
Module I

Course Overview
And

Introduction To Operating Systems

Xinu – module 1 1 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

COURSE MOTIVATION
AND SCOPE

Scope

This is a course about the design and structure of computer operating systems. It
covers the concepts, principles, functionality, tradeoffs, and implementation of systems
that support concurrent processing.

Xinu – module 1 3 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

What We Will Cover

d Operating system fundamentals

d Functionality an operating system offers

d Major system components

d Interdependencies and system structure

d The key relationships between operating system abstractions and the underlying
hardware (especially processes and interrupts)

d A few implementation details and examples

Xinu – module 1 4 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

What You Will Learn

d Fundamental

– Principles

– Design options

– Tradeoffs

d How to modify and test operating system code

d How to design and build an operating system

Xinu – module 1 5 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

What We Will NOT Cover

d A comparison of large commercial and open source operating systems

d A description of features or instructions on how to use a particular commercial system

d A survey of research systems and alternative approaches that have been studied

d A set of techniques for building operating systems that run on unusual hardware

Xinu – module 1 6 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

How Operating Systems Changed Programming

d Before operating systems

– Only one application could run at any time

– The application contained code to control specific I/O devices

– The application had to overlap I/O and processing

d With an operating system in place

– Multiple applications can run at the same time

– An application is not built for specific I/O devices

– A programmer does not need to overlap I/O and processing

– An application is written without regard to other applications

Xinu – module 1 7 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Why Operating Systems Are Difficult To Build

d The gap between hardware and high-level services is huge

– Hardware is ugly

– Operating system abstractions are beautiful

– An operating system must bridge the gap between low-level hardware and high-
level abstractions

d Everything is now connected by computer networks

– An operating system must offer communication facilities

– Distributed mechanisms (e.g., access to remote files) are more difficult to create than
local mechanisms

Xinu – module 1 8 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

An Observation About Efficiency

d Our job in Computer Science is to build beautiful new abstractions that programmers
can use

d It is easy to imagine magical new abstractions

d The hard part is that we must find abstractions that map onto the underlying hardware
efficiently

d We hope that hardware engineers eventually build hardware for our abstractions (or at
least build hardware that makes our abstractions more efficient)

Xinu – module 1 9 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Once And Future Hot Topic

d In the 1970s and 1980s, operating systems was one of the hottest topics in CS

d By the mid-1990s, OS research had stagnated

d Now things have heated up again, and new operating systems are being designed for

– Smart phones

– Multicore systems

– Data centers

– Large and small embedded devices (the Internet of Things)

Xinu – module 1 10 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Xinu Operating System

Motivation For Studying A Real Operating System

d Provides examples of the principles

d Makes everything clear and concrete

d Shows how abstractions map to current hardware

d Gives students a chance to experiment and gain first-hand experience

Xinu – module 1 12 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Can We Study Commercial Or Open-Source Systems?

d Windows

– Millions of lines of code

– Proprietary

d Linux

– Millions of lines of code

– Lack of consistency across modules

– Duplication of functionality with slight variants

Xinu – module 1 13 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

An Alternative Operating System: Xinu

d Small — can be read and understood in a semester

d Complete — includes all the major components

d Elegant — provides an excellent example of clean design

d Powerful — has dynamic process creation, dynamic memory management, flexible
I/O, and basic Internet protocols

d Practical — has been used in real products

Xinu – module 1 14 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

REQUIRED BACKGROUND
AND PREREQUISITES

Background Needed

d A few concepts from earlier courses

– Integer arithmetic and bit-wise operators and, or, and not

– I/O: you should know the difference between standard library functions (e.g., fopen,
putc, getc, fread, fwrite) and system calls (e.g., open, close, read, write)

– File systems and hierarchical directories

– Symbolic and hard links

– File modes and protection

– Key concepts from computer architecture, such as the purpose of a bus

Xinu – module 1 16 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Background Needed
(continued)

– Basic data structures (e.g., linked lists)

