
Module XI

High-Level Synchronous
Message Passing

Xinu – module 11 1 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Location Of Synchronous Message Passing In The Hierarchy

Xinu – module 11 2 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Review Of Xinu’s Low-Level Message Passing Facility

d A message is always sent from one process directly to another

d Each process has a one-message message buffer

d Transmission is asynchronous (non-blocking)

d Reception is synchronous (blocking)

d An asynchronous function can be used to clear the message buffer

Xinu – module 11 3 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Features Of The Xinu High-Level Message Passing Mechanism

d Defines a set of message storage facilities called ports used for inter-process
communication

d When creating a port, an application specifies the number of messages a given port can
hold

d The mechanism supports many-to-many communication

– Allows an arbitrary process to send a message to a port

– Allows an arbitrary process to receive a message from a port

d Uses a synchronous interface

– Blocks a sender if a port is full

– Blocks a receiver until a message arrives at a port

d Handles port deletion and reset

Xinu – module 11 4 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

An Example Use Of Ports: A Concurrent Server

d Create a port, P

d Think of messages that are sent to the port as requests for some service

d Create a set of server processes that each repeatedly receive a request from P and
“handle” the request (supply the service)

d An arbitrary process can send a request to P; one of the server processes handles the
request

d Because server processes run concurrently, a server process can receive a later request
and start handling the request while another process continues to handle a previous
request

d The advantage: short requests can be serviced quickly

Xinu – module 11 5 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Few Details

d When the port system is initialized, a global pool of messages is created

– The maximum number of messages in all ports is specified

– Memory is allocated for the pool, and messages are linked onto a free list

d An individual port can be created (and later deleted) dynamically

d Semaphores are used to

– Block a sender if a port is full

– Block a receiver if a port is empty

d When a port is created

– An argument specifies the number of messages that can be stored in the port

– The message count is used to initialize a semaphore

Xinu – module 11 6 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Functions That Operate On Ports

d Ptinit

– Must be called once before ports can be used

– Initializes the entire port system

d Ptcreate

– Creates a new port

– An argument specifies maximum number of messages

d Ptsend

– Sends a message to a port

d Ptrecv

– Retrieves a message from a port

Xinu – module 11 7 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Functions That Operate On Ports
(continued)

d Ptreset

– Resets existing port

– Disposes of existing messages

– Allows waiting processes to continue

d Ptdelete

– Deletes existing port

– Disposes of existing messages

– Allows blocked processes to continue

Xinu – module 11 8 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Programmer’s Responsibility

d A programmer must plan ahead

– Specify the maximum number of messages when calling ptcreate

– Avoid creating ports that can take more than the total messages available for all
ports

d Worst case: ptsend will panic if no message buffers appear on the free list

d Possible improvement: keep a global count of messages, and decrement it each time
ptcreate is called and increment it each time ptdelete is called

Xinu – module 11 9 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Port Declarations

/* ports.h - isbadport */

#define NPORTS 30 /* Maximum number of ports */
#define PT_MSGS 100 /* Total messages in system */
#define PT_FREE 1 /* Port is free */
#define PT_LIMBO 2 /* Port is being deleted/reset */
#define PT_ALLOC 3 /* Port is allocated */

struct ptnode { /* Node on list of messages */
uint32 ptmsg; /* A one-word message */
struct ptnode *ptnext; /* Pointer to next node on list */

};

struct ptentry { /* Entry in the port table */
sid32 ptssem; /* Sender semaphore */
sid32 ptrsem; /* Receiver semaphore */
uint16 ptstate; /* Port state (FREE/LIMBO/ALLOC)*/
uint16 ptmaxcnt; /* Max messages to be queued */
int32 ptseq; /* Sequence changed at creation */
struct ptnode *pthead; /* List of message pointers */
struct ptnode *pttail; /* Tail of message list */

};

extern struct ptnode *ptfree; /* List of free nodes */
extern struct ptentry porttab[]; /* Port table */
extern int32 ptnextid; /* Next port ID to try when */

/* looking for a free slot */

#define isbadport(portid) ((portid)<0 || (portid)>=NPORTS)

Xinu – module 11 10 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

An Invariant Used Throughout The Code

Semaphore ptrsem has a nonnegative count n if n messages are waiting in the port; it
has negative count –n if n processes are waiting for messages.

