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Abstract— Data mining can extract important knowledge from to the distributed case using the following lemma: If a rule
large data collections — but sometimes these collectionseasplit  has support > k% globally, it must havesupport > k% on
among various parties. Privacy concerns may prevent the paies 41 |aast one of the individual sites. A distributed algaritfor

from directly sharing the data, and some types of informatiam . ] :
about the data. This paper addresses secure mining of assation this would work as follows: Request that each site send all

rules over horizontally partitioned data. The methods incaporate  rules with support at least. For each rule returned, request
cryptographic techniques to minimize the information shaed, that all sites send the count of their transactions that @tipp
while adding little overhead to the mining task. the rule, and the total count of all transactions at the site.

Index Terms— Data Mining, Security, Privacy From this, we can compute the global support of each rule,
and (from the lemma) be certain that all rules with support at
leastk have been found. More thorough studies of distributed
association rule mining can be found in [2], [3].

Data mining technology has emerged as a means of identiThe above approach protects individual data privacy, but
fying patterns and trends from large quantities of dataaDat does require that each site disclose what rules it support
mining and data warehousing go hand-in-hand: most toelad how much it supports each potential global rule. What
operate by gathering all data into a central site, then nmniif this information is sensitive? For example, suppose the
an algorithm against that data. However, privacy concerQenters for Disease Control (CDC), a public agency, would
can prevent building a centralized warehouse — data mige to mine health records to try to find ways to reduce
be distributed among several custodians, none of which ahe proliferation of antibiotic resistant bacteria. Iresuce
allowed to transfer their data to another site. companies have data on patient diseases and prescriptions.

This paper addresses the problem of computing assodigining this data would allow the discovery of rules such
tion rules within such a scenario. We assume homogene@ssAugmentin& Summer = Infection&Fall, i.e., people
databases: All sites have the same schema, but each sitethki®ig Augmentin in the summer seem to have recurring
information on different entities. The goal is to produceas infections.
ciation rules that hold globally, while limiting the infomtion The problem is that insurance companies will be concerned
shared about each site. about sharing this data. Not only must the privacy of patient

Computing association rules without disclosing individuaecords be maintained, but insurers will be unwilling teese
transactions is straightforward. We can compute the globales pertaining only to them. Imagine a rule indicating ghhi
support and confidence of an association rd& =- C rate of complications with a particular medical procedufe.
knowing only the local supports o B and ABC, and the this rule doesn't hold globally, the insurer would like todwn

I. INTRODUCTION

size of each database: this — they can then try to pinpoint the problem with their
Z§ites support_count 4c (i) policies and improve patient care. If the fact that the irsar
supportaAp—c = 1:18”68 = — data supports this rule is revealed (say, under a Freedom of
Zizl database_size(i) Information Act request to the CDC), the insurerer could be
. B S5 support_count o p (i) exposed to significant public relations or liability protls.
supportap = S Jatabase.sizel(i) This potential risk could exceed their own perception of the
. SUPZ;;;tABéC benefit of participating in the CDC study.
confidenceap=c = supportan This paper presents a solution that preserves such

. ) ) o secrets — the parties learn (almost) nothing beyond
Note that this doesn’t require sharing any individual teeRS the global results. The solution is efficient: The addi-

tions. We can easily extend an algorithm such as a-priori [hnal cost relative to previous non-secure techniques is
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2003. parties. In the two-party case, knowing a rule is supported
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sion to reprint/republish this material for advertisingppomotional purposes gther site supports the rule. Thus, much of the knowledge
or for creating new collective works for resale or redisitibn to servers or . .
lists, or to reuse any copyrighted component of this workthreoworks must we try to protect Is revealed even with a completely secure
be obtained from the IEEE. method for computing the global results. We discuss the two-
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party case further in Section V. By the same argument, we o
assume no collusion, as colluding parties can reduce thisFig 2- Determining if itemset support exceeds 5% threshold
the two-party case.

then go into detail on specific background work on which this
A. Private Association Rule Mining Overview paper builds.

Our method follows the basic approach outlined on Page 2Prévious work in privacy-preserving data mining has ad-
except that values are passed between the local data mirfifgSSed two issues. In one, the aim is preserving customer
sites rather than to a centralized combiner. The two phadiacy by distorting the data values [4]. The idea is that
are discovering candidate itemsets (those that are freecqmenthe d_lstorted data does nqt _reveal private mformatlon, and
one or more sites), and determining which of the candiddfé!s is “safe” to use for mining. The key result is that the
itemsets meet the global support/confidence thresholds. distorted data, and m_formatlon on the distribution of the

The first phase (Figure 1) uses commutative encryptiorr"f‘.ndom da_ta u_sed to distort _the data, can be_ used _to generate
Each party encrypts its own frequent itemsets (e.g., Site?@ @Pproximation to the original dawistribution without
encrypts itemse€). The encrypted itemsets are then passé@veal'”g thg original dataalue.s.The dlst_r|but|0n is used to
to other parties, until all parties have encrypted all itetas MProve mining results over mining the distorted data diyec

These are passed to a common party to eliminate duplicaidmarily through selection of split points to “bin” contious
and to begin decryption. (In the figure, the full set of itetased@ta. Later refinement of this approach tightened the bounds
are shown to the left of Site 1, after Site 1 decrypts.) ThR! what private information is disclosed, by showing that th

set is then passed to each party, and each party decrypts &Iy to reconstruct the distribution can be used to &ght
itemset. The final result is the common itemseZsahd D in estimates of original values based on the distorted data [5]
the figure). More recently, the data distortion approach has been abplie

In the second phase (Figure 2), each of the locally support@qPoolean association rules [6], [7]. Again, the idea is to
itemsets is tested to see if it is supported globally. In tyers, MCdify data values such that reconstruction of the values fo
the itemseABCis known to be supported at one or more site@nY individual transaction is difficult, but the rules leadnon
and each computes their local support. The first site chapsdS'€ distorted data are still valid. One interesting featafe
random valug, and adds t&® the amount by which its supportth's work is a flexible definition of privacy; e.g., the ahjlito
for ABC exceeds the minimum support threshold. This value §9'Tectly guess a value of "1" from the distorted data can be
passed to site 2, which adds the amount by which its suppbRSidered a greater threat to privacy than correctly lagrn

exceeds the threshold (note that this may be negative, asishd V- _ . )
in the figure.) This is passed to site three, which again adds' N€ data distortion approac_h add_resse_zs a pl|ffe_rent problem
its excess support. The resulting valug)(is tested using a ToM our work. The assumption with distortion is that the
secure comparison to see if it exceeds the Random vafe (values must be kept private from whoever is doing the mining.
If S0, itemsetABC is supported globally. We instead assume thebmeparties are allowed to seme

