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COURSE MOTIVATION
AND SCOPE



Scope

This is a course about the design and structure of computer operating systems. It
covers the concepts, principles, functionality, tradeoffs, and implementation of systems
that support concurrent processing.
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What We Will Cover

d Operating system fundamentals

d Functionality an operating system offers

d Major system components

d Interdependencies and system structure

d The key relationships between operating system abstractions and the underlying
hardware (especially processes and interrupts)

d A few implementation details and examples
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What You Will Learn

d Fundamental

– Principles

– Design options

– Tradeoffs

d How to modify and test operating system code

d How to design and build an operating system
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What We Will NOT Cover

d A comparison of large commercial and open source operating systems

d A description of features or instructions on how to use a particular commercial system

d A survey of research systems and alternative approaches that have been studied

d A set of techniques for building operating systems that run on unusual hardware
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How Operating Systems Changed Programming

d Before operating systems

– Only one application could run at any time

– The application contained code to control specific I/O devices

– The application had to overlap I/O and processing

d With an operating system in place

– Multiple applications can run at the same time

– An application is not built for specific I/O devices

– A programmer does not need to overlap I/O and processing

– An application is written without regard to other applications
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Why Operating Systems Are Difficult To Build

d The gap between hardware and high-level services is huge

– Hardware is ugly

– Operating system abstractions are beautiful

– An operating system must bridge the gap between low-level hardware and high-
level abstractions

d Everything is now connected by computer networks

– An operating system must offer communication facilities

– Distributed mechanisms (e.g., access to remote files) are more difficult to create than
local mechanisms
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An Observation About Efficiency

d Our job in Computer Science is to build beautiful new abstractions that programmers
can use

d It is easy to imagine magical new abstractions

d The hard part is that we must find abstractions that map onto the underlying hardware
efficiently

d We hope that hardware engineers eventually build hardware for our abstractions (or at
least build hardware that makes our abstractions more efficient)
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The Once And Future Hot Topic

d In the 1970s and 1980s, operating systems was one of the hottest topics in CS

d By the mid-1990s, OS research had stagnated

d Now things have heated up again, and new operating systems are being designed for

– Smart phones

– Multicore systems

– Data centers

– Large and small embedded devices (the Internet of Things)
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The Xinu Operating System



Motivation For Studying A Real Operating System

d Provides examples of the principles

d Makes everything clear and concrete

d Shows how abstractions map to current hardware

d Gives students a chance to experiment and gain first-hand experience
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Can We Study Commercial Or Open-Source Systems?

d Windows

– Millions of lines of code

– Proprietary

d Linux

– Millions of lines of code

– Lack of consistency across modules

– Duplication of functionality with slight variants
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An Alternative Operating System: Xinu

d Small — can be read and understood in a semester

d Complete — includes all the major components

d Elegant — provides an excellent example of clean design

d Powerful — has dynamic process creation, dynamic memory management, flexible
I/O, and basic Internet protocols

d Practical — has been used in real products
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REQUIRED BACKGROUND
AND PREREQUISITES



Background Needed

d A few concepts from earlier courses

– Integer arithmetic and bit-wise operators and, or, and not

– I/O: you should know the difference between standard library functions (e.g., fopen,
putc, getc, fread, fwrite) and system calls (e.g., open, close, read, write)

– File systems and hierarchical directories

– Symbolic and hard links

– File modes and protection

– Key concepts from computer architecture, such as the purpose of a bus
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Background Needed
(continued)

– Basic data structures (e.g., linked lists)

– Binary and hex representation

– The run-time stack concept

– Local and global variable allocation

– Function calls, arguments, and calling conventions

d Concurrent programming experience: you should have written a program that uses fork
or threads
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Background Needed
(continued)

d An understanding of runtime storage

– Segments (text, data, bss, and stack)

– Basic heap storage management (e.g., malloc and free)

d C programming

– At least one nontrivial program

– Comfortable with low-level constructs (e.g., bit manipulation, pointers, and pointer
arithmetic)

Xinu – module 1 18 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Background Needed
(continued)

d Working knowledge of basic Unix tools (needed for programming assignments)

– Text editor (e.g., emacs)

– Compiler / linker / loader (i.e., gcc)

– Tar archives and how to use them

– Make and Makefiles

d Desire to learn
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Course Syllabus

See the handout

or

download a copy
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How We Will Proceed

d We will examine the major components of an operating system

d For a given component we will

– Outline the functionality it provides

– Understand principles involved

– Study one particular design choice in depth

– Consider implementation details and the relationship to hardware

– Quickly review other possibilities and tradeoffs

d Note: we will cover components in a linear order that allows us to understand one
component at a time without relying on later components
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A FEW THINGS
TO THINK ABOUT



Real concurrency — in which one program actually continues to
function while you call up and use another — is more amazing but
of small use to the average person. How many programs do you
have that take more than a few seconds to perform any task?

(From an article about new operating
systems for the IBM PC in the New
York Times, 25 April 1989)
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Perfection [in design] is achieved not when there is nothing to add,
but rather when there is nothing more to take away.

