M odule Xl

High-Level Synchronous
M essage Passing

Xinu—module 11 1 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

L ocation Of Synchronous M essage Passing In The Hierarchy

Xinu—module 11 2 2025
Copyright 0 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Review Of Xinu’'s Low-L evel M essage Passing Facility

e A message is always sent from one process directly to another
e Each process has a one-message message buffer

e Transmission is asynchronous (non-blocking)

e Reception is synchronous (blocking)

e An asynchronous function can be used to clear the message buffer

Xinu—module 11 3 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Features Of The Xinu High-L evel M essage Passing M echanism

e Defines a set of message storage facilities called ports used for inter-process
communication

e \When creating a port, an application specifies the number of messages a given port can
hold

e The mechanism supports many-to-many communication

— Allows an arbitrary process to send a message to a port

— Allows an arbitrary process to receive a message from a port
e Uses a synchronous interface

— Blocks a sender if a port is full

— Blocks areceiver until a message arrives at a port

e Handles port deletion and reset

Xinu—module 11 4 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

An Example Use Of Ports: A Concurrent Server

e C(Create aport, P
e Think of messages that are sent to the port as requests for some service

e Create a set of server processes that each repeatedly receive a request from P and
“handle’ the request (supply the service)

e An arbitrary process can send a request to P; one of the server processes handles the
request

e Because server processes run concurrently, a server process can receive a later reguest
and start handling the request while another process continues to handle a previous
request

e The advantage: short requests can be serviced quickly

Xinu—module 11 5 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Few Details

e When the port system is initialized, a global pool of messages is created
— The maximum number of messages in all ports is specified
— Memory Is allocated for the pool, and messages are linked onto a free list
e Anindividual port can be created (and later deleted) dynamically
e Semaphores are used to
— Block a sender if aport is full
— Block arecelver if a port is empty
e When aport is created
— An argument specifies the number of messages that can be stored in the port

— The message count is used to initialize a semaphore

Xinu—module 11 6 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Functions That Operate On Ports

e Ptinit
— Must be called once before ports can be used
— Initializes the entire port system

e Ptcreate
— Creates a new port

— An argument specifies maximum number of messages

e Ptsend
— Sends a message to a port
e Ptrecv

— Retrieves a message from a port

Xinu—module 11 7 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Functions That Operate On Ports
(continued)

o Ptreset

— Resets existing port

— Digposes of existing messages

— Allows waiting processes to continue
e Ptdelete

— Deéletes existing port

— Digposes of existing messages

— Allows blocked processes to continue

Xinu —module 11 8 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Programmer’s Responsibility

e A programmer must plan ahead

— Specify the maximum number of messages when calling ptcreate

— Avoid creating ports that can take more than the total messages available for all
ports

e Worst case: ptsend will panic if no message buffers appear on the free list

e Possible improvement: keep a global count of messages, and decrement it each time
ptcreate is called and increment it each time ptdelete is called

Xinu —module 11 9 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Port Declarations

/* ports.h - isbadport */
#defi ne NPORTS 30 /* Maxi mum nunber of ports */
#defi ne PT_MSGS 100 /* Total nessages in system */
#defi ne PT_FREE 1 /* Port is free */
#defi ne PT_LI MBO 2 /* Port is being deleted/reset */
#define PT_ALLOC 3 /* Port is allocated */
struct ptnode { /* Node on |ist of nessages */
ui nt 32 ptnseg; /* A one-word nessage */
struct ptnode *ptnext; /* Pointer to next node on list */
}
struct ptentry { /* Entry in the port table */
si d32 pt ssem /* Sender semaphore */
si d32 ptrsem /* Recei ver senaphore */
uint 16 ptstate; /* Port state (FREE/ LI MBO ALLQC) */
uint 16 ptnmaxcnt; /* Max nessages to be queued */
i nt 32 pt seq; /| * Sequence changed at creation */
struct ptnode *pthead; /* List of nessage pointers */
struct ptnode *pttail; /* Tail of nmessage |i st */
¥
extern struct ptnode *ptfree; /* List of free nodes */
extern struct ptentry porttab[]; /* Port table */
extern int32 pt nexti d; /* Next port IDto try when */
/* | ooking for a free sl ot */

#define i sbadport (portid) ((portid)<O || (portid)>=NPORTS)

Xinu—module 11 10 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

An Invariant Used Throughout The Code

Semaphore ptrsem has a nonnegative count n if n messages are waiting in the port; it
has negative count — if n processes are waiting for messages.