– Binary and hex representation

– The run-time stack concept

– Local and global variable allocation

– Function calls, arguments, and calling conventions

d Concurrent programming experience: you should have written a program that uses fork
or threads

Xinu – module 1 17 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Background Needed
(continued)

d An understanding of runtime storage

– Segments (text, data, bss, and stack)

– Basic heap storage management (e.g., malloc and free)

d C programming

– At least one nontrivial program

– Comfortable with low-level constructs (e.g., bit manipulation, pointers, and pointer
arithmetic)

Xinu – module 1 18 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Background Needed
(continued)

d Working knowledge of basic Unix tools (needed for programming assignments)

– Text editor (e.g., emacs)

– Compiler / linker / loader (i.e., gcc)

– Tar archives and how to use them

– Make and Makefiles

d Desire to learn

Xinu – module 1 19 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Course Syllabus

See the handout

or

download a copy

Xinu – module 1 20 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

How We Will Proceed

d We will examine the major components of an operating system

d For a given component we will

– Outline the functionality it provides

– Understand principles involved

– Study one particular design choice in depth

– Consider implementation details and the relationship to hardware

– Quickly review other possibilities and tradeoffs

d Note: we will cover components in a linear order that allows us to understand one
component at a time without relying on later components

Xinu – module 1 21 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A FEW THINGS
TO THINK ABOUT

Real concurrency — in which one program actually continues to
function while you call up and use another — is more amazing but
of small use to the average person. How many programs do you
have that take more than a few seconds to perform any task?

(From an article about new operating
systems for the IBM PC in the New
York Times, 25 April 1989)

Xinu – module 1 23 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Perfection [in design] is achieved not when there is nothing to add,
but rather when there is nothing more to take away.

– Antoine de Saint-Exupery

Xinu – module 1 24 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Introduction To Operating Systems
(Definitions And Functionality)

What Is An Operating System?

d Answer: a large piece of sophisticated software that provides an abstract computing
environment

d An OS manages resources and supplies computational services

d An OS hides low-level hardware details from programmers

d Note: operating system software is among the most complex ever devised

Xinu – module 1 26 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Example Services An OS Supplies

d Support for concurrent execution (multiple applications running at the same time)

d Process synchronization

d Process-to-process communication mechanisms

d Process-to-process message passing and asynchronous events

d Management of address spaces and virtual memory support

d Protection among users and running applications

d High-level interface for I/ O devices

d File systems and file access facilities

d Internet communication

Xinu – module 1 27 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

What An Operating System Is NOT

d A hardware mechanism

d A programming language

d A compiler

d A windowing system or a browser

d A command interpreter

d A library of utility functions

d A graphical desktop

Xinu – module 1 28 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

AN OPERATING SYSTEM
FROM THE OUTSIDE

The System Interface

d A single copy of the OS runs at any time

– Hidden from users

– Accessible only to application programs

d The Application Program Interface (API)

– Defines services OS makes available

– Defines arguments for the services

– Provides access to OS abstractions and services

– Hides hardware details

Xinu – module 1 30 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

OS Abstractions And The Application Interface

HARDWARE (INSTRUCTION SET)

DEVICE ABSTRACTION PROCESS ABSTRACTION

COMM. ABSTRACTION

FILE ABSTRACTION

DIR. ABSTRACTION

..

API applications use

d Modules in the OS offer services to applications

d Internally, some services build on others

Xinu – module 1 31 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Interface To System Services

d Appears to operate like a function call mechanism

– OS makes a set of “functions” available to applications

– Application supplies arguments using standard mechanism

– Application “calls” an OS function to access a service

d Control transfers to OS code that implements the function

d Control returns to caller when function completes

Xinu – module 1 32 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Interface To System Services
(continued)

d Requires a special hardware instruction to invoke an OS function

– Moves from the application’s address space to OS’s address space

– Changes from application mode or privilege level to OS mode

d Terminology used by various hardware vendors

– System call

– Trap

– Supervisor call

d We will use the generic term system call

Xinu – module 1 33 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

An Example Of A System Call In Xinu:
Output A Character To The Console

/* ex1.c - main */

#include <xinu.h>

/*--
* main - Write "hi" on the console
*--
*/

void main(void)
{

putc(CONSOLE, 'h');
putc(CONSOLE, 'i');
putc(CONSOLE, '\n');

