Module X111

Real-Time Clock M anagement
And Timed Events

Xinu—module 13 1 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

L ocation Of Clock Management In The Hierarchy

Xinu—module 13 2 2025
Copyright 0 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Various Types Of Clock Hardware Exist

e Processor clock (rate at which instructions execute)
e Real-time clock
— Pulses regularly
— Interrupts the processor on each pulse
— Cadled programmable if rate can be controlled by OS
e Interval timer
— The processor sets a timeout and the device interrupts after the specified time
— Can be used to pulse regularly
— May have an automatic restart capability

Xinu —module 13 3 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Timed Events

e Two types of timed events are important to an operating system
e A preemption event

— Known as timeslicing

— Guarantees that a given process cannot run forever

— Switches the processor to another process
e A Sleep event

— Isrequested by a process to delay for a specified time

— The process resumes execution after the time passes

Xinu—module 13 4 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu—module 13

A Note About Timedlicing

Most applications are /O bound, which
means the application is likely to perform
an operation that takes the process out of
the current state before its timeslice

expires.

5
Copyright 0 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Managing Timed Events

e The code must be efficient because

— Clock interrupts occur frequently and continuously

— More than one event may occur at a given time

— The clock interrupt code must avoid searching a list of pending events
e An efficient mechanism

— Keep al timed events on alist

— Call the list an event queue

Xinu—module 13 6 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Delta List

e A data structure used for timed events
e |[temson adeltalist are ordered by the time they will occur
e Trick to make processing efficient: use relative times

e |mplementation: the key in an item stores the difference (delta) between the time for the
event and time for the previous event

e Thekey In first event stores the delta from “now”

Xinu—module 13 7 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

e Assume events for processes A through D will occur 6, 12, 27, and 50 ticks from now

Delta List Example

e The deltakeysare 6, 6, 15, and 23

Xinu—module 13

key process next

\ 1

6 B |@® 15

C

8

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

23

2025

Real-time Clock Processing In Xinu

e The clock interrupt handler
— Decrements the preemption counter and calls resched if the timeslice has expired
— Processes the slegp queue
e The slegp queue
— Isaddtalist
— Each item on the list Is a slegping process

e Global variable sleepq contains the ID of the sleep queue

Xinu—module 13 9 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Keys On The Xinu Slegp Queue

e Processes on slegpq are ordered by time at which they will awaken

e Each key tells the number of clock ticks that the process must delay beyond the
preceding one on the list

e The relationship must be maintained whenever an item is inserted or deleted

Xinu —module 13 10 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Sleep Timer Resolution

e A process calls sleep to delay
e Question: what resolution should be used for sleep?
— Humans typically think of delays in seconds or minutes
— Some applications may need millisecond accuracy (or more, if available)

e The tradeoff: using a high resolution, such as microseconds, means long delays will
overflow a 32-bit integer

Xinu—module 13 11 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Sleep Primitives

e Xinu offers a set of functions to accommodate a range of possible resolutions

sleep — the delay is given in seconds

seepl0 —the delay is given in tenths of seconds
seeplO00 - the delay is given in hundredths of seconds
seepms - the delay is given in milliseconds

e The smallest resolution is milliseconds because the clock operates at a rate of one
millisecond per tick

Xinu—module 13 12 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A New Process State For Sleeping Processes

e A dsleeping process is not ready, suspended, or waiting
e A new dtate is required
— The process enters the sleeping state by calling a sleep function

— The clock interrupt handler calls wakeup when the delay expires

Xinu—module 13 13 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu—module 13

A New Process State For Sleeping Processes

(continued)

wakeup /\ sleep
send ////’_—_ receive
r @‘ N
signal ////’——\\\\L wait
WAITING

| ((wamne) :

resched

CURRENT

suspend

resume suspend

14
Copyright 0 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Sleep.c (sleegp and sleepms) (Part 1)

/* sleep.c - sleep sleepns */

#1 ncl ude <xi nu. h>

#def i ne MAXSECONDS 2147483 /* Max seconds per 32-bit nsec */
)/
* sleep - Delay the calling process n seconds
*_ _ e - - —-—_—— Y e Y Y Y L Lo
*/
syscal | sl eep(
i nt 32 del ay /[* Time to delay in seconds */
)
{

if ((delay < 0) || (delay > MAXSECONDS)) {
return SYSERR

}
return sl eepns(1000*del ay) ;
}
Xinu—module 13 15 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Sleep.c (sleegp and sleepms) (Part 2)

| ® o e e e o o e
* sleepns - Delay the calling process n mlliseconds
T

syscal | sl eepns(

I nt 32 del ay /[* Time to delay in nsec. */

:)

i nt mask mask; /* Saved interrupt mask */
I f (delay < 0) {
return SYSERR;
}
i f (delay == 0) {
yield();
return CK;
}
Xinu—module 13 16