Xinu – module 11 11 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ptinit (Part 1)

/* ptinit.c - ptinit */

#include <xinu.h>

struct ptnode *ptfree; /* List of free message nodes */
struct ptentry porttab[NPORTS]; /* Port table */
int32 ptnextid; /* Next table entry to try */

/*--
* ptinit - Initialize all ports
*--
*/

syscall ptinit(
int32 maxmsgs /* Total messages in all ports */

)
{

int32 i; /* Runs through the port table */
struct ptnode *next, *curr; /* Used to build a free list */

/* Allocate memory for all messages on all ports */

ptfree = (struct ptnode *)getmem(maxmsgs*sizeof(struct ptnode));
if (ptfree == (struct ptnode *)SYSERR) {

panic("ptinit - insufficient memory");
}

Xinu – module 11 12 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ptinit (Part 2)

/* Initialize all port table entries to free */

for (i=0 ; i<NPORTS ; i++) {
porttab[i].ptstate = PT_FREE;
porttab[i].ptseq = 0;

}
ptnextid = 0;

/* Create a free list of message nodes linked together */

for (curr=next=ptfree ; --maxmsgs > 0 ; curr=next) {
curr->ptnext = ++next;

}

/* Set the pointer in the final node to NULL */

curr->ptnext = NULL;
return OK;

}

Xinu – module 11 13 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ptcreate (Part 1)
/* ptcreate.c - ptcreate */

#include <xinu.h>

/*--
* ptcreate - Create a port that allows "count" outstanding messages
*--
*/

syscall ptcreate(
int32 count /* Size of port */

)
{

intmask mask; /* Saved interrupt mask */
int32 i; /* Counts all possible ports */
int32 ptnum; /* Candidate port number to try */
struct ptentry *ptptr; /* Pointer to port table entry */

mask = disable();
if (count < 0) {

restore(mask);
return SYSERR;

}

Xinu – module 11 14 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ptcreate (Part 2)
for (i=0 ; i<NPORTS ; i++) { /* Count all table entries */

ptnum = ptnextid; /* Get an entry to check */
if (++ptnextid >= NPORTS) {

ptnextid = 0; /* Reset for next iteration */
}

/* Check table entry that corresponds to ID ptnum */

ptptr= &porttab[ptnum];
if (ptptr->ptstate == PT_FREE) {

ptptr->ptstate = PT_ALLOC;
ptptr->ptssem = semcreate(count);
ptptr->ptrsem = semcreate(0);
ptptr->pthead = ptptr->pttail = NULL;
ptptr->ptseq++;
ptptr->ptmaxcnt = count;
restore(mask);
return ptnum;

}
}
restore(mask);
return SYSERR;

}

Xinu – module 11 15 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ptsend (Part 1)

/* ptsend.c - ptsend */

#include <xinu.h>

/*--
* ptsend - Send a message to a port by adding it to the queue
*--
*/

syscall ptsend(
int32 portid, /* ID of port to use */
umsg32 msg /* Message to send */

)
{

intmask mask; /* Saved interrupt mask */
struct ptentry *ptptr; /* Pointer to table entry */
int32 seq; /* Local copy of sequence num. */
struct ptnode *msgnode; /* Allocated message node */
struct ptnode *tailnode; /* Last node in port or NULL */

mask = disable();
if (isbadport(portid) ||

(ptptr= &porttab[portid])->ptstate != PT_ALLOC) {
restore(mask);
return SYSERR;

}

Xinu – module 11 16 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ptsend (Part 2)

/* Wait for space and verify port has not been reset */

seq = ptptr->ptseq; /* Record original sequence */
if (wait(ptptr->ptssem) == SYSERR

|| ptptr->ptstate != PT_ALLOC
|| ptptr->ptseq != seq) {

restore(mask);
return SYSERR;

}
if (ptfree == NULL) {

panic("Port system ran out of message nodes");
}

/* Obtain node from free list by unlinking */

msgnode = ptfree; /* Point to first free node */
ptfree = msgnode->ptnext; /* Unlink from the free list */
msgnode->ptnext = NULL; /* Set fields in the node */
msgnode->ptmsg = msg;

Xinu – module 11 17 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ptsend (Part 3)

/* Link into queue for the specified port */

tailnode = ptptr->pttail;
if (tailnode == NULL) { /* Queue for port was empty */

ptptr->pttail = ptptr->pthead = msgnode;
} else { /* Insert new node at tail */

tailnode->ptnext = msgnode;
ptptr->pttail = msgnode;

}
signal(ptptr->ptrsem);
restore(mask);
return OK;

}

Xinu – module 11 18 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ptrecv (Part 1)

