Module X1V

Device M anagement
Device Drivers
Device-Independent | /O

Xinu—module 14 1 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

L ocation Of Device Management In The Hierarchy

Xinu—module 14 2 2025
Copyright 0 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Conceptual Organization Of Device Software

e Three conceptual pieces
— Abstract interface (high-level | /O operations)
— Set of physical devices
— Device driver software that connects the two
e We will see that each device driver can be divided into two parts
— An upper-half that applications call
— A lower-half that handles interrupts

Xinu—module 14 3 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu—module 14

Conceptual Organization Of Device Software

device
drivers <

device

drlvehr .
upper-ha
(ggvice 1)

device

driver
lower-half
(device 1)

(continued)

application processes

device

drlvehr .
upper-ha
(él)é)vice 2)

device

driver
lower-half
(device 2)

4

device

driver
upper-half
(device 3)

device

driver
lower-half
(device 3)

device

drlv%r .
upper-ha
(oFI)epvice n)

device

driver
lower-half
(device n)

Copyright 0 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

| nterface And Driver Abstractions

e Two abstractions are needed
— The /O interface the operating system offers to applications

— The interface offered by the underlying device driver functions

Xinu—module 14 5 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Goals For The Device Interface Applications Use

e |solation from hardware: ensure that applications do not contain details related to device
hardware

e Portability: allow applications to run on any brand or model of equivalent device
unchanged

e Elegance: limit the interface to a minimal number of orthogonal functions
e Generality: use a common paradigm across all devices

e |ntegration: integrate the device manager with the process manager and other operating
system facilities

Xinu—module 14 6 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Achieving The Goals

e Devise asmall set of functions that applications use to
— Obtain incoming data from a device
— Transfer outgoing data to a device
— Control the device

e Examples of controlling a device
— Adjust the volume on headphones
— Turn off character echo when reading a password
— Eject aUSB drive

e The approach is known as a device-independent interface

Xinu —module 14 7 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Achieving Device-independent | /O

e Define a set of abstract operations
e Build afunction for each operation

e Have each function include an argument that a programmer can use to specify a
particular device

e Arrange an efficient way to map generic operation onto code for a specific device

Xinu—module 14 8 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Definition Of A Device Driver

e A devicedriver consists of a set of functions that perform | /O operations on a given
device

e The code is device-specific

e The set includes
— Aninterrupt handler function
— Functions to control the device

— Functions to read and write data. The code is divided into two conceptual parts

Xinu—module 14 9 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Two Conceptual Parts Of A Device Driver

e The upper-half

Functions that are executed by an application

The functions usually perform data transfer (read or write)

The code copies data between the user and kernel address spaces

e The lower-half

|s invoked by the hardware when an interrupt occurs

Consists of a device-specific interrupt handler

May also include dispatcher code, depending on the architecture
Executed by whatever process is executing

May restart the device for the next operation

Xinu —module 14 10

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Division Of DutiesIn A Driver

e The upper-nalf functions
— Have minimal interaction with device hardware
— Enqueue arequest, and may start the device
e The lower-half functions
— Have minimal interaction with application
— Interact with the device to
* Qbtain incoming data
* Start output

— Reschedule if a process is waiting for the device

Xinu—module 14 11 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu’s Device-Independent | /O Primitives

Operation Purpose
close Terminate use of a device
control Perform operations other than data transfer
getc Input a single byte of data
init Initialize the device at system startup
open Prepare the device for use
putc Output a single byte of data
read Input multiple bytes of data
seek Move to specific data (usually a disk)
write Output multiple bytes of data

e Xinu adopts the open-read-write-close paradigm of Unix

e Some abstract functions may not apply to a given device

12 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu—module 14

Synchronous Vs. Asynchronous Semantics

When using a synchronous /O Interface, a
process Is blocked until the operation
completes. When using an asynchronous /O
Interface, a process continues to execute and
IS notified when the operation completes.

Xinu —module 14 13

2025
Copyright 0 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu’s Synchronous Semantics

e |ike many modern systems, Xinu uses synchronous semantics

— When a process attempts to receive incoming data from a device, the process blocks
until the data arrives

— When a process attempts to send outgoing data to a device, the process blocks until
data can be transferred or placed in a buffer where it stays until the device finishes
transferring it

Xinu—module 14 14 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Coordination Of Processes Performing Synchronous |I/O

e A devicedriver must be able to block and later unblock application processes

e Good news: there is no need to invent new coordination mechanisms because standard
process coordination mechanisms suffice

— Message passing
— Semaphores
— Suspend/resume

e We will see examples later

Xinu—module 14 15 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

| mplementation Of Device-Independent 1 /O In Xinu

An application process

— Makes calls to device-independent functions (e.g., read)

— Supplies the device ID as parameter (e.qg., ETHER or CONSOLE)

The device-independent 1/O function

— Uses the device ID to identify the correct hardware device

— Invokes the appropriate device-specific function to perform the specified operation
Examples

— When a process reads from the ETHER device, the device manager invokes ethread

— When a process reads from the CONSOLE, the device manager invokes ttyread

Xinu —module 14 16 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Mapping A Generic | /O Function To A Device-Specific Function

e The mapping must be extremely efficient
e Solution: use atwo-dimensional array known as a device switch table
e The device switch table