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Sleep.c (sleegp and sleepms) (Part 3)

/[* Delay calling process */

mask = di sabl e();

i f (insertd(currpid, sleepq, delay) == SYSERR) {
rest or e(mask) ;
return SYSERR;

}
proctab[currpid].prstate = PR _SLEEP;
resched() ;
rest ore(mask) ;
return OK;
}
Xinu—module 13 17 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Inserting An Item On Sleepq

e The current process calls sleepms or sleep to request a delay
e Jeepms

— The underlying function that takes action

— Inserts current process on slegpq

— Calls resched to alow other processes to execute
e Method

— Walk through sleegpq (with interrupts disabled)

— Find the place to insert the process

— Adjust remaining keys as necessary

Xinu—module 13 18 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Invariant For Insertion On sleepq

e Thekey of the first process on a delta list specifies the number of clock ticks a process
must delay beyond the current time

e The key of each other process on a delta list specifies the number of clock ticks the
process must delay beyond the preceding process on the list.

e When inserting a new delay on the list, the code adheres to the following invariant:

At any time during the search, both key and
gueuetablnext].gkey specify a delay relative to
the time at which the predecessor of the
“next” process awakens.

Xinu —module 13 19 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Insertd (Part 1)

[* insertd.c - 1 nsertd */

#1 ncl ude <xi nu. h>

*/

status insertd(/* Assunes interrupts disabled */
pi d32 pi d, /* | D of process to insert */
gi d16 q, /* 1D of queue to use */
i nt 32 key /[* Delay from"now' (in ns.) */
{)
i nt 32 next ; /* Runs through the delta list */
i nt 32 prev; /* Follows next through the |ist*/
i f (isbadqgid(q) || i1sbadpid(pid)) {
return SYSERR;
}
Xinu—module 13 20 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Insertd (Part 2)

prev gqueuehead(q) ;

next gueuet ab[queuehead(q)] . qnext;

while ((next !'= queuetail (gq)) && (queuetab[next].gkey <= key)) {
key -= queuet ab[next]. gkey;
prev next ;
next gueuet ab[next] . gnext;

}

/* Insert new node between prev and next nodes */

gqueuet ab[pi d] . gnext = next;

queuet ab[pi d] . gprev = preyv;

gueuet ab[pi d] . gkey = key;

gqueuet ab[prev] . gnext = pid;

gqueuet ab[next].gprev = pid;

I f (next !'= queuetail (q)) {
gqueuet ab[next] . gkey -= key;

return OK;
Xinu —module 13 21 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Clock Interrupt Handler

e Updates the time-of-day (which counts seconds)

e Handles slegping processes
— Decrements the key of the first process on the sleep queue
— Calls wakeup if the counter reaches zero

e Handles preemption
— Decrements the preemption counter

— Cdlsresched if the counter reaches zero

Xinu —module 13 22 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Clock Interrupt Handler
(continued)

e \When deeping processes awaken
— More than one process may awaken at a given time
— The processes may not have the same priority

— If the clock interrupt handler starts a process running immediately, a higher priority
process may remain on the sleep queue, even if its time has expired

e Solution: wakeup awakens all processes that have zero time remaining before allowing
any of them to run

Xinu—module 13 23 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Wakeup

/* wakeup.c - wakeup */

#1 ncl ude <xi nu. h>

| ® o L L e o
* wakeup - Called by clock interrupt handler to awaken processes
*_ _ e - - —-—_—— Y e Y Y Y L Lo
*/
voi d wakeup(voi d)
{
/* Awaken all processes that have no nore tine to sleep */
resched cntl| (DEFER _START) ;
whil e (nonenpty(sl eepq) && (firstkey(sleepq) <= 0)) {
ready(dequeue(sl eepq));
}
resched cntl| (DEFER _STOP) ;
return;
}

e Note that rescheduling is deferred until all processes are awakened

Xinu—module 13 24
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Timed M essage Reception

e Many operating system components offer a “timeout” on operations
e Timeout is especialy useful in building communication protocols
e A Xinu example: receive with timeout
— Operates like receive, but includes a timeout argument
— If amessage arrives before the timer expires, the message is returned
— If the timer expires before a message arrives, the value TIMEOUT is returned
— Implemented with recvtime

e Recvtime uses the same queue and wakeup mechanism as sleeping processes

Xinu—module 13 25 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Recvtime (Part 1)

