
2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, TO APPEAR

Privacy-preserving Distributed Mining of
Association Rules on Horizontally Partitioned Data

Murat Kantarcıoǧlu and Chris Clifton,Senior Member, IEEE

Abstract— Data mining can extract important knowledge from
large data collections – but sometimes these collections are split
among various parties. Privacy concerns may prevent the parties
from directly sharing the data, and some types of information
about the data. This paper addresses secure mining of association
rules over horizontally partitioned data. The methods incorporate
cryptographic techniques to minimize the information shared,
while adding little overhead to the mining task.

Index Terms— Data Mining, Security, Privacy

I. I NTRODUCTION

Data mining technology has emerged as a means of identi-
fying patterns and trends from large quantities of data. Data
mining and data warehousing go hand-in-hand: most tools
operate by gathering all data into a central site, then running
an algorithm against that data. However, privacy concerns
can prevent building a centralized warehouse – data may
be distributed among several custodians, none of which are
allowed to transfer their data to another site.

This paper addresses the problem of computing associa-
tion rules within such a scenario. We assume homogeneous
databases: All sites have the same schema, but each site has
information on different entities. The goal is to produce asso-
ciation rules that hold globally, while limiting the information
shared about each site.

Computing association rules without disclosing individual
transactions is straightforward. We can compute the global
support and confidence of an association ruleAB ⇒ C
knowing only the local supports ofAB and ABC, and the
size of each database:

supportAB⇒C =

∑sites
i=1 support countABC(i)
∑sites

i=1 database size(i)

supportAB =

∑sites
i=1 support countAB(i)
∑sites

i=1 database size(i)

confidenceAB⇒C =
supportAB⇒C

supportAB

Note that this doesn’t require sharing any individual transac-
tions. We can easily extend an algorithm such as a-priori [1]

The authors are with the Department of Computer Sciences, Purdue
University, 250 N. University St, W. Lafayette, IN 47907.
E-mail: kanmurat@cs.purdue.edu, clifton@cs.purdue.edu.

Manuscript received 29 Jan. 2003; revised 11 Jun. 2003, accepted 1 Jul.
2003.

c©2003 IEEE. Personal use of this material is permitted. However, permis-
sion to reprint/republish this material for advertising orpromotional purposes
or for creating new collective works for resale or redistribution to servers or
lists, or to reuse any copyrighted component of this work in other works must
be obtained from the IEEE.

to the distributed case using the following lemma: If a rule
hassupport > k% globally, it must havesupport > k% on
at least one of the individual sites. A distributed algorithm for
this would work as follows: Request that each site send all
rules with support at leastk. For each rule returned, request
that all sites send the count of their transactions that support
the rule, and the total count of all transactions at the site.
From this, we can compute the global support of each rule,
and (from the lemma) be certain that all rules with support at
leastk have been found. More thorough studies of distributed
association rule mining can be found in [2], [3].

The above approach protects individual data privacy, but
it does require that each site disclose what rules it supports,
and how much it supports each potential global rule. What
if this information is sensitive? For example, suppose the
Centers for Disease Control (CDC), a public agency, would
like to mine health records to try to find ways to reduce
the proliferation of antibiotic resistant bacteria. Insurance
companies have data on patient diseases and prescriptions.
Mining this data would allow the discovery of rules such
as Augmentin&Summer ⇒ Infection&Fall, i.e., people
taking Augmentin in the summer seem to have recurring
infections.

The problem is that insurance companies will be concerned
about sharing this data. Not only must the privacy of patient
records be maintained, but insurers will be unwilling to release
rules pertaining only to them. Imagine a rule indicating a high
rate of complications with a particular medical procedure.If
this rule doesn’t hold globally, the insurer would like to know
this – they can then try to pinpoint the problem with their
policies and improve patient care. If the fact that the insurer’s
data supports this rule is revealed (say, under a Freedom of
Information Act request to the CDC), the insurerer could be
exposed to significant public relations or liability problems.
This potential risk could exceed their own perception of the
benefit of participating in the CDC study.