This gives a brief, oversimplified idea of how the meth08'c the data, just that no one is allowed to s the dat._’;\.
works. Section Ill gives full details. Before going into thd" réturm, we are able to get exact, rather than approximate,

details, we give background and definitions of relevant dagSults- . . .
mining and security techniques. The other approach uses cryptographic tools to build deci-

sion trees. [8] In this work, the goal is to securely build an
ID3 decision tree where the training set is distributed leetw
two parties. The basic idea is that finding the attribute that
There are several fields where related work is occurring. Wigaximizes information gain is equivalent to finding the at-
first describe other work in privacy-preserving data miningribute that minimizes the conditional entropy. The coiodial

Il. BACKGROUND AND RELATED WORK
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entropy for an attribute for two parties can be written as teansactions containX. The global support count ofX is
sum of the expression of the forfa; + v2) x log(vy + v2). given asX.sup = > | X.sup;. An itemsetX is globally
The authors give a way to securely calculate the expressiupportedif X.sup > s x (3., |DB;|). Global confidence
(v1 + v2) x log(v1 + v2) and show how to use this functionof a rule X = Y can be given ag X UY} .sup/X.sup.

for building the ID3 securely. This approach treats privacy The set of large itemsets ) consists of allk-itemsets
preserving data mining as a special case of secure mut-pathat are globally supported. The set of locally large iteimise
computation [9] and not only aims for preserving individuaLL,, consists of allk-itemsets supported locally at sit.
privacy but also tries to preserve leakage of any infornmati@r L,y = L) N LL, is the set of globally largé-itemsets
other than the final result. We follow this approach, but addr locally supported at sit&,;. The aim of distributed association
a different problem (association rules), and emphasize th¢e miningis to find the sets ;, for all £ > 1 and the support
efficiency of the resulting algorithms. A particular diféerce counts for these itemsets, and from this compute assotiatio
is that we recognize that some kinds of information can beles with the specified minimum support and confidence.
exchanged without violating security policies; secure timul A fast algorithm for distributed association rule mining is
party computation forbids leakage of any information othejfiven in Cheung et. al. [2]. Their procedure for fast disttésl
than the final result. The ability to share non-sensitiveadaining of association rules (FDM) is summarized below.
enables highly efficient solutions.

The problem of privately computing association rules in
vertically partitioned distributed data has also been addressed
[10]. The vertically partitioned problem occurs when each
transactionis split across multiple sites, with each site having
a different set of attributes for the entire set of transandi
With horizontal partitioning each site has a set of complete 2)
transactions. In relational terms, with horizontal partiy the
relation to be mined is the union of the relations at the sites
vertical partitioning, the relations at the individualesitmust
be joined to get the relation to be mined. The change in the
way the data is distributed makes this a much different bl
from the one we address here, resulting in a very different
solution.

1) Candidate Sets Generation Generate candidate sets
CGj) based onGL;(_1), itemsets that are supported
by the S; at the (k-1)-th iteration, using the classic a-
priori candidate generation algorithm. Each site gener-
ates candidates based on the intersection of globally
large (k-1) itemsets and locally large (k-1) itemsets.
Local Pruning: For eachX € CGjy), scan the
database) B; at S; to computeX.sup;. If X is locally
large S;, it is included in theL L, set. It is clear that

if X is supported globally, it will be supported in one
site.

Support Count Exchange LL;) are broadcast, and
each site computes the local support for the items in

UiLLi(k).
4) Broadcast Mining Results Each site broadcasts the
A. Mining of Association Rules local support for itemsets i; LL;(). From this, each

. - i site is able to computé ;.
The association rules mining problem can be defined as PUR)

follows: [1] Let I = {i1,is,...,in} be a set of items. Let The details of the above algorithm can be found in [2].
DB be a set of transactions, where each transacfiaa an
itemset such thaf’ C I. Given an itemsekX C [, a transaction
T contains X if and only if X C T. An association rule is
an implication of the formX = Y whereX C I,Y C I and Substantial work has been done on secure multi-party com-
X NY = 0. The ruleX = Y hassupports in the transaction putation. The key result is that a wide class of computations
databasé) B if s% of transactions ilD B containX UY. The can be computed securely under reasonable assumptions. We
association rule holds in the transaction databBde with give a brief overview of this work, concentrating on materia
confidence if ¢% of transactions inDB that contain X also that is used later in the paper. The definitions given here are
contains Y. An itemsefX with k items called k-itemset. The from Goldreich [9]. For simplicity, we concentrate on theotw
problem of mining association rules is to find all rules whogearty case. Extending the definitions to the multi-partyecas
support and confidence are higher than certain user specifigightforward.
minimum support and confidence. 1) Security in semi-honest modeA semi-honest party

In this simplified definition of the association rules, migpi follows the rules of the protocol using its correct inputt s
items, negatives and guantities are not considered. In tfiige to later use what it sees during execution of the pratoco
respect, transaction databaBé3 can be seen a8/1 matrix to compromise security. This is somewhat realistic in tha re
where each column is an item and each row is a transactigrarld because parties who want to mine data for their mutual
In this paper, we use this view of association rules. benefit will follow the protocol to get correct results. Als®

1) Distributed Mining of Association RulesThe above protocol that is buried in large, complex software can not be
problem of mining association rules can be extended €&sily altered.
distributed environments. Let us assume that a transactiorA formal definition of private two-party computation in
databasé) B is horizontally partitioned among sites (namely the semi-honest model is given below. Computing a function
S1,82,...,8,) whereDB = DB; UDB,; U...UDB, and privately is equivalent to computing it securely. The fotma
DB; resides at sideS; (1 < i < n). The itemsetX has proof of this can be found in Goldreich [9].
local support count ofX.sup; at site S; if X.sup; of the Definition 2.1: (privacy w.r.t. semi-honest behavior): [9]

B. Secure Multi-party Computation
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Let f: {0,1}" x {0,1}" — {0,1}" x {0,1}" be prob- C. Commutative Encryption
abilistic, polynomial-time functionality, wheré; (x, y)(resp.,
f2 (x,y)) denotes the first (resp., second) elemenf ¢f, y))
and letII be two-party protocol for computing.

