Module X1

|nterrupt Processing

Xinu—module 12 1 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

L ocation Of Interrupt Processing In The Hierarchy

Xinu—module 12 2 2025
Copyright 0 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Ancient History

e Each device had a unique hardware interface
e Code to communicate with device was built into applications
e An application polled the device; interrupts were not used
e Disadvantages
— It was painful to create a program

— A program could not use arbitrary devices (e.g., code for specific models of a printer
and a disk were hard-wired into an application)

— Upgrading a device meant rewriting applications!

Xinu—module 12 3 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Modern Approach

e A device manager is part of an operating system

e The operating system presents applications with a uniform interface to all devices (as
much as possible)

e AllI/Oisinterrupt-driven

Xinu—module 12 4 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Advantage Of Interrupts

An interrupt mechanism permits the processor and |/O devices to operate in parallel.
Although the details differ, the hardware includes a mechanism that automatically
‘Interrupts’ normal processing and informs the operating system when a device completes
an operation or needs attention.

Xinu—module 12 5 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Device Manager In An Operating System

e Manages periphera resources
e Hides low-level hardware details
e Provides an API that applications use

e Synchronizes processesand | /O

Xinu—module 12 6 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu—module 12

A Conceptual Note

One of the most Intellectually difficult
aspects of operating systems arises from the
Interaction between processes (an operating
system abstraction) and devices (a hardware
reality). Specifically, the connection between
Interrupts and scheduling can be tricky
because an Interrupt that occurs In one
process can enable another.

7
Copyright 0 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Review Of 1/O Using Interrupts

e The processor

— Starts adevice

— Enables interrupts and continues with other computation
e Thedevice

— Performs the requested operation

— Raises an interrupt on the bus
e Processor hardware

— Checks for interrupts after each instruction is executed, and invokes an interrupt
function if an interrupt is pending

— Has a special instruction used to return from interrupt mode and resume normal
processing

Xinu—module 12 8 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Processes And Interrupts

e Key ideas
— Recall that at any time, a process is running
— Wethink of an interrupt as a function call that occurs “between” two instructions
— Processes are an operating system abstraction, not part of the hardware

— An operating system cannot afford to switch context whenever an interrupt occurs

e Consequence:

The currently executing process executes interrupt code

Xinu —module 12 9 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Historic Interrupt Software

e A separate interrupt function was created for each device

— Veay low-level code

— Interrupt code must handle many details

*

*

*

Xinu—module 12

Saves/ restores registers

Sets the interrupt mask

Finds the interrupting device on the bus
| nteracts with the device to transfer data
Resets the device for the next interrupt

Returns from the interrupt to normal processing

10
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Vectored Interrupts

e Each deviceis assigned a unique integer known as an Interrupt Request Number (IRQ)
e The operating system stores an array of pointers in memory called an interrupt vector
e The device supplies its IRQ when interrupting the processor

e |nterrupt hardware (or software) uses the IRQ as index into the interrupt vector array
and jumps to the specified location

Xinu—module 12 11 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

| llustration Of Interrupt Vectors

e— 1 & codeto handle device N-1

e—— 1 » codeto handle device 3

L » code to handle device 2

e— ! & codeto handle device 1

O rr NN W

e— 1 » codeto handle device O

e When device I interrupts, the process executes code starting at location

*Interrupt_vector| 1]

Xinu—module 12 12 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Modern Interrupt Software (Two Pieces)

e An interrupt dispatcher
— Isasingle function common to all interrupts
— Handles low-level detalls, such as finding the interrupting device on the bus

— Sets up the environment needed for a function call and calls a device-specific
function

— Some functionality may be incorporated into an interrupt controller chip
e Aninterrupt handler

— One handler for each device

— Isinvoked by the dispatcher

— Peforms al interaction with a specific device

Xinu—module 12 13 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Conceptual Structure Of Interrupt Software

hardware interrupt
handler

dispatcher

|

e Note: we will see that in practice, many hardware details complicate interrupt software

Xinu—module 12 14 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

|nterrupt Dispatcher

e A low-level piece of code written in assembly |language
e |sinvoked by the hardware when interrupt occurs
— Runs in interrupt mode (i.e., with further interrupts disabled)
— The hardware has saved the instruction pointer for a return
e The dispatcher
— Saves other machine state as necessary
— ldentifies the interrupting device
— Edtablishes the high-level runtime environment needed by a C function

— Calls a device-specific interrupt handler, which is written in C

Xinu—module 12 15 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Return From Interrupt

e The interrupt handler

— Communicates with the device

— May redtart the next operation on the device

— Eventually returns to the interrupt dispatcher
e The interrupt dispatcher

— Executes a specia hardware instruction known as return from interrupt
e Thereturn from interrupt instruction atomically

— Resets the instruction pointer to the saved value

— Enables interrupts

Xinu—module 12 16 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

ARM Exception Vectors

e Each contain code that is executed, not a pointer to code

e Trick: use aparallel array of indirect jump instructions

H;
hardware interrupt
| dispatcher
\ - | H . handlers for
- - 1 individual devices
H3
/
Xinu—module 12 17 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

e Redtriction: an indirect jump uses a relative offset, which must be small

e To keep offsets small, Xinu places the two arrays in contiguous memory

Xinu—module 12

ARM Exception VectorsIn Memory

Each vector contains |dr pc, [pc #24] T T T T T
N
>
exception vectors array of pointers
18