This paper presents a solution that preserves such
secrets – the parties learn (almost) nothing beyond
the global results. The solution is efficient: The addi-
tional cost relative to previous non-secure techniques is
O(number of candidate itemsets ∗ sites) encryptions, and
a constant increase in the number of messages.

The method presented in this paper assumes three or more
parties. In the two-party case, knowing a rule is supported
globally and not supported at one’s own site reveals that the
other site supports the rule. Thus, much of the knowledge
we try to protect is revealed even with a completely secure
method for computing the global results. We discuss the two-

KANTARCIOǦLU AND CLIFTON 3

E1(C)

E3(E1(C))E2(E3(E1(C))) Site 2
D

Site 1
C

Site 3
C

E2(E3(C))
E2(E3(D))

E3(C)
E3(D)

C
D

Fig. 1. Determining global candidate itemsets

party case further in Section V. By the same argument, we
assume no collusion, as colluding parties can reduce this to
the two-party case.

A. Private Association Rule Mining Overview

Our method follows the basic approach outlined on Page 2
except that values are passed between the local data mining
sites rather than to a centralized combiner. The two phases
are discovering candidate itemsets (those that are frequent on
one or more sites), and determining which of the candidate
itemsets meet the global support/confidence thresholds.

The first phase (Figure 1) uses commutative encryption.
Each party encrypts its own frequent itemsets (e.g., Site 1
encrypts itemsetC). The encrypted itemsets are then passed
to other parties, until all parties have encrypted all itemsets.
These are passed to a common party to eliminate duplicates,
and to begin decryption. (In the figure, the full set of itemsets
are shown to the left of Site 1, after Site 1 decrypts.) This
set is then passed to each party, and each party decrypts each
itemset. The final result is the common itemsets (C andD in
the figure).

In the second phase (Figure 2), each of the locally supported
itemsets is tested to see if it is supported globally. In the figure,
the itemsetABC is known to be supported at one or more sites,
and each computes their local support. The first site choosesa
random valueR, and adds toR the amount by which its support
for ABCexceeds the minimum support threshold. This value is
passed to site 2, which adds the amount by which its support
exceeds the threshold (note that this may be negative, as shown
in the figure.) This is passed to site three, which again adds
its excess support. The resulting value (18) is tested using a
secure comparison to see if it exceeds the Random value (17).
If so, itemsetABC is supported globally.

This gives a brief, oversimplified idea of how the method
works. Section III gives full details. Before going into the
details, we give background and definitions of relevant data
mining and security techniques.

II. BACKGROUND AND RELATED WORK

There are several fields where related work is occurring. We
first describe other work in privacy-preserving data mining,

Site 3
ABC: 20

DBSize = 300

Site 1
ABC: 5

DBSize = 100

Site 2
ABC: 6

DBSize=200

R+count-5%*DBsize
= 17+5-5%*100R=17

17+6-5%*20013+20-5%*300

ABC: Yes!

17

13

18 ≥≥≥≥ R?

Fig. 2. Determining if itemset support exceeds 5% threshold

then go into detail on specific background work on which this
paper builds.

Previous work in privacy-preserving data mining has ad-
dressed two issues. In one, the aim is preserving customer
privacy by distorting the data values [4]. The idea is that
the distorted data does not reveal private information, and
thus is “safe” to use for mining. The key result is that the
distorted data, and information on the distribution of the
random data used to distort the data, can be used to generate
an approximation to the original datadistribution, without
revealing the original datavalues. The distribution is used to
improve mining results over mining the distorted data directly,
primarily through selection of split points to “bin” continuous
data. Later refinement of this approach tightened the bounds
on what private information is disclosed, by showing that the
ability to reconstruct the distribution can be used to tighten
estimates of original values based on the distorted data [5].