Commutative encryption is an important tool that can be
used in many privacy-preserving protocols. An encryption
algorithm is commutative if the following two equations #ol

Let the yiew of the first (resp., second)' parﬂty duringy, any given feasible encryption keys, ..., K, € K, any
an execution of Il on (z,y), denoted view; (z,y) 1, in items domain}, and any permutations af ;.
(resp., wviewl (z,y)) be (z,r1,mi,...,m;)  (resp.,

(y,ra,m1,...,ms)) where r; represent the outcome of FEx, (...Ex, (M)...)=FEk, (...Ex, (M)...) (3)

the first (resp.,r2 second) party’s internal coin tosses, and ) 1
m,; represent the't message it has received. VM, M, € M such thath; My and for givenk, e < 5

The output of the first (resp., second) party during apr(Ex, (...Ex, (Mi)...)=FEg, (...Ex, (Ma)...)) <e¢

execution ofIl on (z,y) is denotedoutput!' (x,y) (resp., (4)
outputy (z,y)) and is implicit in the party’s view of the  These properties of commutative encryption can be used
execution. to check whether two items are equal without revealing them.
IT privately computes f if there exist probabilistic polynofor example, assume that party A has itemand party B has
mial time algorithms, denote#,, S, such that item ig. To check if the items are equal, each party encrypts
its item and sends it to the other party: Party A sehgs, (i)
{(S1 (2, f1 (2,9)), f2 (2,9} yeony =0 to B and party B send&, (i5) to A. Each party encrypts the

{(m'ew{l (z,y) , output (z, y)) }I " (1) received item with its own key, giv_ing p_arty Bk, (Ex,(iB))
R and party BEk, (Fk,(i4)). At this point, they can compare
the encrypted data. If the original items are the same, kmuat
{(fi (@), 82 (x, fr (@ 9))}e yeqony = 3 ensures that they have the same encrypted value. If they are
different, Equation 4 ensure that with high probabilityytitk
not have the same encrypted value. During this comparison,

where=C denotes computational indistinguishability. each site sees only the other site’s values in encrypted.form

_ . _.In addition to meeting the above requirements, we require
The above definition says that a computation is securetﬁat the encryption be secure. Specifically, the encrypat
the view of each party during the execution of the protoc%k '

{(outputy’ (z,y) , viewy (x,9))}, \cioy- @

) : . a set of items should reveal no information about the items
can be effectively simulated by the input and the output

emselves. Consider the following experiment. For any two

the party. This is not quite the same as saying that prlvaégts of items, we encrypt each item of one randomly chosen

information is protegted. .FOT example, if. “{VO parties use &t with the same key and present the resulting encrypted
secure protocol to mine distributed association rulescarse (.. .. the initial two sets to a polynomial-time adversary.

protogol still r_eveals thatif a particular F“'e is not suped by Loosely speaking, our security assumption implies thad thi
a particular site, and that rule appears in the globally eter olynomial-time adversary will not be able to predict which

rule set, then it must be supported by the other site. A s f the two sets were encrypted with a probability better than

can deduce this information by solely looking at its Iocall)él random guess. Under this security assumption, it can be

supported rules and the globally supported rules. On thero'[lghfown that resulting encrypted set is indistinguishableaby

hand, there is no way to deduce the exact support count %Iynomial adversary from a set of items that are randomly

some itemset by looking at the globally supported rljleSh\N;?hosen from the domain of the encryption; this fact is used in

three or more parf[ies, knowing a rule hollds globally revVediie proof of the privacy-preserving properties of our peolo
that at least one site supports it, but no site knows which s he formal definition of multiple-message semantic segurit

(other than, obviously, itself). In summary, a secure rpgtity can be found in [13]

protocol will not reveal more information to a particulantya Th : .

. ; : . ere are several examples of commutative encryption, per-
tha? ,th_e mftormgtiﬁn th‘? ctan be induced by looking at thﬁ%\ps the most famous being RSA [14] (if keys are not shared).
party’s |nPu and the oufput. i ____The appendix describes a how Pohlig-Hellman encryptioh [15

2) Yao's general two-party secure function evaluation: .o pe ysed to fulfill our requirements, as well as further

Yao's.general secure two-party e_valga'uon IS basgd ON §fscussion of relevant cryptographic details. The remexirad
pressing the functiorf (z,y) as a circuit and encrypting thethis paper is based on the definitions given above, and does

gates for secure evaluation [11]. With this protocol, anp-tw 4t require a knowledge of the cryptographic discussiomén t
party function can be evaluated securely in the semi-hon endix

model. To be efficiently evaluated, however, the functions
must have a small circuit representation. We will not give
details of this generic method, however we do use this generi
results for securely finding whethar> b (Yao’s millionaire We will now use the tools described above to construct a
problem). For comparing any two integers securely, Yaodistributed association rule mining algorithm that pressithe
generic method is one of the most efficient methods knowprivacy of individual site results. The algorithm given isr f
although other asymptotically equivalent but practicafigre three or more parties — the difficulty with the two-party case
efficient algorithms could be used as well [12]. is discussed in Section V.