/[* recvtinme.c - recvtine */

#1 ncl ude <xi nu. h>

| ® o L L e o
* recvtinme - Wit specified tine to receive a nessage and return
*_ _ e - - —-—_—— Y e Y Y Y L Lo
*/
unsg32 recvtinme(
i nt 32 maxwai t /* Ticks to wait before tinmeout */
)
{ _ _
| nt mask mask; /* Saved interrupt mask */
struct procent *prptr; /[* Tbl entry of current process */
unsg32 nsg; /* Message to return */
I f (maxwait < 0) {
return SYSERR;
}
mask = di sabl e();
Xinu—module 13 26 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Recvtime (Part 2)

/* Schedul e wakeup and pl ace process in tinmed-receive state */

prptr = &proctab[currpid];
i f (prptr->prhasnsg == FALSE) { /* Delay if no nessage waiting */
i f (insertd(currpid,sleepqg, maxwait) == SYSERR) {
rest or e(mask) ;
return SYSERR;
}
prptr->prstate = PR _RECTI M
resched();
}

/* Either nessage arrived or tinmer expired */

I f (prptr->prhasnsg) {
nsg = prptr->prnsg; /* Retrieve nessage */
prptr->prhasnsg = FALSE;/* Reset nessage i ndi cator */
} else {
nmsg = TI MEOUT,
}

rest or e(mask) ;
return nsg;

Xinu—module 13 27 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

When A Process Sends A Message

e Thetarget process could be in
— Therecelving state, PR_ RECV
— The recelve-with-timeout state, PR_RECTIM

e A cdl to send handles both cases

Xinu—module 13 28 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

L ook Again At Send.c (Part 1)

[* send.c - send */

#1 ncl ude <xi nu. h>

| ® o L L e o
* send - Pass a nessage to a process and start recipient if waiting
*_ _ e - - —-—_—— Y e Y Y Y L Lo
*/
syscal | send(
pi d32 pi d, /* 1D of recipient process */
unsg32 nsg /* Contents of nessage */
:)
I nt mask mask; /* Saved interrupt mask */
struct procent *prptr; /* Ptr to process's table entry */
mask = di sabl e();
I f (isbadpid(pid)) {
rest or e(mask) ;
return SYSERR,
}
Xinu—module 13 29 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

L ook Again At Send.c (Part 2)

prptr->prnsg = neg, /* Deliver nessage */
prptr->prhasnsg = TRUE; /* Indicate nessage is waiting */

[* If recipient waiting or in tinmed-wait nmake it ready */

i f (prptr->prstate == PR _RECV) {
ready(pi d);
} else if (prptr->prstate == PR RECTIM {
unsl eep(pi d);
ready(pi d);
}
rest or e(mask) ; /* Restore interrupts */
return CK;

30 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu—module 13

/* unsl eep.c

Undleep - Remove A Sleeping Process (Part 1)

unsl eep */

#1 ncl ude <xi nu. h>

| nternal function to renove a process fromthe sleep
queue prematurely. The caller nust adjust the del ay
of successi ve processes.

| nt mask nask:

procent *prptr;

pi dnext ;

/*
* unsleep -
*
*
*/
status unsl eep(
pi d32
)
{
struct
pi d32
mask =

Xinu—module 13

di sabl e() ;

/* 1D of process to renpbve

/* Saved interrupt nmask
/* Ptr to process's table entry

/* I D of process on sleep queue
/* that foll ows the process
/* which is being renoved

31
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

*/
*/

*/
*/
*/

2025

Unsleep - Remove A Sleeping Process (Part 2

I f (isbadpid(pid)) {
rest or e(mask) ;
return SYSERR

}

/* Verify that candi date process is on the sleep queue */

prptr = &proctab[pid];

if ((prptr->prstate! =PR_SLEEP) && (prptr->prstate! =PR_RECTIM) {
rest or e(mask) ;
return SYSERR;

}

/* Increnment delay of next process if such a process exists */

pi dnext = queuet ab[pi d] . gnext;
i f (pidnext < NPROC) {
gueuet ab[pi dnext] . gkey += queuet ab[pi d] . gkey;