More recently, the data distortion approach has been applied
to boolean association rules [6], [7]. Again, the idea is to
modify data values such that reconstruction of the values for
any individual transaction is difficult, but the rules learned on
the distorted data are still valid. One interesting featureof
this work is a flexible definition of privacy; e.g., the ability to
correctly guess a value of ‘1’ from the distorted data can be
considered a greater threat to privacy than correctly learning
a ‘0’.

The data distortion approach addresses a different problem
from our work. The assumption with distortion is that the
values must be kept private from whoever is doing the mining.
We instead assume thatsomeparties are allowed to seesome
of the data, just that no one is allowed to seeall the data.
In return, we are able to get exact, rather than approximate,
results.

The other approach uses cryptographic tools to build deci-
sion trees. [8] In this work, the goal is to securely build an
ID3 decision tree where the training set is distributed between
two parties. The basic idea is that finding the attribute that
maximizes information gain is equivalent to finding the at-
tribute that minimizes the conditional entropy. The conditional

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, TO APPEAR

entropy for an attribute for two parties can be written as a
sum of the expression of the form(v1 + v2) × log(v1 + v2).
The authors give a way to securely calculate the expression
(v1 + v2) × log(v1 + v2) and show how to use this function
for building the ID3 securely. This approach treats privacy-
preserving data mining as a special case of secure multi-party
computation [9] and not only aims for preserving individual
privacy but also tries to preserve leakage of any information
other than the final result. We follow this approach, but address
a different problem (association rules), and emphasize the
efficiency of the resulting algorithms. A particular difference
is that we recognize that some kinds of information can be
exchanged without violating security policies; secure multi-
party computation forbids leakage of any information other
than the final result. The ability to share non-sensitive data
enables highly efficient solutions.

The problem of privately computing association rules in
vertically partitioned distributed data has also been addressed
[10]. The vertically partitioned problem occurs when each
transactionis split across multiple sites, with each site having
a different set of attributes for the entire set of transactions.
With horizontal partitioning each site has a set of complete
transactions. In relational terms, with horizontal partioning the
relation to be mined is the union of the relations at the sites. In
vertical partitioning, the relations at the individual sites must
be joined to get the relation to be mined. The change in the
way the data is distributed makes this a much different problem
from the one we address here, resulting in a very different
solution.

A. Mining of Association Rules

The association rules mining problem can be defined as
follows: [1] Let I = {i1, i2, . . . , in} be a set of items. Let
DB be a set of transactions, where each transactionT is an
itemset such thatT ⊆ I. Given an itemsetX ⊆ I, a transaction
T containsX if and only if X ⊆ T . An association rule is
an implication of the formX ⇒ Y whereX ⊆ I, Y ⊆ I and
X ∩Y = ∅. The ruleX ⇒ Y hassupports in the transaction
databaseDB if s% of transactions inDB containX∪Y . The
association rule holds in the transaction databaseDB with
confidencec if c% of transactions inDB that contain X also
contains Y. An itemsetX with k items called k-itemset. The
problem of mining association rules is to find all rules whose
support and confidence are higher than certain user specified
minimum support and confidence.

In this simplified definition of the association rules, missing
items, negatives and quantities are not considered. In this
respect, transaction databaseDB can be seen as0/1 matrix
where each column is an item and each row is a transaction.
In this paper, we use this view of association rules.

1) Distributed Mining of Association Rules:The above
problem of mining association rules can be extended to
distributed environments. Let us assume that a transaction
databaseDB is horizontally partitioned amongn sites (namely
S1, S2, . . . , Sn) whereDB = DB1 ∪ DB2 ∪ . . . ∪ DBn and
DBi resides at sideSi (1 ≤ i ≤ n). The itemsetX has
local support count ofX.supi at site Si if X.supi of the

transactions containsX . The global support count ofX is
given asX.sup =

∑n
i=1 X.supi. An itemsetX is globally

supportedif X.sup ≥ s × (
∑n

i=1 |DBi|). Global confidence
of a ruleX ⇒ Y can be given as{X ∪ Y } .sup/X.sup.