IIl. SECUREASSOCIATIONRULE MINING
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A. Problem Definition Clearly, Protocol 1 finds the union without revealing which

Let i > 3 be the number of sites. Each site has a privai@mset belongs to which site. It is not, however, securesund
transaction databas®B;. We are given support thresholdthe definitions of secure multi-party computation. It rdgea
s and confidence: as percentages. The goal is to discovdR€ number of itemsets having common support between sites,
all association rules satisfying the thresholds, as defined©-9-, Sites 3, 5, and 9 all support some itemset. It does not
Section 1I-A.1. We further desire that disclosure be limite réveawhichitemsets these are, but a truly secure computation
No site should be able to learn contents of a transaction(@8 90od as giving all input to a “trusted party”) could
any other site, what rules are supported by any other siftot reveal even this count. Allowing innocuous information
or the specific value of support/confidence for any rule at af§akage (the number O_f ltemsets having common support)
other site, unless that information is revealed by knowtedy 2llows an algorithm that is sufficiently secure with much éow
one’s own data and the final result. E.g., if a rule is suppbrt&0st than a fully secure approach.
globally but not at one’s own site, we can deduce that at least we deem leakage of the number of commonly supported
one other site support the rule. Here we assume no collusiinsets as acceptable, we can prove that this method isesecu

(this is discussed further in Section IV.) under the definitions of secure multi-party computatione Th
idea behind the proof is to show that given the result, the
B. Method leaked information, and a site’s own input, a site can siteula

,\ﬁverything else seen during the protocol. Since the sinoulat
generates everything seen during execution of the pratticel
of LL, and the support count of items iBL ). We first §ite clearl)_/ learns nothing new from the protocol beyond the
give a method for finding the union of locally supporte(q]put provided to the simulator. One key IS that. the S|mulgto
itemsets without revealing the originator of the particuladoes not need to generate exactly what is seen in any particul
itemset. We then provide a method for securely testing if trﬁ-ﬂ”. of the protoco_l. The exact content of messages passed
support count exceeds the threshold. uring the protocol is dependent on tr_le random c_h0|<_:e of keys
1) Secure union of locally large itemsetdn the FDM the simulator must generate an equwalent dlstrlbut|.0|s_eba.
on random choices made by the simulator, to the distribution

algorithm (Section 1I-A.1), step 3 reveals the large itetmse ¢ : | i f th tocol. A f |
supported by each site. To accomplish this without revgalir? messages seen In reaj executions of the protocol. A forma
é)of that this proof technique shows that a protocol preser

hat h sit ts, instead h locally | . .
what each Site supports, We instead exchange focaly 1a jvacy can be found in [9]. We use this approach to prove

itemsets in a way that obscures the source of each item  Protocol 1 : v th . flocally | el
We assume a secure commutative encryption algorithm WHFF‘ rotocol - reveais only the union otfocally 1arge itetss
and a clearly bounded set of innocuous information.

negligible collision probability (Section 1I-C). ) . .
The main idea is that each site encrypts the locally supdort?1 Theorem 3.1.Rrot0col L prlvatgly compute; the union of
e locally large itemsets assuming no collusion, revegadin

itemsets, along with enough “fake” itemsets to hide the alctdt N i

number supported. Each site then encrypts the itemsets frg}ﬂSt the resu'_UizlLLi_(’“ and: .

other sites. In Phases 2 and 3, the sets of encrypted itemsefy Sizé Of intersection of locally supported itemsets be-
are merged. Since Equation 3 holds, duplicates in the lpcall _ tWeen any subset of odd numbered sites,

supported itemsets will be duplicates in the encryptedses) ~ 2) Size of intersection of locally supported itemsets be-
and can be deleted. The reason this occurs in two phases is (Ween any subset of even numbered sites, and

that if a site knows which fully encrypted itemsets come from 3) Number of itemsets supported by at least one odd and

which sites, it can compute the size of the intersection betw one even site. o .
any set of sites. While generally innocuous, if it has this Proof: Phase 0Since no communication occurs in Phase

information for itself, it can guess at the itemsets supgmbrtO: €ach site can simulate its view by running the algorithm on

by other sites. Permuting the order after encryption in Bha€s OWn input. _ _

1 prevents knowing exactly which itemsets match, howeverPhase 1At the first step, each site setde; (). The size
separately merging itemsets from odd and even sites in Ph@5HIS Set is the size of the global candidate Gét ), which

2 prevents any site from knowing the fully encrypted values k”‘?W” tp ea_\ch S't_e' Assumm_g the S_GCP“_W Of encryption,
of its own itemsets. Phase 4 decrypts the merged frequeﬁ@Ch item in this set is computatlonally |n(_1l|st|.ngwsheft.11:en
itemsets. Commutativity of encryption allows us to decryp"} number chosen from a uniform distribution. A site can

all itemsets in the same order regardless of the order thEyrefore simulate the set using a uniform random number

were encrypted in, preventing sites from tracking the S@urgeneorlator. This same argument holds for each subsequent
round.

of each itemset. _ .
The detailed algorithm is given in Protocol 1. In the protoco Phase 2:In Phase 2, site 0 gets the fully encrypted sets of

F represents the data that can be used as fake itemsigdnsets from the other even sites. Assuming that qach site
|LLe;y| represents the set of the encrypteifemsets at site kr;]c_)v:]sftrlmle source c()jf a received message, site (;),W'” know
i. E; is the encryption and; is the decryption by sité. which fully encrypted seL Le(y, contains encrypted itemsets
from which (odd) site. Equal itemsets will nhow be equal in
"An altenative would be to use an anonymizing protocol [1]send encrypted form. Thus, site 0 learns if any odd sites had lpcal
all fully encrypted itemsets to Site 0, thus preventing Sitbfom knowing di . ill build . |
which were it's own itemsets. The separate odd/even merngirfigwer cost supp(_)rte- |tem§ets n c.ommon..We_ can _SU uild a simulator
and achieves sufficient security for practical purposes. for this view, using the information in point 1 above. If teer

Our method follows the general approach of the FD
algorithm [2], with special protocols replacing the broasks
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are k itemsets known to be common among al/2| odd itemsets “leak” then becomes an upper bound rather than
sites (from point 1), generaterandom numbers and put themexact, at an increased cost in the number of candidates that
into the simulated. Le, (). Repeat for eachN/2| —1 subset, must be checked for global support. While not truly zero-
etc., down ta2 subsets of the odd sites. Then fill eache;;) knowledge, it reduces the confidence (and usefulness) of the
with randomly chosen values until it reaches sjg&x;;|. leaked knowledge of the number of jointly supported itemiset
The generated sets will have exactly the same combinatidnspractical terms, revealing the size (but not content) of
of common items as the real sets, and sinceviilaesof the intersections between sites is likely to be of little comcer
items in the real sets are computationally indistinguishab 2) Testing support threshold without revealing support
from a uniform distribution, their simulation matches tlealr count: Protocol 1 gives the full set of locally large itemsets

values. LLy. We still need to determine which of these itemsets
The same argument holds for site 1, using information froere supported globally. Step 4 of the FDM algorithm forces
point 2 to generate the simulator. each site to reveal its own support count for every itemset in

