a common paradigm across all devices

e |ntegration: integrate the device manager with the process manager and other operating
system facilities

Xinu—module 14 6 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Achieving The Goals

e Devise asmall set of functions that applications use to
— Obtain incoming data from a device
— Transfer outgoing data to a device
— Control the device

e Examples of controlling a device
— Adjust the volume on headphones
— Turn off character echo when reading a password
— Eject aUSB drive

e The approach is known as a device-independent interface
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Achieving Device-independent | /O

e Define a set of abstract operations
e Build afunction for each operation

e Have each function include an argument that a programmer can use to specify a
particular device

e Arrange an efficient way to map generic operation onto code for a specific device
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Definition Of A Device Driver

e A devicedriver consists of a set of functions that perform | /O operations on a given
device

e The code is device-specific

e The set includes
— Aninterrupt handler function
— Functions to control the device

— Functions to read and write data. The code is divided into two conceptual parts

Xinu—module 14 9 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



The Two Conceptual Parts Of A Device Driver

e The upper-half

Functions that are executed by an application

The functions usually perform data transfer (read or write)

The code copies data between the user and kernel address spaces

e The lower-half

|s invoked by the hardware when an interrupt occurs

Consists of a device-specific interrupt handler

May also include dispatcher code, depending on the architecture
Executed by whatever process is executing

May restart the device for the next operation
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Division Of DutiesIn A Driver

e The upper-nalf functions
— Have minimal interaction with device hardware
— Enqueue arequest, and may start the device
e The lower-half functions
— Have minimal interaction with application
— Interact with the device to
*  Qbtain incoming data
*  Start output

— Reschedule if a process is waiting for the device
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Xinu’s Device-Independent | /O Primitives

Operation Purpose
close Terminate use of a device
control Perform operations other than data transfer
getc Input a single byte of data
init Initialize the device at system startup
open Prepare the device for use
putc Output a single byte of data
read Input multiple bytes of data
seek Move to specific data (usually a disk)
write Output multiple bytes of data

e Xinu adopts the open-read-write-close paradigm of Unix

e Some abstract functions may not apply to a given device
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Synchronous Vs. Asynchronous Semantics

When using a synchronous /O Interface, a
process Is blocked until the operation
completes. When using an asynchronous /O
Interface, a process continues to execute and
IS notified when the operation completes.
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Xinu’s Synchronous Semantics

e |ike many modern systems, Xinu uses synchronous semantics

— When a process attempts to receive incoming data from a device, the process blocks
until the data arrives

— When a process attempts to send outgoing data to a device, the process blocks until
data can be transferred or placed in a buffer where it stays until the device finishes
transferring it
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Coordination Of Processes Performing Synchronous |I/O

e A devicedriver must be able to block and later unblock application processes

e Good news: there is no need to invent new coordination mechanisms because standard
process coordination mechanisms suffice

— Message passing
— Semaphores
— Suspend/resume

e We will see examples later
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| mplementation Of Device-Independent 1 /O In Xinu

An application process

— Makes calls to device-independent functions (e.g., read)

— Supplies the device ID as parameter (e.qg., ETHER or CONSOLE)

The device-independent 1/O function

— Uses the device ID to identify the correct hardware device

— Invokes the appropriate device-specific function to perform the specified operation
Examples

— When a process reads from the ETHER device, the device manager invokes ethread

— When a process reads from the CONSOLE, the device manager invokes ttyread
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Mapping A Generic | /O Function To A Device-Specific Function

e The mapping must be extremely efficient
e Solution: use atwo-dimensional array known as a device switch table
e The device switch table

— Isakernd data structure that is initialized at compile time

— Has one row for each device

— Has one column for each possible I/O operation

e An entry in the table points to a function to be called to perform the operation on the
device

e A devicelD iIs chosen to be an index into rows of the table

Xinu—module 14 17 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Entries In The Device Switch Table

e A given device-independent operation may not make sense for some devices
— Seek on a keyboard, network interface, or audio output device
— Close on a mouse

e To avoid special cases in the code
— Make each entry in the device switch table point to a valid function

— Use special functions for cases where an operation does not apply to a specific
device
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Special Entries Used In The Device Switch Table

e |onull

— Used for an innocuous operation (e.g., open for a device that does not really require
opening)

— Simply returns OK
e |oerr
— Used for an incorrect operation (e.g., putc on disk)