The set of large itemsetsL(k) consists of allk-itemsets
that are globally supported. The set of locally large itemsets
LLi(k) consists of allk-itemsets supported locally at siteSi.
GLi(k) = L(k) ∩LLi(k) is the set of globally largek-itemsets
locally supported at siteSi. The aim of distributed association
rule mining is to find the setsL(k) for all k > 1 and the support
counts for these itemsets, and from this compute association
rules with the specified minimum support and confidence.

A fast algorithm for distributed association rule mining is
given in Cheung et. al. [2]. Their procedure for fast distributed
mining of association rules (FDM) is summarized below.

1) Candidate Sets Generation: Generate candidate sets
CGi(k) based onGLi(k−1), itemsets that are supported
by the Si at the (k-1)-th iteration, using the classic a-
priori candidate generation algorithm. Each site gener-
ates candidates based on the intersection of globally
large (k-1) itemsets and locally large (k-1) itemsets.

2) Local Pruning: For each X ∈ CGi(k), scan the
databaseDBi at Si to computeX.supi. If X is locally
largeSi, it is included in theLLi(k) set. It is clear that
if X is supported globally, it will be supported in one
site.

3) Support Count Exchange: LLi(k) are broadcast, and
each site computes the local support for the items in
∪iLLi(k).

4) Broadcast Mining Results: Each site broadcasts the
local support for itemsets in∪iLLi(k). From this, each
site is able to computeL(k).

The details of the above algorithm can be found in [2].

B. Secure Multi-party Computation

Substantial work has been done on secure multi-party com-
putation. The key result is that a wide class of computations
can be computed securely under reasonable assumptions. We
give a brief overview of this work, concentrating on material
that is used later in the paper. The definitions given here are
from Goldreich [9]. For simplicity, we concentrate on the two-
party case. Extending the definitions to the multi-party case is
straightforward.

1) Security in semi-honest model:A semi-honest party
follows the rules of the protocol using its correct input, but is
free to later use what it sees during execution of the protocol
to compromise security. This is somewhat realistic in the real
world because parties who want to mine data for their mutual
benefit will follow the protocol to get correct results. Also, a
protocol that is buried in large, complex software can not be
easily altered.

A formal definition of private two-party computation in
the semi-honest model is given below. Computing a function
privately is equivalent to computing it securely. The formal
proof of this can be found in Goldreich [9].

Definition 2.1: (privacy w.r.t. semi-honest behavior): [9]

KANTARCIOǦLU AND CLIFTON 5

Let f : {0, 1}∗ × {0, 1}∗ 7−→ {0, 1}∗ × {0, 1}∗ be prob-
abilistic, polynomial-time functionality, wheref1 (x, y)(resp.,
f2 (x, y)) denotes the first (resp., second) element off (x, y))
and letΠ be two-party protocol for computingf .

Let the view of the first (resp., second) party during
an execution of Π on (x, y), denoted viewΠ

1 (x, y)
(resp., viewΠ

2 (x, y)) be (x, r1, m1, . . . , mt) (resp.,
(y, r2, m1, . . . , mt)) where r1 represent the outcome of
the first (resp.,r2 second) party’s internal coin tosses, and
mi represent the ith message it has received.

The output of the first (resp., second) party during an
execution ofΠ on (x, y) is denotedoutputΠ1 (x, y) (resp.,
outputΠ2 (x, y)) and is implicit in the party’s view of the
execution.

Π privately computes f if there exist probabilistic polyno-
mial time algorithms, denotedS1, S2 such that

{(S1 (x, f1 (x, y)) , f2 (x, y))}x,y∈{0,1}∗ ≡C

{(

viewΠ
1 (x, y) , outputΠ2 (x, y)

)}

x,y∈{0,1}∗
(1)

{(f1 (x, y) , S2 (x, f1 (x, y)))}x,y∈{0,1}∗ ≡C

{(

outputΠ1 (x, y) , viewΠ
2 (x, y)