Xinu—module 11 11 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ptinit (Part 1)

[* ptinit.c - ptinit */

#1 ncl ude <xi nu. h>

struct ptnode *ptfree; /* List of free nessage nodes */
struct ptentry porttab[NPORTS]; /* Port table */
I nt 32 pt nexti d; /* Next table entry to try */
| % o e e o e e o e -
* ptinit - Initialize all ports
*_ _ ... - - -, b b e e Y e Y e e e Y e Y e Y Y Y Y L o
*/
syscall ptinit(
i nt 32 maxnsgs /* Total nessages in all ports */
{)
i nt 32 | ; /* Runs through the port table */
struct ptnode *next, *curr; /* Used to build a free I|i st */
/* Allocate nenory for all nessages on all ports */
ptfree = (struct ptnode *)getnmem maxnsgs*si zeof (struct ptnode));
I f (ptfree == (struct ptnode *)SYSERR) {
panic("ptinit - insufficient nmenory");
}
Xinu—module 11 12 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ptinit (Part 2)

/[* Initialize all port table entries to free */

for (i=0 ; i1<NPORTS ; i++)
porttab[i].ptstate

PT_ FREE;
porttabl[i].ptseq = O;

oIl

ptnextid = O;

/|* Create a free |list of nessage nodes |inked together */

for (curr=next=ptfree ; --maxnmsgs > 0 ; curr=next) {
curr->ptnext = ++next;

}

/* Set the pointer in the final node to NULL */

curr->pt next = NULL;
return OK;

Xinu—module 11 13 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ptcreate (Part 1)

/* ptcreate.c - ptcreate */

#1 ncl ude <xi nu. h>

| ® o e e e o o e
* ptcreate - Create a port that allows "count" outstandi ng nessages
K o o e Y e e Y e Y e Y e Y e M
*/
syscal | ptcreate(
| nt 32 count /* Size of port */
:)
i nt mask mask; /* Saved interrupt mask */
i nt 32 | ; /* Counts all possible ports */
I nt 32 pt num /* Candi date port nunber to try */
struct ptentry *ptptr; /* Pointer to port table entry */
mask = di sabl e();
I f (count < 0) {
rest or e(mask) ;
return SYSERR;
}
Xinu —module 11 14 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ptcreate (Part 2)

for (i=0 ; i<NPORTS ; I++) { /* Count all table entries */
pt num = pt nexti d; /* Get an entry to check */
I f (++ptnextid >= NPORTS) {
ptnextid = 0; /* Reset for next iteration */
}

/* Check table entry that corresponds to I D ptnum */

pt ptr= &porttab[ptnun;

I f (ptptr->ptstate == PT_FREE) {
ptptr->ptstate = PT_ALLCC,
pt ptr->ptssem = sencreat e(count);
ptptr->ptrsem = sencreate(0);
pt ptr - >pt head ptptr->pttail = NULL;
pt ptr->pt seq++;
pt ptr->pt maxcnt = count;
rest or e(mask) ;
return ptnum

}
}
rest ore(mask) ;
return SYSERR,

Xinu—module 11 15
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Xinu Ptsend (Part 1)

