A Methodology for Hiding Knowledge in Databases

Tom Johnsten
Vijay Raghavan

Knowledge Hiding in Databases

- Non-trivial hiding of potentially sensitive knowledge in databases.
 - Maximize release data
 - Maintain data integrity
KHD Process

- Identify sensitive knowledge
- Identify data mining algorithms
- Formulate security policies
- Risk assessment
- Sanitize data
- Report generation
KHD vs. KDD

- Analyze a collection of data for its information content.
- Iterative processes
 - Information requirement, discovery phase, reporting phase.

KHD: Classification Mining
Identify Sensitive Knowledge

- “Junior engineers may not access mileage class of newly designed cars”.

<table>
<thead>
<tr>
<th>ID</th>
<th>Fuel</th>
<th>Cyl</th>
<th>Power</th>
<th>Trans</th>
<th>Mileage</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>Efi</td>
<td>4</td>
<td>High</td>
<td>Manu</td>
<td>Med</td>
</tr>
<tr>
<td>T2</td>
<td>Efi</td>
<td>6</td>
<td>High</td>
<td>Manu</td>
<td>Med</td>
</tr>
<tr>
<td>T3</td>
<td>2-bbl</td>
<td>6</td>
<td>High</td>
<td>Auto</td>
<td>Low</td>
</tr>
<tr>
<td>T4</td>
<td>Efi</td>
<td>6</td>
<td>Med</td>
<td>Manu</td>
<td>Med</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>T15</td>
<td>2-bbl</td>
<td>4</td>
<td>High</td>
<td>Auto</td>
<td>NULL (High)</td>
</tr>
<tr>
<td>T16</td>
<td>Efi</td>
<td>6</td>
<td>Med</td>
<td>Auto</td>
<td>NULL (Low)</td>
</tr>
<tr>
<td>T17</td>
<td>2-bbl</td>
<td>4</td>
<td>Low</td>
<td>Auto</td>
<td>NULL (Med)</td>
</tr>
</tbody>
</table>
Class-Accuracy Set

- \{ (c_1, a_1), (c_2, a_2), \ldots, (c_n, a_n) \}

where
- \(c_i \) is the \(i \)th attribute in the domain of attribute containing the protected data element.
- \(a_i \) is the predicted accuracy (level of confidence) according to the classification algorithm of assigning to the protected object class label \(c_i \).

Class-Accuracy Set

- Class-accuracy set for tuple T15:
 - \{ (Mileage = low, a_{low}), (Mileage = med, a_{med}), (Mileage = high, a_{high}) \}
Security Policies

- Maximum threshold
 - All a_i are less than some threshold value ε.
- Maximum range
 - $[\text{MAX}(a_1, ..., a_n) - \text{MIN}(a_1, ..., a_n)] < \varepsilon$

Security Policies

- Protected threshold
 - $a_i < \varepsilon$, (a_i is predicted accuracy value associated with protected data element).
- Protected rank
 - Ranked position of protected data element is not within the non-secure range $[L, U]$.
Risk Assessment

- Individual algorithm assessment
- Generic assessment

Risk Assessment

- Decision-Region Based Algorithms
 - Condition-1:
 - It is possible to identify a priori a finite set of descriptions, \(D \), in terms of the properties present in an object \(O \) such that the particular description \(d \) used by \(A \) to classify \(O \) is an element of \(D \).
Risk Assessment

- Decision-Region Based
 - Condition-2:
 - The predicted accuracy of assigning an object O satisfying a description $d \in D$ to a class C is dependent on the distribution of class label C relative to all other class labels among the objects that satisfy d in the training set.

Risk Assessment

- Given a description $d \in D$ the predicted accuracy of assigning the protected tuple T the label c is the ratio of the number of tuples assigned label c and satisfy d to the number of tuples that satisfy d.
Risk Assessment

- Apply security policy to a particular description \(d \).
- Apply security policy to each description \(d \in D \).