– Antoine de Saint-Exupery
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Introduction To Operating Systems
(Definitions And Functionality)



What Is An Operating System?

d Answer: a large piece of sophisticated software that provides an abstract computing
environment

d An OS manages resources and supplies computational services

d An OS hides low-level hardware details from programmers

d Note: operating system software is among the most complex ever devised
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Example Services An OS Supplies

d Support for concurrent execution (multiple applications running at the same time)

d Process synchronization

d Process-to-process communication mechanisms

d Process-to-process message passing and asynchronous events

d Management of address spaces and virtual memory support

d Protection among users and running applications

d High-level interface for I/ O devices

d File systems and file access facilities

d Internet communication
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What An Operating System Is NOT

d A hardware mechanism

d A programming language

d A compiler

d A windowing system or a browser

d A command interpreter

d A library of utility functions

d A graphical desktop
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AN OPERATING SYSTEM
FROM THE OUTSIDE



The System Interface

d A single copy of the OS runs at any time

– Hidden from users

– Accessible only to application programs

d The Application Program Interface (API)

– Defines services OS makes available

– Defines arguments for the services

– Provides access to OS abstractions and services

– Hides hardware details
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OS Abstractions And The Application Interface

HARDWARE (INSTRUCTION SET)

DEVICE ABSTRACTION PROCESS ABSTRACTION

COMM. ABSTRACTION

FILE ABSTRACTION

DIR. ABSTRACTION

..............................................................................................................................

API applications use

d Modules in the OS offer services to applications

d Internally, some services build on others
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Interface To System Services

d Appears to operate like a function call mechanism

– OS makes a set of “functions” available to applications

– Application supplies arguments using standard mechanism

– Application “calls” an OS function to access a service

d Control transfers to OS code that implements the function

d Control returns to caller when function completes
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Interface To System Services
(continued)

d Requires a special hardware instruction to invoke an OS function

– Moves from the application’s address space to OS’s address space

– Changes from application mode or privilege level to OS mode

d Terminology used by various hardware vendors

– System call

– Trap

– Supervisor call

d We will use the generic term system call
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An Example Of A System Call In Xinu:
Output A Character To The Console

/* ex1.c - main */

#include <xinu.h>

/*------------------------------------------------------------------------
* main - Write "hi" on the console
*------------------------------------------------------------------------
*/

void main(void)
{

putc(CONSOLE, 'h');
putc(CONSOLE, 'i');
putc(CONSOLE, '\n');

}

d Note: we will discuss the implementation of putc later
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OS Services And System Calls

d Each OS service accessed through system call interface

d Most services employ a set of several system calls

d Examples

– Process management service includes functions to suspend and then resume a
process

– Communication service includes functions that allow an application to communicate
over the Internet
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System Calls Used With I/O

d Open-close-read-write paradigm

d Application

– Uses open to connect to a file or device

– Calls functions to write data or read data

– Calls close to terminate use

d Internally, the set of I /O functions coordinate

– Open returns a descriptor, d

– Read and write operate on descriptor d
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AN OPERATING SYSTEM
FROM THE INSIDE



Operating System Properties

d An OS contains well-understood subsystems

d An OS must handle dynamic situations (processes come and go)

d Unlike most application programs, an OS uses a heuristic approach

– A heuristic can have corner cases

– Policies from one subsystem can conflict with policies from others

d Complexity arises from interactions among subsystems, and the side-effects can be

– Unintended

– Unanticipated, even by the OS designer

d We will see examples
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Building An Operating System

d The intellectual challenge comes from the design of a “system” rather than from the
design of any individual piece

d Structured design is needed

d It can be difficult to understand the consequences of individual choices

d We will study a hierarchical microkernel design that helps control complexity and
provides a unifying architecture
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Major OS Components

d Process manager

d Memory manager

d Device manager

d Clock (time) manager

d File manager

d Interprocess communication system

d Intermachine communication system

d Assessment and accounting
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Our Multilevel Structure

d Organizes all components

d Controls interactions among subsystems

d Allows an OS to be understood and built incrementally

d Differs from a traditional layered approach

d Will be employed as the design paradigm throughout the text and course
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Multilevel Vs. Multilayered Organization

d Multilayer structure

– Visible to the user as well as designer

– Software at a given layer only uses software at the layer directly beneath

– Examples

* Internet protocol layering

* MULTICS layered security structure

– Can be extremely inefficient
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Multilevel Vs. Multilayered Organization
(continued)

d Multilevel structure

– Separates all software into multiple levels

– Allows software at a given level to use software at all lower levels

– Especially helpful during system construction

– Focuses a designer’s attention on one aspect of the OS at a time

– Helps keeps policy decisions independent and manageable

– Is efficient
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Multilevel Structure Of Xinu

HARDWARE
MEMORY MANAGER
PROCESS MANAGER
PROCESS COORDINATION
INTERPROCESS COMMUNICATION
REAL-TIME CLOCK MANAGER
DEVICE MANAGER AND DEVICE DRIVERS
INTERMACHINE COMMUNICATION
FILE SYSTEM
APPLICATION PROGRAMS
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How To Understand An OS

d Use the same approach as when designing a system

d Work one level at a time

d Understand the service to be provided at the level

d Consider the overall goal for the service

d Examine the policies that are used to achieve the goal

d Study the mechanisms that enforce the policies

d Look at an implementation that runs on specific hardware
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A Design Example

d Example: access to I/ O

d Goal: “fairness”

d Policy: First-Come-First-Served access to a given I/O device

d Mechanism: a queue of pending requests in FIFO order

d Implementation: program written in C
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Questions?