}
getitem pid); /* Unlink process from queue */
rest ore(mask) ;
return CK;
}
Xinu—module 13 32 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Clock Hardware Interface

e The clock interface follows the pattern used by all devices

e The system uses a memory-mapped interaction

Some high bus addresses correspond to the clock device, not memory

When the processor stores data to one of the special addresses, the data being stored
goes to the clock device

When the processor fetches from the special addresses, the clock device answers the
request and sends information to the processor

Typically, the processor sends commands to a device

e A device driver defines a structure that specifies the layout of special addresses and
thelr meaning as well as constants used (usually called control and status registers)

Xinu —module 13 33 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

[* clock.h */

extern uli
extern ul

nt 32
nt 32

extern (i dl6
extern int32
extern int32

extern ul

struct anB835x ti

Ul
Ui
ul
ul
Ui
Ul
ui
ui
ui
ui
ui
ui
ui

Xinu—module 13

nt 32

nt 32
nt 32
nt 32
nt 32
nt 32
nt 32
nt 32
nt 32
nt 32
nt 32
nt 32
nt 32
nt 32

ARM Clock Definitions (Part 1)

cl kti ne;
count 1000;

sl eepq;
sl nonenpt y;
*sl t op;

pr eenpt ;

mer 1ns {
tidr;
resif 3];
tiocp_cfog;
tistat;
tisr;
tier;
twer ;
tclr;
terr;
tldr;
ttgr;

t wps;

t mar;

e e T S

~ NN N NN NN NN YN NN NSNS YN YN YN

*

* ok ok *

X % %k X X X F X X X * o X

current tine in secs since boot

ms since |ast clock tick

queue for sl eeping processes
nonzero if sleepq i s nonenpty
ptr to key in first itemon sl eepq

preenpti on counter

| dentification register
Reserved

OCP Interface register

St at us regi ster

| nt errupt status register
| nterrupt enable register
Wakeup enabl e register
Optional features

| nt ernal counter val ue

Ti mer | oad val ue

Trigger register

Wite posting register
Mat ch regi ster

34

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/

*/
*/
*/

2025

ARM Clock Definitions (Part 2)

uint32 tcarl; Capture register 1 */
uint32 tsicr; Synchronous interface control */
uint32 tcar?2; Capture register 2 */

uint32 tpir;
urnt32 tnir;

Positive increnment register */
Negative increnent register */

e e T e
¥ % X X X X X X

uint32 tcvr; 1nms control register */

uint32 tocr; Overfl ow mask register */

uint32 tow; no. of overfl ows */
}s
#defi ne AM335X TI MERIMS ADDR O0x44E31000
#defi ne AM335X TI MERLIMS | RQ 67
#defi ne AM335X TI MERIMS Tl OCP_CFG SOFTRESET 0x00000002
#def i ne AM335X Tl MERIMS TI STAT RESETDONE 0x00000001
#defi ne AM335X TI MERIMS TI SR MAT I T _FLAG 0x00000001
#def i ne AM335X TI MERIMS TI SR OVF | T_FLAG 0x00000002
#defi ne AM335X TI MERIMS Tl SR TCAR I T_FLAG 0x00000004
#defi ne AM335X TI MERIMS TI ER MAT | T_ENA 0x00000001
#defi ne AM335X TI MERIMS TIER OVF I T _ENA 0x00000002
#defi ne AM335X TI MERIMS TI ER TCAR | T_ENA 0x00000004

Xinu—module 13 35 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

ARM Clock Definitions (Part 3)

#defi ne AMB35X_TI MERLMS TCLR ST 0x00000001
#define AMB35X_TI MERLMS_TCLR AR 0x00000002
#defi ne AMB35X_TI MERLMS CLKCTRL_ADDR 0x44E004CA4
#define AMB35X_TI MERLMS_CLKCTRL_EN 0x00000002

Xinu—module 13 36 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Clock Interrupt Handler Code (Part 1)

[* cl khandl er.c - cl khandl er */

#1 ncl ude <xi nu. h>

2
* cl khandl er - high [evel clock interrupt handl er
*_ _ e e - - - - M M e M e e e e e e e b e e Y e Y Y Y Y Y Y Y Y Y Y Y e Y Y Y Y Y Y Y Y L L L o
*/
voi d cl khandl er ()
{
volatile struct anB35x _tinmerlns *csrptr =
(struct anmB35x _tinerlns *)0x44E31000;
/* Set csrptr to address of tinmer CSR */
[* If there is no interrupt, return */
if((csrptr->tisr & AMB35X TI MERIMS TISR OVF I T _FLAG == 0) {
return,;
}
Xinu—module 13 37 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Clock Interrupt Handler Code (Part 2)