REPEAT
\[
K = 1 \\
\text{WHILE (exist descriptions to inspect)} \\
D = K \text{ level descriptions requiring inspection} \\
\text{FOR (each description } d \text{ in } D) \\
\quad \text{IF (} d \text{ == zero description)} \\
\quad \quad \text{append all specializations of } d \text{ to zero description list} \\
\quad \text{ELSE IF (} d \text{ == non-secure description)} \\
\quad \quad \text{append } d \text{ to non-secure description list} \\
\text{END_FOR} \\
\text{transform non-secure descriptions to secure descriptions by protecting subset of attribute values not belonging to target object} \\
K = K+1 \\
\text{END_WHILE} \\
\text{UNTIL (no non-secure descriptions)}
\]
<table>
<thead>
<tr>
<th>ID</th>
<th>Fuel</th>
<th>Cyl</th>
<th>Power</th>
<th>Trans</th>
<th>Mileage</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>Efi</td>
<td>4</td>
<td>High</td>
<td>Manu</td>
<td>Med</td>
</tr>
<tr>
<td>T2</td>
<td>Efi</td>
<td>6</td>
<td>High</td>
<td>Manu</td>
<td>Med</td>
</tr>
<tr>
<td>T3</td>
<td>2-bbl</td>
<td>6</td>
<td>High</td>
<td>Auto</td>
<td>Low</td>
</tr>
<tr>
<td>T4</td>
<td>Efi</td>
<td>6</td>
<td>Med</td>
<td>Manu</td>
<td>Med</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>T15</td>
<td>2-bbl</td>
<td>4</td>
<td>High</td>
<td>Auto</td>
<td>NULL (High)</td>
</tr>
<tr>
<td>T16</td>
<td>Efi</td>
<td>6</td>
<td>Med</td>
<td>Auto</td>
<td>NULL (Low)</td>
</tr>
<tr>
<td>T17</td>
<td>2-bbl</td>
<td>4</td>
<td>Low</td>
<td>Auto</td>
<td>NULL (Med)</td>
</tr>
</tbody>
</table>

January 3, 2003

<table>
<thead>
<tr>
<th>Tuple</th>
<th>Description</th>
<th>Class-Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>T15</td>
<td>(Fuel = 2-bbl)</td>
<td>{(low, 0), (med, .5), (high, .5)}</td>
</tr>
<tr>
<td>T15</td>
<td>(Cyl = 4)</td>
<td>{(low, 0), (med, .375), (high, .625)}</td>
</tr>
<tr>
<td>T15</td>
<td>(Power = high)</td>
<td>{(low, .25), (med, .375), (high, .375)}</td>
</tr>
<tr>
<td>T15</td>
<td>(Cyl=4 & Power = high)</td>
<td>{(low, 0), (med, .5), (high, .5)}</td>
</tr>
<tr>
<td>T15</td>
<td>(Cyl = 4) & Tran = auto</td>
<td>{(low, 0), (med, .5), (high, .5)}</td>
</tr>
</tbody>
</table>

January 3, 2003
<table>
<thead>
<tr>
<th>ID</th>
<th>Fuel</th>
<th>Cyl</th>
<th>Power</th>
<th>Trans</th>
<th>Mileage</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>Efi</td>
<td>NULL</td>
<td>High</td>
<td>Manu</td>
<td>Med</td>
</tr>
<tr>
<td>T2</td>
<td>Efi</td>
<td>6</td>
<td>High</td>
<td>Manu</td>
<td>Med</td>
</tr>
<tr>
<td>T3</td>
<td>2-bbl</td>
<td>NULL</td>
<td>High</td>
<td>NULL</td>
<td>Low</td>
</tr>
<tr>
<td>T4</td>
<td>Efi</td>
<td>6</td>
<td>Med</td>
<td>Manu</td>
<td>Med</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>T15</td>
<td>2-bbl</td>
<td>4</td>
<td>High</td>
<td>Auto</td>
<td>NULL (High)</td>
</tr>
<tr>
<td>T16</td>
<td>Efi</td>
<td>6</td>
<td>Med</td>
<td>Auto</td>
<td>NULL (Low)</td>
</tr>
<tr>
<td>T17</td>
<td>2-bbl</td>
<td>4</td>
<td>Low</td>
<td>Auto</td>
<td>NULL (Med)</td>
</tr>
</tbody>
</table>
Identify Sensitive Knowledge

- Analysis will only be as complete as the identified knowledge.
- “Fault-tree” to structure process.

