
Module XIV

Device Management
Device Drivers

Device-Independent I / O

Xinu – module 14 1 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Location Of Device Management In The Hierarchy

Xinu – module 14 2 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Conceptual Organization Of Device Software

d Three conceptual pieces

– Abstract interface (high-level I / O operations)

– Set of physical devices

– Device driver software that connects the two

d We will see that each device driver can be divided into two parts

– An upper-half that applications call

– A lower-half that handles interrupts

Xinu – module 14 3 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Conceptual Organization Of Device Software
(continued)

I/O operations available to applications

application processes

device 1

device
driver

upper-half
(device 1)

device
driver

lower-half
(device 1)

device 2

device
driver

upper-half
(device 2)

device
driver

lower-half
(device 2)

device 3

device
driver

upper-half
(device 3)

device
driver

lower-half
(device 3)

device n

device
driver

upper-half
(device n)

device
driver

lower-half
(device n)

. . .

device
drivers

Xinu – module 14 4 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Interface And Driver Abstractions

d Two abstractions are needed

– The I/O interface the operating system offers to applications

– The interface offered by the underlying device driver functions

Xinu – module 14 5 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Goals For The Device Interface Applications Use

d Isolation from hardware: ensure that applications do not contain details related to device
hardware

d Portability: allow applications to run on any brand or model of equivalent device
unchanged

d Elegance: limit the interface to a minimal number of orthogonal functions

d Generality: use a common paradigm across all devices

d Integration: integrate the device manager with the process manager and other operating
system facilities

Xinu – module 14 6 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Achieving The Goals

d Devise a small set of functions that applications use to

– Obtain incoming data from a device

– Transfer outgoing data to a device

– Control the device

d Examples of controlling a device

– Adjust the volume on headphones

– Turn off character echo when reading a password

– Eject a USB drive

d The approach is known as a device-independent interface

Xinu – module 14 7 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Achieving Device-independent I / O

d Define a set of abstract operations

d Build a function for each operation

d Have each function include an argument that a programmer can use to specify a
particular device

d Arrange an efficient way to map generic operation onto code for a specific device

Xinu – module 14 8 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Definition Of A Device Driver

d A device driver consists of a set of functions that perform I /O operations on a given
device

d The code is device-specific

d The set includes

– An interrupt handler function

– Functions to control the device

– Functions to read and write data. The code is divided into two conceptual parts

Xinu – module 14 9 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



The Two Conceptual Parts Of A Device Driver

d The upper-half

– Functions that are executed by an application

– The functions usually perform data transfer (read or write)

– The code copies data between the user and kernel address spaces

d The lower-half

– Is invoked by the hardware when an interrupt occurs

– Consists of a device-specific interrupt handler

– May also include dispatcher code, depending on the architecture

– Executed by whatever process is executing

– May restart the device for the next operation

Xinu – module 14 10 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Division Of Duties In A Driver

d The upper-half functions

– Have minimal interaction with device hardware

– Enqueue a request, and may start the device

d The lower-half functions

– Have minimal interaction with application

– Interact with the device to

* Obtain incoming data

* Start output

– Reschedule if a process is waiting for the device

Xinu – module 14 11 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Xinu’s Device-Independent I / O Primitives

22222222222222222222222222222222222222222222222222222222
Operation Purpose22222222222222222222222222222222222222222222222222222222

close Terminate use of a device22222222222222222222222222222222222222222222222222222222

control Perform operations other than data transfer22222222222222222222222222222222222222222222222222222222

getc Input a single byte of data22222222222222222222222222222222222222222222222222222222

init Initialize the device at system startup22222222222222222222222222222222222222222222222222222222

open Prepare the device for use22222222222222222222222222222222222222222222222222222222

putc Output a single byte of data22222222222222222222222222222222222222222222222222222222

read Input multiple bytes of data22222222222222222222222222222222222222222222222222222222

seek Move to specific data (usually a disk)22222222222222222222222222222222222222222222222222222222

write Output multiple bytes of data
222222222222222222222222222222222222222222222222222222221
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

d Xinu adopts the open-read-write-close paradigm of Unix

d Some abstract functions may not apply to a given device

Xinu – module 14 12 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Synchronous Vs. Asynchronous Semantics

When using a synchronous I/O interface, a
process is blocked until the operation
completes. When using an asynchronous I/O
interface, a process continues to execute and
is notified when the operation completes.

Xinu – module 14 13 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Xinu’s Synchronous Semantics

d Like many modern systems, Xinu uses synchronous semantics

– When a process attempts to receive incoming data from a device, the process blocks
until the data arrives

– When a process attempts to send outgoing data to a device, the process blocks until
data can be transferred or placed in a buffer where it stays until the device finishes
transferring it

Xinu – module 14 14 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Coordination Of Processes Performing Synchronous I/O

d A device driver must be able to block and later unblock application processes

d Good news: there is no need to invent new coordination mechanisms because standard
process coordination mechanisms suffice

– Message passing

– Semaphores

– Suspend /resume

d We will see examples later

Xinu – module 14 15 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Implementation Of Device-Independent I / O In Xinu

d An application process

– Makes calls to device-independent functions (e.g., read)