/* Acknow edge the interrupt */

csrptr->tisr = AMB35X_TI MERIMS TI SR OVF | T_FLAG
/* Increment 1000nms counter */

count 1000++,;

/* After 1 sec, increment clktinme */

i f (count 1000 >= 1000) {

cl kti me++;
count 1000 = O;

Xinu—module 13 38 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Clock Interrupt Handler Code (Part 3)

[* check if sleep queue is enmpty */

i f(!isenpty(sleepq)) {

/* sl eepqg nonenpty, decrenent the key of */
/* topnost process on sl eepq */

I f((--queuetab[firstid(sleepq)].qgkey) == 0) {

wakeup() ;
}
}
/* Decrenment the preenption counter */
/* Reschedul e if necessary */

1 f((--preenpt) == 0) {
preenpt = QUANTUM
resched();

Xinu—module 13 39 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Clock Initialization (Part 1)

/[* clkinit.c - clkinit (Beagl eBone Bl ack) */

#1 ncl ude <xi nu. h>

ui nt32 cl kti ne; /* Seconds since boot */
ui nt 32 count 1000; /* ms since |last clock tick */
gi d16 sl eepq; /* Queue of sl eeping processes */
ui nt32 preenpt; /* Preenption counter */
| X o o L L e
* clkinit - Initialize the clock and sl eep queue at startup
*_ _ ... - - -, e b b e b Y Y e e e e Y e Y Y Y Y L L o
*/
voi d clkinit(void)
{
volatile struct anB35x _tinmerlns *csrptr =
(volatile struct anB835x_tinmerlns *) AM335X Tl MERLMS ADDR;
/* Pointer to tinmer CSR i n BBoneBl ack */
volatile uint32 *clkctrl =
(volatile uint32 *) AMB35X TI MERLIM5S CLKCTRL_ADDR;
*cl ketrl = AMB35X Tl MERIMS CLKCTRL_EN;
while((*clkctrl) '= 0x2) /* Do nothing */ ;
Xinu—module 13 40 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Clock Initialization (Part 2)

[* Reset the tiner nodule */

csrptr->tiocp_cfg | = AMB35X TI MERIMS Tl OCP_CFG_SCOFTRESET;

[* VWAIt unti

the reset is conplete */

whil e((csrptr->tistat & AM335X Tl MERLMS Tl STAT RESETDONE) ==
/* Do nothing */ ;

/* Set interrupt vector for clock to invoke clkint */

set _evec(AMB35X TI MERIMS | RQ (ui nt32)cl khandl er) ;

sl eepq = newgueue(); /* Allocate a queue to hold the delta
[* | i st of sl eeping processes

preenpt = QUANTUM /* Set the preenption tine

clktime = O; /[* Start counting seconds

count 1000 = O;

/* The follow ng values are calculated for a */

[* timer that generates 1ns tick rate */

csrptr->tpir = 1000000;

csrptr->tnir = 0;

csrptr->tldr

Xinu—module 13

OxFEEEFFFE - 26000;

41
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

*/
*/

*/
*/

2025

Clock Initialization (Part 3)

/[* Set the timer to auto rel oad */
csrptr->tclr = AMB35X TI MERIMS TCLR _AR;
[* Start the tinmer */

csrptr->tclr | = AMB35X_TI MERLMS_TCLR ST;

/* Enabl e overflow interrupt which will generate */
[* an interrupt every 1 ns */

csrptr->tier = AMB35X TI MERLIMS TI ER OVF | T_ENA;
/* Kickstart the tinmer */
csrptr->ttgr = 1;

return,

Xinu—module 13 42 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Notes About Device Hardware I nterfaces

e Hardwareis incredibly low level
e The interface to a hardware device is tedious
e Hardware defines
— Many registers that each have some special meaning
— Special constants that must be used
e A programmer must deal with
— Silly details
— A lack of concepts and principles

— Multiple commands to perform a simple task

Xinu—module 13 43 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Summary

e Two types of timed events are especially important in an operating system
— Preemption
— Process delay (sleep)

e A deltalist provides an elegant and efficient data structure to store a set of sleeping
Processes

e |f multiple processes awaken at the same time, rescheduling must be deferred until all
have been made ready

e Recvtime allows a process to specify a maximum time to wait for a message to arrive

Xinu—module 13 44 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Ouestions?