Phase 3:Site 1 eliminates duplicates from theLe;x) LL. All we need to know is for each itemséf € LL ),
to generateRuleSet;. We now demonstrate that Site O caris X.sup > s% x |DB|? The following allows us to reduce
simulate RuleSet;. First, the size ofRuleSet; can be sim- this to a comparison against a sum of local values ékeess
ulated knowing point 2. There may be itemsets in comma@upportat each site):
betweenRuleSety and RuleSet;. These can be simulated n
using point 3: If there aré items in common between even X.sup > s%|DB|=sx (Z |DB;|)
and odd sites, site 0 seledtsrandom items fromRuleSet, )
and inserts them int&uleSet;. RuleSet; is then filled with n n
randomly generated values. Since the encryption guammntee ZX-SUpi 5 % (Z |DB;l)

=1 =1
0

Y

that the values are computationally indistinguishablenfra
uniform distribution, and the set sizB8uleSeto|, | RuleSet,],
and|RuleSetoN RuleSet;| (and thug RuleSet|) are identical Z(X'S“pi —s*|DBil)
in the simulation and real execution, this phase is secure. “=!

Phase 4:Each site sees only the encrypted items after Therefore, checking for support is equivalent to checking i
decryption by the preceding site. Some of these may B€; ,(X.sup; — s+ |DB;|) > 0. The challenge is to do this
identical to items seen in Phase 2, but since all items muwgithout revealingX.sup; or |DB;|. An algorithm for this is
be in the union, this reveals nothing. The simulator for siigiven in Protocol 2.

i is built as follows: take the values generated in Phase 2The first site generates a random numbefor each itemset
step N — 1 — 4, and place them in th&uleSet. Then insert X, adds that number to it§X.sup; — s * |DB;|), and sends
random values inRuleSet up to the proper size (calculatedit to the next site. (All arithmetic isnodm > 2 « |DB|, for

as in the simulator for Phase 3). The values we have not seéeasons that will become apparent later.) The random number
before are computationally indistinguishable from datarfra masks the actual excess support, so the second site learns
uniform distribution, and the simulator includes the valuee nothing about the first site’s actual database size or stippor
have seen (and knew would be there), so the simulated vidWe second site adds its excess support and sends the value
is computationally indistinguishable from the real values on. The random value now hides both support counts. The last

The simulator for siteN — 1 is different, since it learns site in the change now hds;" | (X.sup; — s * [DB;|) +
RuleSet (). To simulate what it sees in Phase 4, ske- 1  (mod m). Since the total database siZeB| < m/2, negative
takes each item iRuleSet(;y, the final result, and encryptssummation will be mapped to some number that is bigger then
it with Ey_1. These are placed iRuleSet. RuleSet is then or equal tom/2. (—k = m — k mod m.) The last site needs
filled with items chosen fronf’, also encrypted withZy_;. to testif this sum minug, (mod m) is less thenn/2. This
Since the choice of items fro is random in both the real can be done securely using Yao’s generic method [11]. Glearl
and simulated execution, and the real items exactly mattis algorithm is secure as long as there is no collusioncas n
in the real and simulation, th&uleSet site N — 1 receives site can distinguish what it receives from a random number.
in Phase 4 is computationally indistinguishable from tha reAlternatively, the first site can simply send to the last site.
execution. The last site learns the actual excess support, but does not

Therefore, we can conclude that above protocol is privackgarn the support values for any single site. In additionyef
preserving in the semi-honest model with the stated assungpnsider the excess support to be a valid part of the global
tions. m result, this method is still secure.

The information disclosed by points 1-3 could be relaxed to Theorem 3.2:Protocol 2 privately computes globally sup-
the number of itemsets support lysite, 2 sites, ...,N sites ported itemsets in the semi-honest model.
if we assume anonymous message transmission. The number Proof: To show that Protocol 2 is secure under the
of jointly supported itemsets can also be masked by allowisgmi-honest model, we have to show that a polynomial time
sites to inject itemsets that are not really supported lpcalsimulator can simulate the view of the parties during the
These fake itemsets will simply fail to be globally suppdrte execution of the protocol, based on their local inputs ard th
and will be filtered from the final result when global suppsrtiglobal result. We also use the general composition theorem
calculated as shown in the next section. The jointly sugabrtfor semi-honest computation [9]. The theorem says that if

n

Y
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securely reduces tg, and f is computed securely, then the|L L;,|, then sitei has learned a subset of the itemsets at site
computation off(g) is secure. In our contexf, is the secure i+ 1.

comparison of two integers, ang is Protocol 2. First, we  Collusion can be a problem for our second protocol, because
show that the view of any site during the addition phase caite « + 1 and site: — 1 can collude to reveal sité’s

be efficiently simulated given the input of that site and thexcess support value. This protocol can be made resilient
global output. Sitei uniformly chooses a random integer, against collusions using a straightforward technique ftben

0 < s < m. Next, we show that view and the output of theryptographic community. The basic idea is each party éwid
simulator are computationally indistinguishable by shayvi its input inton parts, and send the — 1 pieces to different
that the probability of seeing a givenin both is equal. In sites. To reveal any parties input,— 1 party must collude.
the following equationsg,. is the random number added afThe following is a brief summary of the protocol, details can
the beginning of Protocol 2) < X, < m. The arithmetic be found in [17]. (A slightly more efficient version can be
is assumed to berod m. Also note thatX.sup; is fixed for found in [18].)

each site. 1) Each sitei randomly chooses elements such that; =
> iy zi,j mod m wherez; is the input of sitei. Sites
k=i—1 sendsz; ; to site ;.
Pr[VIEW[rolo = | = Pr|z, =x— Y  X.supi| 2) Everysitei computess; = >
k=1 w; to siten.
1 3) Siten computes the final result;" ; w; mod m
m The above protocol can easily be used to improve our
Prs, = z] second protocol. Assume site is the starting site in our
= Pr[Simulator; = ] protocol and siteV — 1 is the last site. Choose. such that