}

d Note: we will discuss the implementation of putc later

Xinu – module 1 34 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

OS Services And System Calls

d Each OS service accessed through system call interface

d Most services employ a set of several system calls

d Examples

– Process management service includes functions to suspend and then resume a
process

– Communication service includes functions that allow an application to communicate
over the Internet

Xinu – module 1 35 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

System Calls Used With I/O

d Open-close-read-write paradigm

d Application

– Uses open to connect to a file or device

– Calls functions to write data or read data

– Calls close to terminate use

d Internally, the set of I /O functions coordinate

– Open returns a descriptor, d

– Read and write operate on descriptor d

Xinu – module 1 36 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

AN OPERATING SYSTEM
FROM THE INSIDE

Operating System Properties

d An OS contains well-understood subsystems

d An OS must handle dynamic situations (processes come and go)

d Unlike most application programs, an OS uses a heuristic approach

– A heuristic can have corner cases

– Policies from one subsystem can conflict with policies from others

d Complexity arises from interactions among subsystems, and the side-effects can be

– Unintended

– Unanticipated, even by the OS designer

d We will see examples

Xinu – module 1 38 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Building An Operating System

d The intellectual challenge comes from the design of a “system” rather than from the
design of any individual piece

d Structured design is needed

d It can be difficult to understand the consequences of individual choices

d We will study a hierarchical microkernel design that helps control complexity and
provides a unifying architecture

Xinu – module 1 39 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Major OS Components

d Process manager

d Memory manager

d Device manager

d Clock (time) manager

d File manager

d Interprocess communication system

d Intermachine communication system

d Assessment and accounting

Xinu – module 1 40 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Our Multilevel Structure

d Organizes all components

d Controls interactions among subsystems

d Allows an OS to be understood and built incrementally

d Differs from a traditional layered approach

d Will be employed as the design paradigm throughout the text and course

Xinu – module 1 41 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Multilevel Vs. Multilayered Organization

d Multilayer structure

– Visible to the user as well as designer

– Software at a given layer only uses software at the layer directly beneath

– Examples

* Internet protocol layering

* MULTICS layered security structure

– Can be extremely inefficient

Xinu – module 1 42 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Multilevel Vs. Multilayered Organization
(continued)

d Multilevel structure

– Separates all software into multiple levels

– Allows software at a given level to use software at all lower levels

– Especially helpful during system construction

– Focuses a designer’s attention on one aspect of the OS at a time

– Helps keeps policy decisions independent and manageable

– Is efficient

Xinu – module 1 43 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Multilevel Structure Of Xinu

HARDWARE
MEMORY MANAGER
PROCESS MANAGER
PROCESS COORDINATION
INTERPROCESS COMMUNICATION
REAL-TIME CLOCK MANAGER
DEVICE MANAGER AND DEVICE DRIVERS
INTERMACHINE COMMUNICATION
FILE SYSTEM
APPLICATION PROGRAMS

Xinu – module 1 44 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

How To Understand An OS

d Use the same approach as when designing a system

d Work one level at a time

d Understand the service to be provided at the level

d Consider the overall goal for the service

d Examine the policies that are used to achieve the goal

d Study the mechanisms that enforce the policies

d Look at an implementation that runs on specific hardware

Xinu – module 1 45 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Design Example

d Example: access to I/ O

d Goal: “fairness”

d Policy: First-Come-First-Served access to a given I/O device

d Mechanism: a queue of pending requests in FIFO order

d Implementation: program written in C

Xinu – module 1 46 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Questions?