/* ptrecv.c - ptrecv */

#include <xinu.h>

/*--
* ptrecv - Receive a message from a port, blocking if port empty
*--
*/

uint32 ptrecv(
int32 portid /* ID of port to use */

)
{

intmask mask; /* Saved interrupt mask */
struct ptentry *ptptr; /* Pointer to table entry */
int32 seq; /* Local copy of sequence num. */
umsg32 msg; /* Message to return */
struct ptnode *msgnode; /* First node on message list */

mask = disable();
if (isbadport(portid) ||

(ptptr= &porttab[portid])->ptstate != PT_ALLOC) {
restore(mask);
return (uint32)SYSERR;

}

Xinu – module 11 19 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ptrecv (Part 2)

/* Wait for message and verify that the port is still allocated */

seq = ptptr->ptseq; /* Record orignal sequence */
if (wait(ptptr->ptrsem) == SYSERR || ptptr->ptstate != PT_ALLOC

|| ptptr->ptseq != seq) {
restore(mask);
return (uint32)SYSERR;

}

/* Dequeue first message that is waiting in the port */

msgnode = ptptr->pthead;
msg = msgnode->ptmsg;
if (ptptr->pthead == ptptr->pttail) /* Delete last item */

ptptr->pthead = ptptr->pttail = NULL;
else

ptptr->pthead = msgnode->ptnext;
msgnode->ptnext = ptfree; /* Return to free list */
ptfree = msgnode;
signal(ptptr->ptssem);
restore(mask);
return msg;

}

Xinu – module 11 20 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Port Deletion And Reset

d Illustrate how difficult it can be to delete resources in a concurrent system

d Situations that must be handled

– If the port is full, processes may be blocked waiting to send messages to the port

– If the port is empty, processes may be blocked waiting to receive messages
from the port

– If the port contains messages, some processing may be needed for each message

d An example of message processing during deletion

– Suppose an application allocates heap memory and uses a message to send a pointer
to the block of memory

– When deleting such a port, the appropriate action may be to free the block of
memory associated with each message

Xinu – module 11 21 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Disposing Of Messages

d Message disposition is needed during both reset and deletion

d What action should the system take to dispose of a message?

d Key idea: only the applications using the port will know how to dispose of messages

d To accommodate disposition

– Both ptreset and ptdelete include an extra argument that specifies a disposition
function

– When a message is removed from the port, the disposition function is called with
the message as an argument

Xinu – module 11 22 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

How Dynamic Deletion Complicates A Design

d If concurrent processes can create/use/delete a resource, they can interfere

d Consider what happens with ports if

– Process A invokes ptsend to send a message to a port

– The port is full, so process A is blocked

– While process A is blocked, process B starts to delete the port

– Once the semaphores are deleted, process A will become ready

d If process B has lower priority than process A, process A will run

d How will process A know that the port is being deleted?

d A similar situation occurs for senders

d Another surprise: suppose multiple processes attempt to delete and/or reset the port
concurrently

Xinu – module 11 23 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Concurrency And Message Disposition

d The function used to dispose of messages during deletion or reset

– Is specified by user

– May reschedule allowing other processes to execute

d An example

– Suppose each message contains a pointer to a buffer from a buffer pool

– The user’s disposition function calls freebuf to free the buffer

– Freebuf signals a semaphore, which calls resched

d Consequence: we need to handle attempts to use the port concurrently during reset or
deletion

Xinu – module 11 24 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Three Possible Ways To Handle Reset/Deletion

d Mechanism 1: Accession Numbers

– A sequence number is associated with each port

– The sequence number is incremented when the port is created and when the port is
deleted or reset

– Functions ptsend and ptrecv record the sequence number when an operation begins
and check the sequence number after wait returns

– If the sequence number changed, the port was reset, so the operation must abort

Xinu – module 11 25 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Three Possible Ways To Handle Reset/Deletion
(continued)

d Mechanism 2: A New State For The Port

– Each port has a state variable

– Many OS objects only need a bit to specify whether the object is in use or free

– Use an additional state to handle deletion/reset

* PTFREE if the entry for the port is not in use

* PTALLOC if the port is in use

* PTLIMBO if the port is being reset/deleted

– Functions ptsend and ptrecv examine the state variable

– If the state is PTLIMBO, the port is currently being reset or deleted and cannot be
used

