
Module XIII

Real-Time Clock Management
And Timed Events

Xinu – module 13 1 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Location Of Clock Management In The Hierarchy

Xinu – module 13 2 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Various Types Of Clock Hardware Exist

d Processor clock (rate at which instructions execute)

d Real-time clock

– Pulses regularly

– Interrupts the processor on each pulse

– Called programmable if rate can be controlled by OS

d Interval timer

– The processor sets a timeout and the device interrupts after the specified time

– Can be used to pulse regularly

– May have an automatic restart capability

Xinu – module 13 3 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Timed Events

d Two types of timed events are important to an operating system

d A preemption event

– Known as timeslicing

– Guarantees that a given process cannot run forever

– Switches the processor to another process

d A sleep event

– Is requested by a process to delay for a specified time

– The process resumes execution after the time passes

Xinu – module 13 4 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Note About Timeslicing

Most applications are I/O bound, which
means the application is likely to perform
an operation that takes the process out of
the current state before its timeslice
expires.

Xinu – module 13 5 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Managing Timed Events

d The code must be efficient because

– Clock interrupts occur frequently and continuously

– More than one event may occur at a given time

– The clock interrupt code must avoid searching a list of pending events

d An efficient mechanism

– Keep all timed events on a list

– Call the list an event queue

Xinu – module 13 6 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Delta List

d A data structure used for timed events

d Items on a delta list are ordered by the time they will occur

d Trick to make processing efficient: use relative times

d Implementation: the key in an item stores the difference (delta) between the time for the
event and time for the previous event

d The key in first event stores the delta from “now”

Xinu – module 13 7 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Delta List Example

d Assume events for processes A through D will occur 6, 12, 27, and 50 ticks from now

d The delta keys are 6, 6, 15, and 23

6 A 23 D6 B 15 C

key process next

Xinu – module 13 8 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Real-time Clock Processing In Xinu

d The clock interrupt handler

– Decrements the preemption counter and calls resched if the timeslice has expired

– Processes the sleep queue

d The sleep queue

– Is a delta list

– Each item on the list is a sleeping process

d Global variable sleepq contains the ID of the sleep queue

Xinu – module 13 9 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Keys On The Xinu Sleep Queue

d Processes on sleepq are ordered by time at which they will awaken

d Each key tells the number of clock ticks that the process must delay beyond the
preceding one on the list

d The relationship must be maintained whenever an item is inserted or deleted

Xinu – module 13 10 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Sleep Timer Resolution

d A process calls sleep to delay

d Question: what resolution should be used for sleep?

– Humans typically think of delays in seconds or minutes

– Some applications may need millisecond accuracy (or more, if available)

d The tradeoff: using a high resolution, such as microseconds, means long delays will
overflow a 32-bit integer

Xinu – module 13 11 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Sleep Primitives

d Xinu offers a set of functions to accommodate a range of possible resolutions

sleep – the delay is given in seconds

sleep10 – the delay is given in tenths of seconds

sleep100 – the delay is given in hundredths of seconds

sleepms – the delay is given in milliseconds

d The smallest resolution is milliseconds because the clock operates at a rate of one
millisecond per tick

Xinu – module 13 12 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A New Process State For Sleeping Processes

d A sleeping process is not ready, suspended, or waiting

d A new state is required

– The process enters the sleeping state by calling a sleep function

– The clock interrupt handler calls wakeup when the delay expires

Xinu – module 13 13 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A New Process State For Sleeping Processes
(continued)

READY CURRENT

resched

resched

SUSPENDED
suspendresume

suspend

create

WAITING
waitsignal

RECEIVING
receivesend

SLEEPING
sleepwakeup

Xinu – module 13 14 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Sleep.c (sleep and sleepms) (Part 1)

/* sleep.c - sleep sleepms */

#include <xinu.h>

#define MAXSECONDS 2147483 /* Max seconds per 32-bit msec */

/*--
* sleep - Delay the calling process n seconds
*--
*/

syscall sleep(
int32 delay /* Time to delay in seconds */

)
{

if ((delay < 0) || (delay > MAXSECONDS)) {
return SYSERR;