/* ptsend.c - ptsend */

#1 ncl ude <xi nu. h>

et
* ptsend - Send a nessage to a port by adding it to the queue
*
*/
syscal | ptsend(
i nt 32 portid, /* 1D of port to use
unsg32 nsg /* Message to send
)
{ _ _
I nt mask mask; /* Saved interrupt mask
struct ptentry *ptptr; /* Pointer to table entry
i nt 32 seq; /* Local copy of sequence num
struct ptnode *nsgnode; /* All ocated nessage node
struct ptnode *tail node; /* Last node in port or NULL
mask = di sabl e();
i f (isbadport(portid) ||
(ptptr= &porttab[portid])->ptstate !'= PT_ALLOC) {
rest or e(mask) ;
return SYSERR;
}
Xinu—module 11 16

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

*/
*/

*/
*/
*/
*/
*/

2025

Xinu Ptsend (Part 2)

/[* Wait for space and verify port has not been reset */

seq = ptptr->ptseq; /* Record original sequence */
i f (wait(ptptr->ptssem) == SYSERR
|| ptptr->ptstate !'= PT_ALLCC
|| ptptr->ptseq != seq) {
rest or e(mask) ;
return SYSERR;

}
I f (ptfree == NULL) {
pani c("Port systemran out of nessage nodes");

}
[* Obtain node fromfree list by unlinking */
nmsgnode = ptfree; /* Point to first free node */
ptfree = nsgnode- >ptnext; /[* Unlink fromthe free |ist */
nmsgnode- >pt next = NULL,; /* Set fields in the node */
nsgnode- >pt nsg = nsg;
Xinu —module 11 17 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ptsend (Part 3)

/* Link into queue for the specified port */

tail node = ptptr->pttail;

i f (tailnode == NULL) { /* Queue for port was enpty */
ptptr->pttail = ptptr->pthead = nsgnode;

} else { /* Insert new node at tail */
t ai | node- >pt next = nsgnode;
ptptr->pttail = nsgnode;

}

signal (ptptr->ptrsem;
rest ore(mask) ;

return OK;

Xinu—module 11 18 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ptrecv (Part 1)

/* ptrecv.c - ptrecv */

#1 ncl ude <xi nu. h>

s
* ptrecv - Receive a nessage froma port, blocking if port enpty
X o o o o e e e e e e e e e e e e Y e Y Y Y Y e Y e Y e Y Y e Y e Y e Y Y Y Y Y Y Y L oG
*/
uint32 ptrecv(
i nt 32 portid /[* I D of port to use
)
{ _ |
| nt mask mask; /* Saved interrupt mask
struct ptentry *ptptr; /* Pointer to table entry
i nt 32 seq; /* Local copy of sequence num
unsg32 ns(g; /* Message to return
struct ptnode *nsgnode; /* First node on nessage |i st
mask = di sabl e();
i f (isbadport(portid) ||
(ptptr= &porttab[portid])->ptstate !'= PT _ALLOC) {
rest or e(mask) ;
return (uint32)SYSERR;
}
Xinu—module 11 19

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

*/

*/
*/
*/
*/
*/

2025

Xinu Ptrecv (Part 2)

/[* Wait for nessage and verify that the port is still allocated */

seq = ptptr->ptseq; /* Record orignal sequence */
I f (wait(ptptr->ptrsem) == SYSERR || ptptr->ptstate != PT_ALLOC
|| ptptr->ptseq != seq) {
rest or e(mask) ;
return (uint32) SYSERR;

}

/* Dequeue first nmessage that is waiting in the port */

nsgnode = ptptr->pt head;

nsg = nsgnode- >pt nBQ;

I f (ptptr->pthead == ptptr->pttail) /* Delete last item */
ptptr->pthead = ptptr->pttail = NULL;

el se
pt ptr->pt head = nsgnode- >pt next ;

nmsgnode- >pt next = ptfree; /* Return to free list */

ptfree = nsgnode;

si gnal (ptptr->ptssenm;

rest or e(mask) ;

return nsg;

Xinu—module 11 20 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Port Deletion And Reset

e |llustrate how difficult it can be to delete resources in a concurrent system
e Situations that must be handled
— If the port is full, processes may be blocked waiting to send messages to the port