)}

x,y∈{0,1}∗
(2)

where≡C denotes computational indistinguishability.
The above definition says that a computation is secure if

the view of each party during the execution of the protocol
can be effectively simulated by the input and the output of
the party. This is not quite the same as saying that private
information is protected. For example, if two parties use a
secure protocol to mine distributed association rules, a secure
protocol still reveals that if a particular rule is not supported by
a particular site, and that rule appears in the globally supported
rule set, then it must be supported by the other site. A site
can deduce this information by solely looking at its locally
supported rules and the globally supported rules. On the other
hand, there is no way to deduce the exact support count of
some itemset by looking at the globally supported rules. With
three or more parties, knowing a rule holds globally reveals
that at least one site supports it, but no site knows which site
(other than, obviously, itself). In summary, a secure multi-party
protocol will not reveal more information to a particular party
than the information that can be induced by looking at that
party’s input and the output.

2) Yao’s general two-party secure function evaluation:
Yao’s general secure two-party evaluation is based on ex-
pressing the functionf(x, y) as a circuit and encrypting the
gates for secure evaluation [11]. With this protocol, any two-
party function can be evaluated securely in the semi-honest
model. To be efficiently evaluated, however, the functions
must have a small circuit representation. We will not give
details of this generic method, however we do use this generic
results for securely finding whethera ≥ b (Yao’s millionaire
problem). For comparing any two integers securely, Yao’s
generic method is one of the most efficient methods known,
although other asymptotically equivalent but practicallymore
efficient algorithms could be used as well [12].

C. Commutative Encryption

Commutative encryption is an important tool that can be
used in many privacy-preserving protocols. An encryption
algorithm is commutative if the following two equations hold
for any given feasible encryption keysK1, . . . , Kn ∈ K, any
m in items domainM , and any permutations ofi, j.

EKi1
(. . . EKin

(M) . . .) = EKj1
(. . . EKjn

(M) . . .) (3)

∀M1, M2 ∈ M such thatM1 6= M2 and for givenk, ε < 1
2k

Pr(EKi1
(. . . EKin

(M1) . . .) = EKj1
(. . . EKjn

(M2) . . .)) < ε
(4)

These properties of commutative encryption can be used
to check whether two items are equal without revealing them.
For example, assume that party A has itemiA and party B has
item iB. To check if the items are equal, each party encrypts
its item and sends it to the other party: Party A sendsEKA

(iA)
to B and party B sendsEKB

(iB) to A. Each party encrypts the
received item with its own key, giving party AEKA

(EKB
(iB))

and party BEKB
(EKA

(iA)). At this point, they can compare
the encrypted data. If the original items are the same, Equation
3 ensures that they have the same encrypted value. If they are
different, Equation 4 ensure that with high probability they do
not have the same encrypted value. During this comparison,
each site sees only the other site’s values in encrypted form.

In addition to meeting the above requirements, we require
that the encryption be secure. Specifically, the encrypted values
of a set of items should reveal no information about the items
themselves. Consider the following experiment. For any two
sets of items, we encrypt each item of one randomly chosen
set with the same key and present the resulting encrypted
set and the initial two sets to a polynomial-time adversary.
Loosely speaking, our security assumption implies that this
polynomial-time adversary will not be able to predict which
of the two sets were encrypted with a probability better than
a random guess. Under this security assumption, it can be
shown that resulting encrypted set is indistinguishable bya
polynomial adversary from a set of items that are randomly
chosen from the domain of the encryption; this fact is used in
the proof of the privacy-preserving properties of our protocol.
The formal definition of multiple-message semantic security
can be found in [13].

There are several examples of commutative encryption, per-
haps the most famous being RSA [14] (if keys are not shared).
The appendix describes a how Pohlig-Hellman encryption [15]
can be used to fulfill our requirements, as well as further
discussion of relevant cryptographic details. The remainder of
this paper is based on the definitions given above, and does
not require a knowledge of the cryptographic discussion in the
appendix.