– Supplies the device ID as parameter (e.g., ETHER or CONSOLE)

d The device-independent I/O function

– Uses the device ID to identify the correct hardware device

– Invokes the appropriate device-specific function to perform the specified operation

d Examples

– When a process reads from the ETHER device, the device manager invokes ethread

– When a process reads from the CONSOLE, the device manager invokes ttyread

Xinu – module 14 16 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Mapping A Generic I /O Function To A Device-Specific Function

d The mapping must be extremely efficient

d Solution: use a two-dimensional array known as a device switch table

d The device switch table

– Is a kernel data structure that is initialized at compile time

– Has one row for each device

– Has one column for each possible I/O operation

d An entry in the table points to a function to be called to perform the operation on the
device

d A device ID is chosen to be an index into rows of the table

Xinu – module 14 17 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Entries In The Device Switch Table

d A given device-independent operation may not make sense for some devices

– Seek on a keyboard, network interface, or audio output device

– Close on a mouse

d To avoid special cases in the code

– Make each entry in the device switch table point to a valid function

– Use special functions for cases where an operation does not apply to a specific
device

Xinu – module 14 18 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Special Entries Used In The Device Switch Table

d ionull

– Used for an innocuous operation (e.g., open for a device that does not really require
opening)

– Simply returns OK

d ioerr

– Used for an incorrect operation (e.g., putc on disk)

– Simply returns SYSERR

Xinu – module 14 19 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Illustration Of A Device Switch Table

open read write

. . .

CONSOLE

SERIAL0

SERIAL1

ETHER

...

&ttyopen &ttyread &ttywrite

&ionull &comread &comwrite

&ionull &comread &comwrite

&ethopen &ethread &ethwrite

operation
device

d Each row corresponds to a device and each column corresponds to an operation

d An entry specifies the address of a function to invoke

d The example uses ionull for open on devices SERIAL0 and SERIAL1

Xinu – module 14 20 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Replicated Devices And Device Drivers

d A computer may contain multiple copies of a given physical device

d Examples

– Two Ethernet NICs

– Two disks

– Two monitors

d Goal: have one copy of device driver code for each type of device and use the same
code with multiple devices

Xinu – module 14 21 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



The Point About Devices And Drivers

Instead of creating a device driver for each physical device, an operating system maintains
a single copy of the driver for each type of device and supplies an argument that permits
the driver to distinguish among multiple copies of the physical hardware.

Xinu – module 14 22 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Parameterized Device Drivers

d A device driver must

– Know which physical copy of a device type to use (e.g., which disk)

– Keep information about each physical copy of a device separate from information
for other physical devices (e.g., maintain separate information for each disk)

d To accommodate multiple copies of a device

– Assign each instance of a replicated device a unique number (0, 1, 2, ...) known as
its minor device number

– Store the minor device number in the device switch table

– Example 1: for two disks of the same type, assign minor numbers 0 and 1

– Example 2: for three NICs of the same type assign minor numbers 0, 1, and 2

d The point: minor numbers only distinguish among devices of the same type

Xinu – module 14 23 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Device Names

d Previous examples have shown examples of device names used in code (e.g.,
CONSOLE, SERIAL0, SERIAL1, ETHER)

d The device switch table is an array, and each device name is an index into the array

d How does the system know how many rows to allocate in the table?

d How are unique values assigned to device names?

d How are minor device numbers assigned for replicated devices?

d Answer: it’s automatic — a configuration program takes device information as input,
including names to be used for devices, and generates the definitions and the device
switch table entries automatically

Xinu – module 14 24 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Device Configuration

d We will see more details later; for now, it is sufficient to know that

– The OS designer creates a file named Configuration that

* Lists devices in the system and gives each a name (e.g., CONSOLE)

* Specifies a type for each device

* Specifies the driver functions to use for each operation on the device (open,
close, read, write, putc, getc, etc.)

– The config program generates two files

* A file named conf.h that contains declarations for data structures used in the
device switch table

* A file named conf.c that contains a definition of the device switch table with
initial values specified, including minor numbers

Xinu – module 14 25 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Initializing The I / O Subsystem

d At system startup

– Entries in the device switch table are already initialized

– The interrupt vectors (and perhaps the bus) must be initialized

– The init function is called for each device, which initializes both the device
hardware and the driver (e.g., creates the semaphores the driver uses for
coordination)

d In lab, you will create a driver and understand how an array can hold information for a
set of replicated devices and how the minor number of the device corresponds to an
index into the array

Xinu – module 14 26 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



The Implementation Of High-Level I/O Functions

d Each high-level function (e.g., open, close, read, write)

– Takes a device name as an argument

– Uses the device switch table to choose the device-specific driver function to use

– Invokes the driver function

d Basically, a high-level I/O function uses one level of indirection to invoke an
underlying driver function

d An example will clarify the approach used

Xinu – module 14 27 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



An Example High-Level I/O Function
/* read.c - read */

#include <xinu.h>

/*------------------------------------------------------------------------
* read - Read one or more bytes from a device
*------------------------------------------------------------------------
*/

syscall read(
did32 descrp, /* Descriptor for device */
char *buffer, /* Address of buffer */
uint32 count /* Length of buffer */

)
{

intmask mask; /* Saved interrupt mask */
struct dentry *devptr; /* Entry in device switch table */
int32 retval; /* Value to return to caller */

mask = disable();
if (isbaddev(descrp)) {

restore(mask);
return SYSERR;

}
devptr = (struct dentry *) &devtab[descrp];
retval = (*devptr->dvread) (devptr, buffer, count);
restore(mask);
return retval;

}

Xinu – module 14 28 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Summary

d The device manager in an operating system provides an interface that applications use
to request I / O

d Device-independent I / O functions

– Provide a uniform interface

– Define generic operations that must be mapped to device-specific functions

d Xinu uses a device switch table to map a device-independent operation to the correct
driver function

d A device driver for each device consists of

– Upper-half functions that each implement a high-level operation on the device (e.g.,
read and write)

– A lower-half function that handles interrupts

Xinu – module 14 29 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Questions?