— If the port is empty, processes may be blocked waiting to recelve messages
from the port

— If the port contains messages, some processing may be needed for each message
e An example of message processing during deletion

— Suppose an application allocates heap memory and uses a message to send a pointer
to the block of memory

— When deleting such a port, the appropriate action may be to free the block of
memory associated with each message

Xinu—module 11 21 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Disposing Of M essages

e Message disposition is needed during both reset and deletion
e What action should the system take to dispose of a message?
e Key idea: only the applications using the port will know how to dispose of messages

e To accommodate disposition

— Both ptreset and ptdelete include an extra argument that specifies a disposition
function

— When a message is removed from the port, the disposition function is called with
the message as an argument

Xinu —module 11 22 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

How Dynamic Deletion Complicates A Design

e |f concurrent processes can create/use/delete a resource, they can interfere

e Consider what happens with ports if

Process A invokes ptsend to send a message to a port
The port is full, so process A is blocked
While process A is blocked, process B starts to delete the port

Once the semaphores are deleted, process A will become ready

e |f process B has lower priority than process A, process A will run

e How will process A know that the port is being deleted?

e A similar situation occurs for senders

e Another surprise: suppose multiple processes attempt to delete and/or reset the port

concurrently

Xinu —module 11 23

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

Concurrency And Message Disposition

e The function used to dispose of messages during deletion or reset
— Is specified by user
— May reschedule allowing other processes to execute
e An example
— Suppose each message contains a pointer to a buffer from a buffer pool
— The user’s disposition function calls freebuf to free the buffer
— Freebuf signals a semaphore, which calls resched

e Consequence:. we need to handle attempts to use the port concurrently during reset or
deletion

Xinu—module 11 24 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Three Possible Ways To Handle Reset/Deletion

e Mechanism 1; Accession Numbers

A sequence number is associated with each port

The sequence number is incremented when the port is created and when the port is
deleted or reset

Functions ptsend and ptrecv record the sequence number when an operation begins
and check the sequence number after wait returns

If the sequence number changed, the port was reset, so the operation must abort

Xinu —module 11 25 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Three Possible Ways To Handle Reset/Deletion
(continued)

e Mechanism 2: A New State For The Port
— Each port has a state variable
— Many OS objects only need a bit to specify whether the object is in use or free
— Use an additional state to handle deletion/reset
* PTFREE if the entry for the port is not in use
* PTALLOC if the port isin use
* PTLIMBO Iif the port is being reset/del eted
— Functions ptsend and ptrecv examine the state variable

— If the state is PTLIMBO, the port is currently being reset or deleted and cannot be
used

Xinu—module 11 26 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Three Possible Ways To Handle Reset/Deletion
(continued)

e Mechanism 3: Deferred Rescheduling

Xinu —module 11 27

|s not included in the current code

The idea: temporarily postpone scheduling decisions during reset

To apply deferred rescheduling

* Cadll resched _cntl(DEFER _START) at the start of reset or delete

* Call resched _cntl(DEFER _STOP) after all operations are performed

Note that deferred rescheduling means that message disposition will not start other
concurrent processes

2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Common Code For Reset and Deletion

e We will see that port reset and deletion perform many of the same actions
e To eiminate code duplication

— Place common code in an internal function, _ptclear

— Have both ptreset and ptdelete call _ptclear

e Note: the designation “internal” means that _ptclear is not a system call — it must be
called with interrupts disabled

Xinu—module 11 28 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

/* ptdelete.c - ptdelete */

#1 ncl ude <xi nu. h>

et
* ptdelete - Delete a port, freeing waiting processes and nessages
*/
syscal | ptdel ete(
i nt 32 portid, /[* | D of port to delete
i nt 32 (*disp)(int32) /* Function to call to dispose
) /* of waiting nessages
{
I nt mask mask; /* Saved interrupt mask
struct ptentry *ptptr; /* Pointer to port table entry
mask = di sabl e();
i f (isbadport(portid)
(ptptr= &porttab[portid])->ptstate !'= PT_ALLOC) {
rest or e(mask) ;
return SYSERR;
}
_ptclear(ptptr, PT_FREE, disp);
ptnextid = porti d;
rest ore(mask) ;
return CK;
}