— Simply returns SYSERR
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e Each row corresponds to a device and each column corresponds to an operation

| llustration Of A Device Switch Table

device

CONSOLE
SERIALO
SERIAL1

ETHER

operation ——

open read write
&ttyopen &ttyread &ttywrite
&ionull &comread &comwrite
&ionull &comread &comwrite
&ethopen &ethread &ethwrite

e An entry specifies the address of a function to invoke

e The example uses ionull for open on devices SERIALO and SERIAL1
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Replicated Devices And Device Drivers

e A computer may contain multiple copies of a given physical device
e Examples

— Two Ethernet NICs

— Two disks

— Two monitors

e Goal: have one copy of device driver code for each type of device and use the same
code with multiple devices
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The Point About Devices And Drivers

Instead of creating a device driver for each physical device, an operating system maintains
a single copy of the driver for each type of device and supplies an argument that permits
the driver to distinguish among multiple copies of the physical hardware.
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Parameterized Device Drivers

e A device driver must
— Know which physical copy of a device type to use (e.g., which disk)

— Keep information about each physical copy of a device separate from information
for other physical devices (e.g., maintain separate information for each disk)

e To accommodate multiple copies of a device

— Assign each instance of a replicated device a unigue number (O, 1, 2, ...) known as
Its minor device number

— Store the minor device number in the device switch table
— Example 1. for two disks of the same type, assign minor numbers O and 1
— Example 2: for three NICs of the same type assign minor numbers O, 1, and 2

e The point: minor numbers only distinguish among devices of the same type
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Device Names

e Previous examples have shown examples of device names used in code (e.g.,
CONSOLE, SERIALO, SERIALL, ETHER)

e The device switch table is an array, and each device name is an index into the array
e How does the system know how many rows to allocate in the table?

e How are unique values assigned to device names?

e How are minor device numbers assigned for replicated devices?

e Answer: it's automatic — a configuration program takes device information as input,
Including names to be used for devices, and generates the definitions and the device
switch table entries automatically
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Device Configuration

e Wewill see more details later: for now, it Is sufficient to know that

— The OS designer creates a file named Configuration that

*

*

*

Lists devices in the system and gives each a name (e.g., CONSOLE)
Specifies a type for each device

Specifies the driver functions to use for each operation on the device (open,
close, read, write, putc, getc, etc.)

— The config program generates two files

*
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A file named conf.h that contains declarations for data structures used in the
device switch table

A file named conf.c that contains a definition of the device switch table with
Initial values specified, including minor numbers
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Initializing The | /O Subsystem

e At system startup
— Entries in the device switch table are already initialized
— The interrupt vectors (and perhaps the bus) must be initialized

— Thenit function is called for each device, which initializes both the device
hardware and the driver (e.g., creates the semaphores the driver uses for
coordination)

e |nlab, you will create adriver and understand how an array can hold information for a
set of replicated devices and how the minor number of the device corresponds to an
Index into the array
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The Implementation Of High-Level | /O Functions

e Each high-level function (e.g., open, close, read, write)
— Takes a device name as an argument

— Uses the device switch table to choose the device-specific driver function to use

— Invokes the driver function

e PBasically, ahigh-level 1/0 function uses one level of indirection to invoke an
underlying driver function

e An example will clarify the approach used

Xinu—module 14 27 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



An Example High-Level 1/O Function

/* read.c - read */
#1 ncl ude <xi nu. h>

/2
* read - Read one or nore bytes from a device
*
syscal | read(
di d32 descrp, /| * Descriptor for device
char *buf fer, /* Address of buffer
ui nt 32 count /* Length of buffer
)
{ _ |
| nt mask mask; /* Saved interrupt mask
struct dentry *devptr; /* Entry in device swtch table
i nt 32 retval ; /* Value to return to caller
mask = di sabl e();
I f (isbaddev(descrp)) {
rest or e( mask) ;
return SYSERR;
}
devptr = (struct dentry *) &devtab[descrp];
retval = (*devptr->dvread) (devptr, buffer, count);
rest ore( mask) ;
return retval;
}
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Summary

e The device manager in an operating system provides an interface that applications use
torequest 1 /O

e Device-independent | / O functions
— Provide a uniform interface
— Define generic operations that must be mapped to device-specific functions

e Xinu uses a device switch table to map a device-independent operation to the correct
driver function

e A device driver for each device consists of

— Upper-half functions that each implement a high-level operation on the device (e.g.,
read and write)

— A lower-half function that handles interrupts
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