III. SECURE ASSOCIATIONRULE M INING

We will now use the tools described above to construct a
distributed association rule mining algorithm that preserves the
privacy of individual site results. The algorithm given is for
three or more parties – the difficulty with the two-party case
is discussed in Section V.

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, TO APPEAR

A. Problem Definition

Let i ≥ 3 be the number of sites. Each site has a private
transaction databaseDBi. We are given support threshold
s and confidencec as percentages. The goal is to discover
all association rules satisfying the thresholds, as definedin
Section II-A.1. We further desire that disclosure be limited:
No site should be able to learn contents of a transaction at
any other site, what rules are supported by any other site,
or the specific value of support/confidence for any rule at any
other site, unless that information is revealed by knowledge of
one’s own data and the final result. E.g., if a rule is supported
globally but not at one’s own site, we can deduce that at least
one other site support the rule. Here we assume no collusion
(this is discussed further in Section IV.)

B. Method

Our method follows the general approach of the FDM
algorithm [2], with special protocols replacing the broadcasts
of LLi(k) and the support count of items inLL(k). We first
give a method for finding the union of locally supported
itemsets without revealing the originator of the particular
itemset. We then provide a method for securely testing if the
support count exceeds the threshold.

1) Secure union of locally large itemsets:In the FDM
algorithm (Section II-A.1), step 3 reveals the large itemsets
supported by each site. To accomplish this without revealing
what each site supports, we instead exchange locally large
itemsets in a way that obscures the source of each itemset.
We assume a secure commutative encryption algorithm with
negligible collision probability (Section II-C).

The main idea is that each site encrypts the locally supported
itemsets, along with enough “fake” itemsets to hide the actual
number supported. Each site then encrypts the itemsets from
other sites. In Phases 2 and 3, the sets of encrypted itemsets
are merged. Since Equation 3 holds, duplicates in the locally
supported itemsets will be duplicates in the encrypted itemsets,
and can be deleted. The reason this occurs in two phases is
that if a site knows which fully encrypted itemsets come from
which sites, it can compute the size of the intersection between
any set of sites. While generally innocuous, if it has this
information for itself, it can guess at the itemsets supported
by other sites. Permuting the order after encryption in Phase
1 prevents knowing exactly which itemsets match, however
separately merging itemsets from odd and even sites in Phase
2 prevents any site from knowing the fully encrypted values
of its own itemsets.1 Phase 4 decrypts the merged frequent
itemsets. Commutativity of encryption allows us to decrypt
all itemsets in the same order regardless of the order they
were encrypted in, preventing sites from tracking the source
of each itemset.

The detailed algorithm is given in Protocol 1. In the protocol
F represents the data that can be used as fake itemsets.
|LLei(k)| represents the set of the encryptedk itemsets at site
i. Ei is the encryption andDi is the decryption by sitei.

1An alternative would be to use an anonymizing protocol [16] to send
all fully encrypted itemsets to Site 0, thus preventing Site0 from knowing
which were it’s own itemsets. The separate odd/even mergingis lower cost
and achieves sufficient security for practical purposes.

Clearly, Protocol 1 finds the union without revealing which
itemset belongs to which site. It is not, however, secure under
the definitions of secure multi-party computation. It reveals
the number of itemsets having common support between sites,
e.g., sites 3, 5, and 9 all support some itemset. It does not
revealwhich itemsets these are, but a truly secure computation
(as good as giving all input to a “trusted party”) could
not reveal even this count. Allowing innocuous information
leakage (the number of itemsets having common support)
allows an algorithm that is sufficiently secure with much lower
cost than a fully secure approach.

If we deem leakage of the number of commonly supported
itemsets as acceptable, we can prove that this method is secure
under the definitions of secure multi-party computation. The
idea behind the proof is to show that given the result, the
leaked information, and a site’s own input, a site can simulate
everything else seen during the protocol. Since the simulation
generates everything seen during execution of the protocol, the
site clearly learns nothing new from the protocol beyond the
input provided to the simulator. One key is that the simulator
does not need to generate exactly what is seen in any particular
run of the protocol. The exact content of messages passed
during the protocol is dependent on the random choice of keys;
the simulator must generate an equivalent distribution, based
on random choices made by the simulator, to the distribution
of messages seen in real executions of the protocol. A formal
proof that this proof technique shows that a protocol preserves
privacy can be found in [9]. We use this approach to prove
that Protocol 1 reveals only the union of locally large itemsets
and a clearly bounded set of innocuous information.