}
return sleepms(1000*delay);

}

Xinu – module 13 15 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Sleep.c (sleep and sleepms) (Part 2)

/*--
* sleepms - Delay the calling process n milliseconds
*--
*/

syscall sleepms(
int32 delay /* Time to delay in msec. */

)
{

intmask mask; /* Saved interrupt mask */

if (delay < 0) {
return SYSERR;

}

if (delay == 0) {
yield();
return OK;

}

Xinu – module 13 16 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Sleep.c (sleep and sleepms) (Part 3)

/* Delay calling process */

mask = disable();
if (insertd(currpid, sleepq, delay) == SYSERR) {

restore(mask);
return SYSERR;

}

proctab[currpid].prstate = PR_SLEEP;
resched();
restore(mask);
return OK;

}

Xinu – module 13 17 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Inserting An Item On Sleepq

d The current process calls sleepms or sleep to request a delay

d Sleepms

– The underlying function that takes action

– Inserts current process on sleepq

– Calls resched to allow other processes to execute

d Method

– Walk through sleepq (with interrupts disabled)

– Find the place to insert the process

– Adjust remaining keys as necessary

Xinu – module 13 18 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Invariant For Insertion On sleepq

d The key of the first process on a delta list specifies the number of clock ticks a process
must delay beyond the current time

d The key of each other process on a delta list specifies the number of clock ticks the
process must delay beyond the preceding process on the list.

d When inserting a new delay on the list, the code adheres to the following invariant:

At any time during the search, both key and
queuetab[next].qkey specify a delay relative to
the time at which the predecessor of the
“next” process awakens.

Xinu – module 13 19 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Insertd (Part 1)

/* insertd.c - insertd */

#include <xinu.h>

/*--
* insertd - Insert a process in delta list using delay as the key
*--
*/

status insertd(/* Assumes interrupts disabled */
pid32 pid, /* ID of process to insert */
qid16 q, /* ID of queue to use */
int32 key /* Delay from "now" (in ms.) */

)
{

int32 next; /* Runs through the delta list */
int32 prev; /* Follows next through the list*/

if (isbadqid(q) || isbadpid(pid)) {
return SYSERR;

}

Xinu – module 13 20 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Insertd (Part 2)

prev = queuehead(q);
next = queuetab[queuehead(q)].qnext;
while ((next != queuetail(q)) && (queuetab[next].qkey <= key)) {

key -= queuetab[next].qkey;
prev = next;
next = queuetab[next].qnext;

}

/* Insert new node between prev and next nodes */

queuetab[pid].qnext = next;
queuetab[pid].qprev = prev;
queuetab[pid].qkey = key;
queuetab[prev].qnext = pid;
queuetab[next].qprev = pid;
if (next != queuetail(q)) {

queuetab[next].qkey -= key;
}

return OK;
}

Xinu – module 13 21 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Clock Interrupt Handler

d Updates the time-of-day (which counts seconds)

d Handles sleeping processes

– Decrements the key of the first process on the sleep queue

– Calls wakeup if the counter reaches zero

d Handles preemption

– Decrements the preemption counter

– Calls resched if the counter reaches zero

Xinu – module 13 22 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Clock Interrupt Handler
(continued)

d When sleeping processes awaken

– More than one process may awaken at a given time

– The processes may not have the same priority

– If the clock interrupt handler starts a process running immediately, a higher priority
process may remain on the sleep queue, even if its time has expired

d Solution: wakeup awakens all processes that have zero time remaining before allowing
any of them to run

Xinu – module 13 23 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Wakeup

/* wakeup.c - wakeup */

#include <xinu.h>

/*--
* wakeup - Called by clock interrupt handler to awaken processes
*--
*/

void wakeup(void)
{

/* Awaken all processes that have no more time to sleep */

resched_cntl(DEFER_START);
while (nonempty(sleepq) && (firstkey(sleepq) <= 0)) {

ready(dequeue(sleepq));
}

resched_cntl(DEFER_STOP);
return;