Therefore, what each site sees during the addition phase |5|DB| < m. Setzy = X.supy — 5% dy + 2, mod m and

indistinguishable from that simulated with a random numbé&t ~ X.sup; — s x d; mod m, i # 1. After this point, the
enerator. During the comparison phase we can use the genel?love protocol can be used to fidd;_, (X.sup; — s * d;) +
g od m. At the end, one secure addition and comparison

secure method, so from the composition theorem we conclud"
done as in Protocol 2 to check if itemsa&t is globally
that Protocol 2 is secure in the semi-honest model. = supported

zj,; mod m and sends

C. Securely Finding Confidence of a Rule V. DIFFICULTIES WITH THE TWO-PARTY CASE

To find if the confidence of a ruleX = Y is higher
than the given confidence threshaldwe have to check if
M > c. Protocol 2 only revealsf an itemset is
supported it does not reveal the support count. The foﬂgw
equations show how to securely compute if confidence exce%
a threshold using Protocol 2. The support{cf UY} .sup;
is denoted asX'Y.sup;.

The two party case is problematic. First, globally supmmbrte
itemsets that are not supported at one site are known to be
supported at the other site — this is an artifact of the result
otocol 1 is worse yet, as itemsets that are supported at

site but not supported globally will become known to
the other site. To retain any privacy, we must dispense with
local pruning entirely (steps 1 and 2 of the FDM algorithm)
{XUY}.sup . Z:f XY.sup; - and compute support for all candidateﬂG(k) (as computed
" Ysup ¢ = m Z¢ from L;,_,)). Second, the secure comparison phase at the end

i=1 ! of the protocol 2 cannot be removed, as otherwise the support
of one site is disclosed to the other. It is difficult to impeov
on this, as evidenced by the following theorem.

Theorem 5.1:For itemset X, to check whether
0 M > k can be securely computed if and
only |f Yaos millionaire problem securely solved for anaity

Since each site knowXY.sup; and X.sup;, we can easily aand b.

use Protocol 2 to securely calculate the confidence of a rule.

= ZXY.supi > cx (Z X.sup;)
i=1 i=1

= (XY.sup; — cx X.sup;) >
i=1

Proof: Checklngw > k is equivalent to
checking(X.sup; — kxdy) > (k * ds — X.sup2). If we have
a = X.supy — kxdy andb = k xdy — X.sups, we have an
Collusion in Protocol 1 could allow a site to know its owrinstance of Yao’s millionaire problem far andb. Assume we
frequent itemsets after encryption by all parties. Usirig,th  have a secure protocol that computes whether X is supported
can learn the size of the intersection between its own itesnsglobally or not for arbitraryX.sup;, X.sups, di, d2 and k.
and those of another party. Specifically, if siteolludes with Take X.supy = 3a,d; = 4a, X.sups = b,dy = 4« b and
sitei—1, it can learn the size of its intersection with site1. &k = 0.5. This is equivalent to checking whether> b. ]
Collusion between sites 0 and 1 exacerbates the problem, ashe above theorem implies that if we develop a method that
they know encrypted values of itemsets for all odd (eveeksit can check securely if an itemset is globally supported fer th
This may reveal the actual itemsets]ifL;) N LL;1()| = two party case in semi-honest model, it is equivalent to figdi

IV. SECURITY AGAINST COLLUSION
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a new solution to Yao’s millionaire problem. This problem idinal secure comparison requires a computation cos?(ofJ;
well studied in cryptography and to our knowledge, there BL;,|  m * t3).
no significantly faster way for arbitrary andb than using the  As discussed in Section V, using only Protocol 2 directly
generic circuit evaluation solution. on CGy is fully secure assuming the desired result includes
It is worth noting that eliminating local pruning and usingall globally large itemsets. The communication costs bezom
Protocol 2 to compute the global support of all candidates @(m = |CG,| *+ N), but because the communication in
CGyy is secure under the definitions of secure multi-parfyrotocol 2 is sequential the communication time is roughly
computation, for two or more parties. The problem with ththe same as the full protocol. The encryption portion of the
two-party case is that knowing a rule is supported globaltyomputation cost becoméy(|CG ;| xm xt3) for the secure
that is not supported at one’s own site reveals that the otlwmmparison at the end of the protocol. However, there is a
site supports that rule. This is true no matter how secuseabstantial added cost in computing the support, as we must
computation, it is an artifact of the result. Thus, extegdincompute support for al|CG ;| itemsets. This is generally
to secure computation in the two party case is unlikely to euch greater than thg'G; ;) U (U; LL;,)| required under

of use. the full algorithm (or FDM), as shown in [3]. It is reasonable
to expect that this cost will dominate the other costs, as it i
VI. COMMUNICATION AND COMPUTATION COSTS linear in |DB.

We now give cost estimates for association rule mining
using the method we have presented. The number of siteAisOptimizations and Further Discussion