— Isakernd data structure that is initialized at compile time

— Has one row for each device

— Has one column for each possible I/O operation

e An entry in the table points to a function to be called to perform the operation on the
device

e A devicelD iIs chosen to be an index into rows of the table

Xinu—module 14 17 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Entries In The Device Switch Table

e A given device-independent operation may not make sense for some devices
— Seek on a keyboard, network interface, or audio output device
— Close on a mouse

e To avoid special cases in the code
— Make each entry in the device switch table point to a valid function

— Use special functions for cases where an operation does not apply to a specific
device

Xinu—module 14 18 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Special Entries Used In The Device Switch Table

e |onull

— Used for an innocuous operation (e.g., open for a device that does not really require
opening)

— Simply returns OK
e |oerr
— Used for an incorrect operation (e.g., putc on disk)

— Simply returns SYSERR

Xinu—module 14 19 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

e Each row corresponds to a device and each column corresponds to an operation

| llustration Of A Device Switch Table

device

CONSOLE
SERIALO
SERIAL1

ETHER

operation ——

open read write
&ttyopen &ttyread &ttywrite
&ionull &comread &comwrite
&ionull &comread &comwrite
ðopen ðread ðwrite

e An entry specifies the address of a function to invoke

e The example uses ionull for open on devices SERIALO and SERIAL1

Xinu—module 14

20

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Replicated Devices And Device Drivers

e A computer may contain multiple copies of a given physical device
e Examples

— Two Ethernet NICs

— Two disks

— Two monitors

e Goal: have one copy of device driver code for each type of device and use the same
code with multiple devices

Xinu—module 14 21 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Point About Devices And Drivers

Instead of creating a device driver for each physical device, an operating system maintains
a single copy of the driver for each type of device and supplies an argument that permits
the driver to distinguish among multiple copies of the physical hardware.

Xinu—module 14 22 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Parameterized Device Drivers

e A device driver must
— Know which physical copy of a device type to use (e.g., which disk)

— Keep information about each physical copy of a device separate from information
for other physical devices (e.g., maintain separate information for each disk)

e To accommodate multiple copies of a device

— Assign each instance of a replicated device a unigue number (O, 1, 2, ...) known as
Its minor device number

— Store the minor device number in the device switch table
— Example 1. for two disks of the same type, assign minor numbers O and 1
— Example 2: for three NICs of the same type assign minor numbers O, 1, and 2

e The point: minor numbers only distinguish among devices of the same type

Xinu—module 14 23 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Device Names

e Previous examples have shown examples of device names used in code (e.g.,
CONSOLE, SERIALO, SERIALL, ETHER)

e The device switch table is an array, and each device name is an index into the array
e How does the system know how many rows to allocate in the table?

e How are unique values assigned to device names?

e How are minor device numbers assigned for replicated devices?

e Answer: it's automatic — a configuration program takes device information as input,
Including names to be used for devices, and generates the definitions and the device
switch table entries automatically

Xinu—module 14 24 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Device Configuration

e Wewill see more details later: for now, it Is sufficient to know that

— The OS designer creates a file named Configuration that

*

*

*

Lists devices in the system and gives each a name (e.g., CONSOLE)
Specifies a type for each device

Specifies the driver functions to use for each operation on the device (open,
close, read, write, putc, getc, etc.)

— The config program generates two files

*

Xinu—module 14

A file named conf.h that contains declarations for data structures used in the
device switch table

A file named conf.c that contains a definition of the device switch table with
Initial values specified, including minor numbers

25 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Initializing The | /O Subsystem

e At system startup
— Entries in the device switch table are already initialized
— The interrupt vectors (and perhaps the bus) must be initialized

— Thenit function is called for each device, which initializes both the device
hardware and the driver (e.g., creates the semaphores the driver uses for
coordination)

e |nlab, you will create adriver and understand how an array can hold information for a
set of replicated devices and how the minor number of the device corresponds to an
Index into the array

Xinu—module 14 26 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Implementation Of High-Level | /O Functions

e Each high-level function (e.g., open, close, read, write)
— Takes a device name as an argument

— Uses the device switch table to choose the device-specific driver function to use

— Invokes the driver function

e PBasically, ahigh-level 1/0 function uses one level of indirection to invoke an
underlying driver function

e An example will clarify the approach used

Xinu—module 14 27 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

An Example High-Level 1/O Function

/* read.c - read */
#1 ncl ude <xi nu. h>

/2
* read - Read one or nore bytes from a device
*
syscal | read(
di d32 descrp, /| * Descriptor for device
char *buf fer, /* Address of buffer
ui nt 32 count /* Length of buffer
)
{ _ |
| nt mask mask; /* Saved interrupt mask
struct dentry *devptr; /* Entry in device swtch table
i nt 32 retval ; /* Value to return to caller
mask = di sabl e();
I f (isbaddev(descrp)) {
rest or e(mask) ;
return SYSERR;
}
devptr = (struct dentry *) &devtab[descrp];
retval = (*devptr->dvread) (devptr, buffer, count);
rest ore(mask) ;
return retval;
}

Xinu—module 14

28
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

*/
*/
*/

*/
*/
*/

2025

Summary

e The device manager in an operating system provides an interface that applications use
torequest 1 /O

e Device-independent | / O functions
— Provide a uniform interface
— Define generic operations that must be mapped to device-specific functions

e Xinu uses a device switch table to map a device-independent operation to the correct
driver function

e A device driver for each device consists of

— Upper-half functions that each implement a high-level operation on the device (e.g.,
read and write)

— A lower-half function that handles interrupts

Xinu—module 14 29 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Ouestions?