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Interrupts On A Galileo (x86)

hardware interrupts

Ethernet handler

Ethernet dispatcher

{ 1] "

Serial handler

Serial dispatcher

L 1] "

Other dispatcher

L 0 .

e The operating system preloads the interrupt controller unit with the address of a
dispatcher for each type of device

e The controller hardware invokes the correct dispatcher

Xinu—module 12 19 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Interrupts On A BeagleBone Black (ARM)

hardware exceptions
code for data exception Ethernet handler

L data exception D o H,

code for IRQ exception (irg_except)

Serial handler

irg_dispatch

IRQ exception
P i -
L

code for other exception

other exception D

e Uses atwo-level scheme where the hardware raises an |RQ exception when a device
Interrupts

e The IRQ exception code invokes the IRQ dispatcher, which calls the correct handler

Xinu—module 12 20 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

|ntegration Of Interrupts And Exceptions

Exceptions, such as divide-by-zero and page faults, follow a vectored approach. The
Galileo illustrates interrupts and exceptions integrated into a single exception vector. The
BeagleBone Black illustrates a two-level scheme in which device interrupts correspond to
one particular exception and the operating system must use a second level of indirection to
reach the handler for a specific device.

Xinu—module 12 21 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Basic Rule For Interrupt Processing

e [acts

— The hardware disables interrupts before invoking the interrupt dispatcher

— Interrupts remain disabled when the dispatcher calls a device-specific interrupt
handler

e Rule

— To prevent interference, an interrupt handler must keep interrupts disabled until it
finishes touching global data structures, ensures all data structures are in a consi stent
state, and returns from the interrupt

e Note: we will consider a more subtle version of the rule later

Xinu—module 12 22 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Interrupts And Processes

e When an interrupt occurs, | /O has completed
e FEither
— The device has recelved incoming data (an input interrupt occurs)
— The device has finished sending outgoing data (an output interrupt occurs)
e A process may have been blocked waiting
— Toread the data that arrived
— To write more outgoing data
e The blocked process may have a higher priority than the currently executing process

e The scheduling invariant must be upheld

Xinu—module 12 23 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Scheduling Invariant

e Suppose process X is executing when an interrupt occurs

e \We said that process X remains executing when the interrupt dispatcher is invoked and
when the dispatcher calls a handler

e Suppose data has arrived and a higher-priority process, process Y, is waiting for the data
e |f the hander merely returns from the interrupt, process X will continue to execute

e To maintain the scheduling invariant, the handler must call resched

Xinu—module 12 24 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Interrupts And The Null Process

e |n the concurrent processing world
— A process is always running
— Aninterrupt can occur at any time
— The currently executing process executes interrupt code

e An important consequence: the null process may be running when an interrupt occurs,
which means the null process will execute the interrupt handler

e We know that the null process must always remain eligible to execute

Xinu —module 12 25 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu—module 12

A Restriction On Interrupt Handlers
Imposed By The Null Process

Because an interrupt can occur while the
null process Is executing, an interrupt hander
can only call functions that leave the
executing process in the current or ready
states. For example: an interrupt handler can
call send or signal, but cannot call wait.

26
Copyright 0 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Xinu —module 12 27

A Question About Scheduling And Interrupts

Recall that
— The hardware disables further interrupts before invoking a dispatcher

— Interrupts remain disabled when the dispatcher calls a device-specific interrupt
handler

To reman safe

— A device-specific interrupt handler must keep further interrupts disabled until it
completes changes to global data structures

What happens if an interrupt calls a function that calls resched and the new process has
Interrupts enabled?

2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

An Example Of Rescheduling During Interrupt Processing

e Asan example, suppose
— Aninterrupt handler calls signal
— 3Sgnal calls resched
— Resched switches to a new process
— The new process executes with interrupts enabled

e Will interrupts pile up indefinitely?

Xinu—module 12 28 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Answer

e No, interrupts will not pile up indefinitely

e Reason:

Xinu —module 12 29

Interrupt status Is associated with each process, not with the hardware

After switching to a process that has interrupts enabled, that process can be
Interrupted

In the worst case, all processes can end up executing interrupt code with further
Interrupts disabled

If another context switch occurs, it will be to a process that has interrupts disabled,
and the system must return from the interrupt to have interrupts enabled again

2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Answer
(continued)

e Asan example, let T be the current process
e When an interrupt occurs, T executes an interrupt handler with interrupts disabled
e |f the handler that T is executing calls signal

— 3Sgnal may call resched

— A context switch may occur and process S may run

— S may run with interrupts enabled

— If asecond interrupt occurs, S may execute an interrupt handler with interrupts
disabled

e Only NPROC interrupts can occur before all processes are running with interrupts
disabled

Xinu—module 12 30 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu—module 12

The Principle

Rescheduling during interrupt processing
IS safe provided that each interrupt handler
leaves (global data in a valid state before
rescheduling and no function enables
Interrupts unless it previously disabled them
(.e., disable /restore is used instead of enable).

31
Copyright 0 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Summary

e |nterrupts allow processors and devices to operate simultaneously
e Vectored interrupts make passing control to the correct handler efficient

e An interrupt handler must leave the process executing the interrupt in the current or
ready states

e To preserve the scheduling invariant, an interrupt handler must reschedule whenever it
makes a waiting process ready

e Rescheduling is allowed provided that the global dataisin avalid state and no function
enables interrupts unless it disabled them

e Most processors use the hardware interrupt mechanism for exceptions (e.g., divide by
Z€ero)

Xinu—module 12 32 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