N. Let the total number of locally large candidate itemsets behe cost of “padding’L Le,, from F to avoid disclosing

|CGiw|, and the number of candidates that can be directiife nymper of local itemsets supported can add significamtly
generated by the globally large (k-1) itemsets [68()|  the communication and encryption costs. In practice kfor
(= apriori_gen(L-1))). The excess suppoX.sup; — |DB;| | |CG 1| is likely to be of reasonable size. HowevErG ;)|
of an itemsetX can be represented i = [logy (2 + |[DB|)] ~ could be very large, as it is dependent only on the size of the
bits. Lgtt be the number of bits in the output of the encryptiogymain of items, and is not limited by already discovered
of an itemset. A lower bound ohis log>(|CG ) |); based On fequent itemsets. If the participants can agree on an upper
currer21t encryption standards= 512 is a more appropriaté o, nd on the number of frequent items supported at any one
values . o site that is tighter than “every item may be frequent” withou
The total bit-communication cost for Protocol 1 @&{ + jngpecting the data, we can achieve a corresponding decreas
|CG )|+ N?), however, as much of this happens in parallgh the costs with no loss of security. This is likely to be faés
we can divide by to get an estimate of the communication, nractice; the very success of the a-priori algorithm iseaa
time. For comparison, the FDM algorithm requi@¢l « | U; o the assumption that relatively few items are frequent.
LLix| * N) for the corresponding steps, with effectively theyiernatively, if we are willing to leak an upper bound on the
same reduction in time due to parallelism (achieved through nber of itemsets supported at each site, each site cais set i
broadcast as opposed to simultaneous point-to-pointMi&AS o\ ypper bound and pad only to that bound. This can be done
sions). The added cost of Protocol 1 is due to paddifg;(x) for every round, not just = 1. As a practical matter, such an
to hide the actual number of local itemsets supported, ad },,55ch would achieve acceptable security and would ehang
increase in bits required to reptresegt encrypted item3és. the |CG 4, | factor in the communication and encryption costs
worst-case value folC G | is ("M “OMN SI28 however, of protocol 1 toO(| U LL;y|), equivalent to FDM.
the optimizations that make the a-priori algorithm effeeti  another way to limit the encryption cost of padding is to
in practice would fail for such largeC'G x| In practice, pad randomly from the domain of the encryption output rather
only in the first round £ = 1) will this padding pose a than encrypting items fron¥. Assuming|domainofE;| >>
high cost; [CGy)| = the size of the domain of items. IN|gomaino fitemsets|, the probability of padding with a value
later iterations, the size ofiC'G x| will be much closer to that decrypts to a real itemset is small, and even if this @ccu
|LLe;()|. The computation cost increase due to encryptigpwill only result in additional itemset being tested forgort
is O(t*  |CG )| * N?), wheret is the number of bits in the jn protocol 2. When the support count is tested, such “false
encryption key. Here® represents the bit-wise cost of modulapits” will be filtered out, and the final result will be correct
exponentiation. The comparison phase at the end of protocol 2 can be
Protocol 2 requiresO(m « | Ui LLg| * (N + 1)) bits  a1s0 removed, eliminating th®(m * | U; LL;)| * t) bits
of communication. Thet factor is for the secure circuit of communication and)(| U; LLjy| * m * £3) ‘encryption
evaluations between sitéé — 1 and0 required to determine if ~yst This reveals the excess support for each itemseticac
each itemset is supported. FDM actually requires an aditio gppjications may demand this count as part of the result for
factor of N due to the broadcast of local support instead lobally supported itemsets, so the only information |ehise
point-to-point communication. However, the broadcastiites ihe support counts for itemsets i L L) — Lx). As these
in a single round instead aN rounds of our method. The cannot be traced to an individual site, this will generally b

i in si acceptable in practice.
°The worst-case bound OCG 1y is gem do]:nam SIZ€ + = 512 can hp p. b d h . h I
represent such worst-case itemsets for 50 million posiiéies andk = 20, The cost estimates are based on the assumption that a

adequate for most practical cases. frequent itemsets (even l-itemsets) are part of the reult.
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exposing the globally frequent 1-itemsets is a problem, tlydven procedures to mine distributed association rules on
algorithm could easily begin with 2-itemsets (or largerhil® horizontally partitioned data. We have shown that distedu
the worst-case cost would be unchanged, there would be association rule mining can be done efficiently under reason
impact in practical terms. Eliminating the pruning of gltpa able security assumptions.

infrequent 1-itemsets would increase the sizeCd;,) and We believe the need for mining of data where access is
thus LL;(5), however, local pruning of infrequent 1-itemsetsestricted by privacy concerns will increase. Exampletuithe
should make the sizes manageable. More critical is the imp&oowledge discovery among intelligence services of differ
on |CG(y)|, and thus the cost of padding to hide the numbent countries and collaboration among corporations withou
of locally large itemsets. In practice, the size @) will revealing trade secrets. Even within a single multi-nation
rarely be the theoretical limit O(Item domain Slzﬁ but this company, privacy laws in different jurisdictions may preve

worst-case bound would need to be used if the algorithm begfifring individual data. Many more examples can be imagined
with finding 2-itemsets (the problem is worse for> 2). A We would like to see secure algorithms for classification,
practical solution would again be to have sites agree onchiStering, etc. Another possibility is seclapproximatedata
reasonable upper bound for the number of locally supportBdning algorithms. Allowing error in the results may enable
k-itemsets for the initialk, revealing some information to more.efficient algorithms that maintain the desired level of
substantially decrease the amount of padding needed. security.

The secure multi-party computation definitions from the
cryptography domain may be too restrictive for our purposes
_ o ] ) A specific example of the need for more flexible definitions

While achieving privacy comes at a reasonable increasedgn pe seen in Protocol 1. The “padding” &eis defined to be
communication cost, what about the cost of encryption? Asiginite, so that the probability of collision among thesenis
test of this, we implemented Pohlig-Hellman, describech tis o This is impractical, and intuitively allowing collsis
appendix. The encryption time per itemset represented Withyong the padded itemsets would seem more secure, as the
t = 512 bits was 0.00428 seconds on a 700MHz Pentiumgtormation leaked (itemsets supported in common by sebset
under Linux. Using this, and the results for the reportedin [ of the sites) would become an upper bound rather than an exact
we can estimate the cost of privacy-preserving associatilen ,a1ye. However, unless we know in advance the probability of
mining on the tests in [3]. o _ collision among real itemsets, or more specifically we cdn se

The first set of experiments described in [3] contain suffine size of " so the ratio of the collision probabilities iff
cient detail for us to estimate the cost of encryption. Thegg real itemsets is constant, the protocol is less secuterun
experiments used three sites, an item domain size of 10QQcyre multi-party communication definitions. The probiem
and a total database size of 500k transactions. that knowing the probability of collision among items chose