Xinu – module 11 26 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Three Possible Ways To Handle Reset/Deletion
(continued)

d Mechanism 3: Deferred Rescheduling

– Is not included in the current code

– The idea: temporarily postpone scheduling decisions during reset

– To apply deferred rescheduling

* Call resched_cntl(DEFER_START) at the start of reset or delete

* Call resched_cntl(DEFER_STOP) after all operations are performed

– Note that deferred rescheduling means that message disposition will not start other
concurrent processes

Xinu – module 11 27 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Common Code For Reset and Deletion

d We will see that port reset and deletion perform many of the same actions

d To eliminate code duplication

– Place common code in an internal function, _ptclear

– Have both ptreset and ptdelete call _ptclear

d Note: the designation “internal” means that _ptclear is not a system call — it must be
called with interrupts disabled

Xinu – module 11 28 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ptdelete

/* ptdelete.c - ptdelete */

#include <xinu.h>

/*--
* ptdelete - Delete a port, freeing waiting processes and messages
*--
*/

syscall ptdelete(
int32 portid, /* ID of port to delete */
int32 (*disp)(int32) /* Function to call to dispose */

) /* of waiting messages */
{

intmask mask; /* Saved interrupt mask */
struct ptentry *ptptr; /* Pointer to port table entry */

mask = disable();
if (isbadport(portid) ||

(ptptr= &porttab[portid])->ptstate != PT_ALLOC) {
restore(mask);
return SYSERR;

}
_ptclear(ptptr, PT_FREE, disp);
ptnextid = portid;
restore(mask);
return OK;

}

Xinu – module 11 29 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Ptreset

/* ptreset.c - ptreset */

#include <xinu.h>

/*--
* ptreset - Reset a port, freeing waiting processes and messages and

leaving the port ready for further use
*--
*/

syscall ptreset(
int32 portid, /* ID of port to reset */
int32 (*disp)(int32) /* Function to call to dispose */

) /* of waiting messages */
{

intmask mask; /* Saved interrupt mask */
struct ptentry *ptptr; /* Pointer to port table entry */

mask = disable();
if (isbadport(portid) ||

(ptptr= &porttab[portid])->ptstate != PT_ALLOC) {
restore(mask);
return SYSERR;

}
_ptclear(ptptr, PT_ALLOC, disp);
restore(mask);
return OK;

}

Xinu – module 11 30 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu _ptclear (Part 1)

/* ptclear.c - _ptclear */

#include <xinu.h>

/*--
* _ptclear - Used by ptdelete and ptreset to clear or reset a port
* (internal function assumes interrupts disabled and
* arguments have been checked for validity)
*--
*/

void _ptclear(
struct ptentry *ptptr, /* Table entry to clear */
uint16 newstate, /* New state for port */
int32 (*dispose)(int32)/* Disposal function to call */

)
{

struct ptnode *walk; /* Pointer to walk message list */

/* Place port in limbo state while waiting processes are freed */

ptptr->ptstate = PT_LIMBO;

ptptr->ptseq++; /* Reset accession number */
walk = ptptr->pthead; /* First item on msg list */

Xinu – module 11 31 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu _ptclear (Part 2)

if (walk != NULL) { /* If message list nonempty */

/* Walk message list and dispose of each message */

for(; walk!=NULL ; walk=walk->ptnext) {
(*dispose)(walk->ptmsg);

}

/* Link entire message list into the free list */

(ptptr->pttail)->ptnext = ptfree;
ptfree = ptptr->pthead;

}

if (newstate == PT_ALLOC) {
ptptr->pttail = ptptr->pthead = NULL;
semreset(ptptr->ptssem, ptptr->ptmaxcnt);
semreset(ptptr->ptrsem, 0);

} else {
semdelete(ptptr->ptssem);
semdelete(ptptr->ptrsem);

}
ptptr->ptstate = newstate;
return;

}

Xinu – module 11 32 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Summary

d Xinu offers a high-level message passing mechanism

d The system uses ports for message storage

d A port can be created dynamically, can have arbitrary senders, and arbitrary receivers

d The interface is completely synchronous — a sender blocks if a port is full, and a
receiver blocks if a port is empty

d Port reset /deletion is tricky because

– Concurrent processes may attempt to use the port while reset or deletion is
occurring

– Senders and receivers must be able to tell that the port changed while they were
blocked

Xinu – module 11 33 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Summary
(continued)

d Three techniques can handle transition

– A sequence number informs waiting processes whether the port was reset or deleted
while they were blocked

– A limbo state prevents new processes from using the port while it is being reset or
deleted

– Processes using ports can defer rescheduling during reset and deletion to guarantee
that no other processes execute

Xinu – module 11 34 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Questions?