Identify Sensitive Knowledge

- “Employees may not have knowledge of customers suffering from sensitive health conditions”.

January 3, 2003
Discovery of customers suffering from sensitive health conditions

- Discovery of customers suffering from depression
 - CUST_ID item with depression items

- Discovery of customers suffering from AIDS
 - CUST_ID item with AIDS items

Formulate Security Policies

- Transform constructed fault-tree into appropriate security policies.
- Predefined set of templates.
TYPE-1: Specific Item -> Specific Item
TYPE-2: Specific Item -> Any Item
TYPE-3: Any Item -> Specific Item
TYPE-4: Specific Item -> Any Subset of Items
TYPE-5: Any Subset of Items -> Specific Item
TYPE-6: Specific Item -> Specific Concept
TYPE-7: Specific Concept -> Specific Item
TYPE-8: Any Item -> Specific Concept
TYPE-9: Specific Concept -> Any Item
TYPE-10: Any Subset of Items -> Specific Concept
TYPE-11: Specific Concept -> Any Subset of Items
TYPE-12: Specific Concept -> Specific Concept

All templates include user-defined support and confidence threshold values.

Risk Assessment

- Each template is expanded into one or more association rules.
 - Each association rule is evaluated.
Sanitize Data

- Remove items from database
 - Maintains data integrity
- Modify item values
 - Maximize available data

Remove Items

- Minimum Coverage Item Set (MCIS)
 - Given a set of association rules A, a MCIS is a minimum set of items in which at least one of the items in the set is included in each rule $r \in A$.
Example

- Given the non-secure sensitive association rules:
 - I1 -> I2
 - I1 -> I3 ∧ I4
 - I5 -> I6
 - I2 -> I7 ∧ I6
 - I6 -> I2 ∧ I1
- MCIS = {I1, I6}
 - Concealment of items I1 and I6 guarantees that the rules have no accuracy and strength.

Data Integrity (X → Y)

- Contains no items whose values have been modified.
 - Same level of support and confidence as with respect to unsanitized data.
Data Integrity ($X \rightarrow Y$)

- Items belonging to left-hand side have been modified.
- Support:
 - $[\frac{\#(X \land Y)}{T}, \frac{\#(X \land Y) + P_{\text{MAX}}(X)}{T}]$
- Confidence:
 - $[\frac{\#(X \land Y)}{\frac{\#(X) + P_{\text{MAX}}(X)}}]$

Data Integrity ($X \rightarrow Y$)

- Items belonging to right-hand side have been modified.
- Support:
 - $[\frac{\#(X \land Y)}{T}, \frac{\#(X \land Y) + P_{\text{MAX}}(Y)}{T}]$
- Confidence:
 - $[\frac{\#(X \land Y)}{\frac{\#(X) + P_{\text{MAX}}(Y)}}]$

January 3, 2003
Data Integrity \((X \to Y)\)

- Items belonging to left- and right- sides have been modified
- Support:
 \[
 \left[\frac{\#(X \land Y)}{T}, \frac{\#(X \land Y) + P_{\text{MAX}}(X,Y)}{T} \right]
 \]
- Confidence:
 \[
 \left[\frac{\#(X \land Y)}{(\#(X) + P_{\text{MAX}}(X)), \frac{\#(X \land Y) + P_{\text{MAX}}(X,Y))}{(#(X)+P_{\text{MAX}}(X,Y))}} \right]
 \]

January 3, 2003

Future Work

- Formal models to specify sensitive knowledge.
- Risk assessment procedures.
- Sanitization procedures.
- Data Integrity (Intra and Inter).