The encryption cost for the initial round: (= 1) would fom £ enables us to predict (although generally with low
be 4.28 seconds at each site, as the padding need only bgdgracy) which fully encrypted itemsets are real and which
the domain size of 1000. Wh(:!)e finding two-itemsets coulgre fake. This allows a probabilistic upper bound estimate o
potentially be much worse(1%") = 499500), in practicé he number of itemsets supported at each site. It also aiows
|CG 2)| is much smaller. The experiment in [3] reports a tota}rspapilistic estimate of the number of itemsets suppairied
number of candidate sets ;.. |C'G(x) ) of just over 100,000 common by subsets of the sites that is tighter than the number
at 1% support. This gives a total encryption cost of aroung clisions found in theRuleSet. Definitions that allow us
430 seconds per site, with all sites encrypting simultaslou 1, trade off such estimates, and techniques to prove pristoco
This assumes none of the optimizations of Section VI-Ag|ative to those definitions, will allow us to prove the pgy
if the encryption cost at each site could be cut|fdli)| of protocols that are practically superior to protocols tireg
by eliminating the cost of encrypting the padding items, th&ict secure multi-party computation definitions.
encryption cost would be cut to 5% to 35% of the above on \vigre suitable security definitions that allow parties to
the datasets used in [3]. _choose their desired level of security are needed, allowing

There is also the encryption cost of the secure comparisgficient solutions that maintain the desired security. Some
at the end of Protocol 2. Although the data reported in [3},gqested directions for research in this area are givetoin [
does not give us the exact size OfLL; ), it appears to be one |ine of research is to predict the value of information fo
on the order of 2000. Based on this, the cost of the secyearticular organization, allowing tradeoff between kisare
comparisonO(| Ui LLyx)| * m * t*), would be about 170 ¢oqt computation cost, and benefit from the result. We belie

seconds. o _ 'some ideas from game theory and economics may be relevant.
The total execution time for the experiment reported in |, summary, it is possible to mine globally valid results

[3] was approximately 800 seconds. Similar numbers hold gbm distributed data without revealing information thae
different support levels; the added cost of encryption @@l ,5mises the privacy of the individual sources. Such pyivac

B. Practical Cost of Encryption

worst increase the total run time by roughly 75%. preserving data mining can be done with a reasonable irereas
in cost over methods that do not maintain privacy. Continued
VIl. CONCLUSIONS ANDFURTHER WORK research will expand the scope of privacy-preserving data

Cryptographic tools can enable data mining that woulthining, enabling most or all data mining methods to be applie
otherwise be prevented due to security concerns. We hamesituations where privacy concerns would appear to stri
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such mining. We present the approach from [20] as an example; any

secure encryption scheme that satisfies Equations 3 and 4

APPENDIX
CRYPTOGRAPHICNOTES ONCOMMUTATIVE ENCRYPTION

The Pohlig-Hellman encryption scheme [15] can be used
a commutative encryption scheme meeting the requiremenq
of Section 1I-C. Pohlig-Hellman works as follows. Given a
large primep with no small factors ofp — 1, each party
chooses a random d pair such that xd =1 (mod p—1).
The encryption of a given messagd is M¢ (mod p).
Decryption of a given ciphertext' is done by evaluating'®
(mod p). C4 = Med
theorem,M ¢4 = M +FP=1) = M (mod p).

It is easy to see that Pohlig-Hellman with shagesiatisfies
equation 3. Let us assume that thereauifferent encryption

and decryption pairg¢;,d1), . . ., (en, dy)). For any permuta- g

tion functioni, j andE = ey xea*. . .xe, = €;, %€, ...€;, =
€y * €y ...€;,  (modp—1):
2
Ee, (... B, (M)...) [2]
= (. (M (mod p))“n1 (mod p))...)*s (mod p))
_ Mein*einfr“*ei] (mod p)
= MF (mod p) 3]
— Me]"n*e]‘n—l"'*ejl (HlOd p)
4]
= E (...E, (M)...)

Equation 4 is also satisfied by the Pohlig-Hellman encryp-
tion scheme. LetM;, My € GF(p) such thatM; # M,. [l
Any order of encryption by all parties is equal to evaluating
gth power mod p of the plain text. Let us assume that after
encryptionsM; and M, are mapped to the same value. This
implies thatM{” = My’ (mod p). By exponentiating both (g,
sides withD = dy *xdy x ... xd, (modp — 1), we get
M, = M, (mod p), a contradiction. (Note thak « D =
e1 ke k...ke,kxdixdo*x...dy, =e1xdy...ep*xd, =1
(mod p — 1).) Therefore, the probability that two different [7]
elements map to the same value is zero.

Direct implementation of Pohlig-Hellman is not secure.
Consider the following example, encrypting two valueand
b, whereb = a2. E.(b) = E.(a?) = (a®)° (mod p) = (a®)?
(mod p) = (E.(a))® (mod p). This shows that given two
encrypted values, it is possible to determine if one is thesg [9]
of the other (even though the base values are not revealed.)
This violates the security requirement of Section II-C. 10

Huberman et al. provide a solution [20]. Rather than en-
crypting items directly, a hash of the items is encrypted.
The hash occurs only at the originating site, the second and
later encryption of items can use Pohlig-Hellman directly11]
The hash breaks the relationship revealed by the encryption
(e.g.,a = b3). After decryption, the hashed values must bgz
mapped back to the original values. This can be done by
hashing the candidate itemsets (f'G(;) to build a lookup
table, anything not in this table is a fake “padding” itemset”!
and can be discardéd.

(8]

[14]
3A hash collision, resulting in a padding itemset mapping ndtamset in
the table, could result in an extra itemset appearing in thieru This would
be filtered out by Protocol 2; the final results would be cdrrec

can be used in our protocols. The above approach is used to
generate the cost estimates in Section VI-B. Other appesach
,rapd further definitions and discussion of their security ba

2 ynd in [21]-[24]
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Protocol 2 Finding the global support counts securely

Require: N > 3 sites numbered..N — 1, m > 2 x |DB]
rule_set = ()
at site 0:
for eachr € candidate_set do
choose random integer, from a uniform distribution
over0..m — 1,
t =r.sup; —s*|DB;|+ . (mod m);
rule_set = rule_set U {(r,t)};
end for
sendrule_set to site 1 ;
for i=1to N -2 do
for each(r,t) € rule_set do
t =r.sup; —s*|DB;|+t (mod m);
rule_set = rule_set — {(r,t)} U{(r,t)} ;
end for
sendrule_set to sitet + 1 ;
end for
at site N-1:
for each(r,t) € rule_set do
t=r.sup; —s*|DB;| +t (mod m);
securely compute ift — ) (mod m) < m/2 with the
site 0;{ Site 0 knowsz, }
if (t—xz,) (modm)<m/2 then
multi-castr as a globally large itemset.
end if
end for
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