}

d Note that rescheduling is deferred until all processes are awakened

Xinu – module 13 24 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Timed Message Reception

d Many operating system components offer a “timeout” on operations

d Timeout is especially useful in building communication protocols

d A Xinu example: receive with timeout

– Operates like receive, but includes a timeout argument

– If a message arrives before the timer expires, the message is returned

– If the timer expires before a message arrives, the value TIMEOUT is returned

– Implemented with recvtime

d Recvtime uses the same queue and wakeup mechanism as sleeping processes

Xinu – module 13 25 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Recvtime (Part 1)

/* recvtime.c - recvtime */

#include <xinu.h>

/*--
* recvtime - Wait specified time to receive a message and return
*--
*/

umsg32 recvtime(
int32 maxwait /* Ticks to wait before timeout */

)
{

intmask mask; /* Saved interrupt mask */
struct procent *prptr; /* Tbl entry of current process */
umsg32 msg; /* Message to return */

if (maxwait < 0) {
return SYSERR;

}
mask = disable();

Xinu – module 13 26 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Recvtime (Part 2)

/* Schedule wakeup and place process in timed-receive state */

prptr = &proctab[currpid];
if (prptr->prhasmsg == FALSE) { /* Delay if no message waiting */

if (insertd(currpid,sleepq,maxwait) == SYSERR) {
restore(mask);
return SYSERR;

}
prptr->prstate = PR_RECTIM;
resched();

}

/* Either message arrived or timer expired */

if (prptr->prhasmsg) {
msg = prptr->prmsg; /* Retrieve message */
prptr->prhasmsg = FALSE;/* Reset message indicator */

} else {
msg = TIMEOUT;

}
restore(mask);
return msg;

}

Xinu – module 13 27 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

When A Process Sends A Message

d The target process could be in

– The receiving state, PR_RECV

– The receive-with-timeout state, PR_RECTIM

d A call to send handles both cases

Xinu – module 13 28 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Look Again At Send.c (Part 1)

/* send.c - send */

#include <xinu.h>

/*--
* send - Pass a message to a process and start recipient if waiting
*--
*/

syscall send(
pid32 pid, /* ID of recipient process */
umsg32 msg /* Contents of message */

)
{

intmask mask; /* Saved interrupt mask */
struct procent *prptr; /* Ptr to process's table entry */

mask = disable();
if (isbadpid(pid)) {

restore(mask);
return SYSERR;

}

Xinu – module 13 29 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Look Again At Send.c (Part 2)

prptr->prmsg = msg; /* Deliver message */
prptr->prhasmsg = TRUE; /* Indicate message is waiting */

/* If recipient waiting or in timed-wait make it ready */

if (prptr->prstate == PR_RECV) {
ready(pid);

} else if (prptr->prstate == PR_RECTIM) {
unsleep(pid);
ready(pid);

}
restore(mask); /* Restore interrupts */
return OK;

}

Xinu – module 13 30 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Unsleep - Remove A Sleeping Process (Part 1)

/* unsleep.c - unsleep */

#include <xinu.h>

/*--
* unsleep - Internal function to remove a process from the sleep
* queue prematurely. The caller must adjust the delay
* of successive processes.
*--
*/

status unsleep(
pid32 pid /* ID of process to remove */

)
{

intmask mask; /* Saved interrupt mask */
struct procent *prptr; /* Ptr to process's table entry */

pid32 pidnext; /* ID of process on sleep queue */
/* that follows the process */
/* which is being removed */

mask = disable();

Xinu – module 13 31 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Unsleep - Remove A Sleeping Process (Part 2

if (isbadpid(pid)) {
restore(mask);
return SYSERR;

}

/* Verify that candidate process is on the sleep queue */

prptr = &proctab[pid];
if ((prptr->prstate!=PR_SLEEP) && (prptr->prstate!=PR_RECTIM)) {

restore(mask);
return SYSERR;