Xinu—module 11

Xinu Ptdelete

29
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

*/
*/
*/

*/
*/

2025

/* ptreset.c - ptreset */
#i ncl ude <xi nu. h>
et
* ptreset - Reset a port, freeing waiting processes and nessages and
| eaving the port ready for further use
*/
syscal | ptreset(
i nt 32 portid, /[* I D of port to reset
| nt 32 (*disp)(int32) /[/* Function to call to dispose
) /* of waiting nessages
{
i nt mask mask; /* Saved interrupt mask
struct ptentry *ptptr; /* Pointer to port table entry
mask = di sabl e();
I f (isbadport(portid)
(ptptr= &porttab[portid])->ptstate !'= PT_ALLOC) {
rest or e(mask) ;
return SYSERR;
}
_ptclear(ptptr, PT _ALLOC, disp);
rest or e(mask) ;
return OK;
}

Xinu—module 11

Xinu Ptreset

30
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

*/
*/
*/

*/
*/

2025

Xinu _ptclear (Part 1)

/* ptclear.c - _ptclear */

#1 ncl ude <xi nu. h>

| ® o L L e o
* ptclear - Used by ptdelete and ptreset to clear or reset a port
* (internal function assunes interrupts di sabl ed and
* argunent s have been checked for validity)
*_ _ ... - - -, b b e e Y e Y e e e Y e Y e Y Y Y Y L o
*/
voi d _ptclear(
struct ptentry *ptptr, /* Table entry to clear */
ui nt 16 newst at e, /* New state for port */
I nt 32 (*di spose) (int32)/* Disposal function to call */
)
{ | |
struct ptnode *walk; /* Pointer to wal k nessage list */
/[* Place port in linbo state while waiting processes are freed */
ptptr->ptstate = PT_LI MBG,
pt ptr->pt seq++; /* Reset accession nunber */
wal k = pt ptr->pthead, /* First itemon nsg |i st */
Xinu—module 11 31 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu _ptclear (Part 2)

i f (walk !'= NULL) { /* 1If message |ist nonenpty */
/* WAl k message |ist and di spose of each nessage */

for(; wal k!l =NULL ; wal k=wal k- >pt next) {
(*di spose) (wal k->ptnsg) ;
}

[* Link entire nmessage list into the free list */

(ptptr->pttail)->ptnext = ptfree;
ptfree = ptptr->pthead;
}

i f (newstate == PT _ALLOC) {
ptptr->pttail = ptptr->pthead = NULL;
senr eset (ptptr->ptssem ptptr->ptmaxcnt);
senreset (ptptr->ptrsem O0);

} else {
sendel et e(pt ptr->ptssen);
sendel ete(ptptr->ptrsem;

}
pt ptr->pt state = newst at e;
return;
}
Xinu—module 11 32 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Summary

e Xinu offers a high-level message passing mechanism
e The system uses ports for message storage
e A port can be created dynamically, can have arbitrary senders, and arbitrary receivers

e The interface is completely synchronous — a sender blocks if a port is full, and a
recelver blocks if a port is empty

e Port reset/deletion is tricky because

— Concurrent processes may attempt to use the port while reset or deletion is
occurring

— Senders and receivers must be able to tell that the port changed while they were
blocked

Xinu—module 11 33 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Summary
(continued)

e Three technigues can handle transition

— A sequence number informs waiting processes whether the port was reset or deleted
while they were blocked

— A limbo state prevents new processes from using the port while it is being reset or
deleted

— Processes using ports can defer rescheduling during reset and deletion to guarantee
that no other processes execute

Xinu —module 11 34 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Ouestions?