}

/* Increment delay of next process if such a process exists */

pidnext = queuetab[pid].qnext;
if (pidnext < NPROC) {

queuetab[pidnext].qkey += queuetab[pid].qkey;
}

getitem(pid); /* Unlink process from queue */
restore(mask);
return OK;

}

Xinu – module 13 32 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Clock Hardware Interface

d The clock interface follows the pattern used by all devices

d The system uses a memory-mapped interaction

– Some high bus addresses correspond to the clock device, not memory

– When the processor stores data to one of the special addresses, the data being stored
goes to the clock device

– When the processor fetches from the special addresses, the clock device answers the
request and sends information to the processor

– Typically, the processor sends commands to a device

d A device driver defines a structure that specifies the layout of special addresses and
their meaning as well as constants used (usually called control and status registers)

Xinu – module 13 33 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

ARM Clock Definitions (Part 1)

/* clock.h */

extern uint32 clktime; /* current time in secs since boot */
extern uint32 count1000; /* ms since last clock tick */

extern qid16 sleepq; /* queue for sleeping processes */
extern int32 slnonempty; /* nonzero if sleepq is nonempty */
extern int32 *sltop; /* ptr to key in first item on sleepq */
extern uint32 preempt; /* preemption counter */

struct am335x_timer1ms {
uint32 tidr; /* Identification register */
uint32 res1[3]; /* Reserved */
uint32 tiocp_cfg; /* OCP Interface register */
uint32 tistat; /* Status register */
uint32 tisr; /* Interrupt status register */
uint32 tier; /* Interrupt enable register */
uint32 twer; /* Wakeup enable register */
uint32 tclr; /* Optional features */
uint32 tcrr; /* Internal counter value */
uint32 tldr; /* Timer load value */
uint32 ttgr; /* Trigger register */
uint32 twps; /* Write posting register */
uint32 tmar; /* Match register */

Xinu – module 13 34 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

ARM Clock Definitions (Part 2)

uint32 tcar1; /* Capture register 1 */
uint32 tsicr; /* Synchronous interface control*/
uint32 tcar2; /* Capture register 2 */
uint32 tpir; /* Positive increment register */
uint32 tnir; /* Negative increment register */
uint32 tcvr; /* 1ms control register */
uint32 tocr; /* Overflow mask register */
uint32 towr; /* no. of overflows */

};

#define AM335X_TIMER1MS_ADDR 0x44E31000
#define AM335X_TIMER1MS_IRQ 67

#define AM335X_TIMER1MS_TIOCP_CFG_SOFTRESET 0x00000002
#define AM335X_TIMER1MS_TISTAT_RESETDONE 0x00000001

#define AM335X_TIMER1MS_TISR_MAT_IT_FLAG 0x00000001
#define AM335X_TIMER1MS_TISR_OVF_IT_FLAG 0x00000002
#define AM335X_TIMER1MS_TISR_TCAR_IT_FLAG 0x00000004

#define AM335X_TIMER1MS_TIER_MAT_IT_ENA 0x00000001
#define AM335X_TIMER1MS_TIER_OVF_IT_ENA 0x00000002
#define AM335X_TIMER1MS_TIER_TCAR_IT_ENA 0x00000004

Xinu – module 13 35 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

ARM Clock Definitions (Part 3)

#define AM335X_TIMER1MS_TCLR_ST 0x00000001
#define AM335X_TIMER1MS_TCLR_AR 0x00000002

#define AM335X_TIMER1MS_CLKCTRL_ADDR 0x44E004C4
#define AM335X_TIMER1MS_CLKCTRL_EN 0x00000002

Xinu – module 13 36 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Clock Interrupt Handler Code (Part 1)

/* clkhandler.c - clkhandler */

#include <xinu.h>

/*---
* clkhandler - high level clock interrupt handler
*---
*/

void clkhandler()
{

volatile struct am335x_timer1ms *csrptr =
(struct am335x_timer1ms *)0x44E31000;
/* Set csrptr to address of timer CSR */

/* If there is no interrupt, return */

if((csrptr->tisr & AM335X_TIMER1MS_TISR_OVF_IT_FLAG) == 0) {
return;

}

Xinu – module 13 37 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Clock Interrupt Handler Code (Part 2)

/* Acknowledge the interrupt */

csrptr->tisr = AM335X_TIMER1MS_TISR_OVF_IT_FLAG;

/* Increment 1000ms counter */

count1000++;

/* After 1 sec, increment clktime */

if(count1000 >= 1000) {
clktime++;
count1000 = 0;

}

Xinu – module 13 38 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Clock Interrupt Handler Code (Part 3)

/* check if sleep queue is empty */

if(!isempty(sleepq)) {

/* sleepq nonempty, decrement the key of */
/* topmost process on sleepq */

if((--queuetab[firstid(sleepq)].qkey) == 0) {

wakeup();
}

}

/* Decrement the preemption counter */
/* Reschedule if necessary */

if((--preempt) == 0) {
preempt = QUANTUM;
resched();

}
}

Xinu – module 13 39 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Clock Initialization (Part 1)

/* clkinit.c - clkinit (BeagleBone Black) */

#include <xinu.h>

uint32 clktime; /* Seconds since boot */
uint32 count1000; /* ms since last clock tick */
qid16 sleepq; /* Queue of sleeping processes */
uint32 preempt; /* Preemption counter */

/*--
* clkinit - Initialize the clock and sleep queue at startup
*--
*/

void clkinit(void)
{

volatile struct am335x_timer1ms *csrptr =
(volatile struct am335x_timer1ms *)AM335X_TIMER1MS_ADDR;

/* Pointer to timer CSR in BBoneBlack */
volatile uint32 *clkctrl =

(volatile uint32 *)AM335X_TIMER1MS_CLKCTRL_ADDR;

*clkctrl = AM335X_TIMER1MS_CLKCTRL_EN;
while((*clkctrl) != 0x2) /* Do nothing */ ;

Xinu – module 13 40 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Clock Initialization (Part 2)

/* Reset the timer module */

csrptr->tiocp_cfg |= AM335X_TIMER1MS_TIOCP_CFG_SOFTRESET;

/* Wait until the reset is complete */

while((csrptr->tistat & AM335X_TIMER1MS_TISTAT_RESETDONE) == 0)
/* Do nothing */ ;

/* Set interrupt vector for clock to invoke clkint */

set_evec(AM335X_TIMER1MS_IRQ, (uint32)clkhandler);

sleepq = newqueue(); /* Allocate a queue to hold the delta */
/* list of sleeping processes */

preempt = QUANTUM; /* Set the preemption time */

clktime = 0; /* Start counting seconds */
count1000 = 0;
/* The following values are calculated for a */
/* timer that generates 1ms tick rate */

csrptr->tpir = 1000000;
csrptr->tnir = 0;
csrptr->tldr = 0xFFFFFFFF - 26000;

Xinu – module 13 41 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Clock Initialization (Part 3)

/* Set the timer to auto reload */

csrptr->tclr = AM335X_TIMER1MS_TCLR_AR;

/* Start the timer */

csrptr->tclr |= AM335X_TIMER1MS_TCLR_ST;

/* Enable overflow interrupt which will generate */
/* an interrupt every 1 ms */

csrptr->tier = AM335X_TIMER1MS_TIER_OVF_IT_ENA;

/* Kickstart the timer */

csrptr->ttgr = 1;

return;
}

Xinu – module 13 42 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Notes About Device Hardware Interfaces

d Hardware is incredibly low level

d The interface to a hardware device is tedious

d Hardware defines

– Many registers that each have some special meaning

– Special constants that must be used

d A programmer must deal with

– Silly details

– A lack of concepts and principles

– Multiple commands to perform a simple task

Xinu – module 13 43 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Summary

d Two types of timed events are especially important in an operating system

– Preemption

– Process delay (sleep)

d A delta list provides an elegant and efficient data structure to store a set of sleeping
processes

d If multiple processes awaken at the same time, rescheduling must be deferred until all
have been made ready

d Recvtime allows a process to specify a maximum time to wait for a message to arrive

Xinu – module 13 44 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Questions?