Theorem 3.1:Protocol 1 privately computes the union of
the locally large itemsets assuming no collusion, revealing at
most the result∪N

i=1LLi(k) and:
1) Size of intersection of locally supported itemsets be-

tween any subset of odd numbered sites,
2) Size of intersection of locally supported itemsets be-

tween any subset of even numbered sites, and
3) Number of itemsets supported by at least one odd and

one even site.
Proof: Phase 0:Since no communication occurs in Phase

0, each site can simulate its view by running the algorithm on
its own input.

Phase 1:At the first step, each site seesLLei−1(k). The size
of this set is the size of the global candidate setCG(k), which
is known to each site. Assuming the security of encryption,
each item in this set is computationally indistinguishablefrom
a number chosen from a uniform distribution. A site can
therefore simulate the set using a uniform random number
generator. This same argument holds for each subsequent
round.

Phase 2:In Phase 2, site 0 gets the fully encrypted sets of
itemsets from the other even sites. Assuming that each site
knows the source of a received message, site 0 will know
which fully encrypted setLLe(k) contains encrypted itemsets
from which (odd) site. Equal itemsets will now be equal in
encrypted form. Thus, site 0 learns if any odd sites had locally
supported itemsets in common. We can still build a simulator
for this view, using the information in point 1 above. If there

KANTARCIOǦLU AND CLIFTON 7

are k itemsets known to be common among allbN/2c odd
sites (from point 1), generatek random numbers and put them
into the simulatedLLei(k). Repeat for eachbN/2c−1 subset,
etc., down to2 subsets of the odd sites. Then fill eachLLei(k)

with randomly chosen values until it reaches size|CGi(k)|.
The generated sets will have exactly the same combinations
of common items as the real sets, and since thevaluesof the
items in the real sets are computationally indistinguishable
from a uniform distribution, their simulation matches the real
values.

The same argument holds for site 1, using information from
point 2 to generate the simulator.

Phase 3: Site 1 eliminates duplicates from theLLei(k)

to generateRuleSet1. We now demonstrate that Site 0 can
simulateRuleSet1. First, the size ofRuleSet1 can be sim-
ulated knowing point 2. There may be itemsets in common
betweenRuleSet0 and RuleSet1. These can be simulated
using point 3: If there arek items in common between even
and odd sites, site 0 selectsk random items fromRuleSet0
and inserts them intoRuleSet1. RuleSet1 is then filled with
randomly generated values. Since the encryption guarantees
that the values are computationally indistinguishable from a
uniform distribution, and the set sizes|RuleSet0|, |RuleSet1|,
and|RuleSet0∩RuleSet1| (and thus|RuleSet|) are identical
in the simulation and real execution, this phase is secure.

Phase 4: Each site sees only the encrypted items after
decryption by the preceding site. Some of these may be
identical to items seen in Phase 2, but since all items must
be in the union, this reveals nothing. The simulator for site
i is built as follows: take the values generated in Phase 2
stepN − 1 − i, and place them in theRuleSet. Then insert
random values inRuleSet up to the proper size (calculated
as in the simulator for Phase 3). The values we have not seen
before are computationally indistinguishable from data from a
uniform distribution, and the simulator includes the values we
have seen (and knew would be there), so the simulated view
is computationally indistinguishable from the real values.

The simulator for siteN − 1 is different, since it learns
RuleSet(k). To simulate what it sees in Phase 4, siteN − 1
takes each item inRuleSet(k), the final result, and encrypts
it with EN−1. These are placed inRuleSet. RuleSet is then
filled with items chosen fromF , also encrypted withEN−1.
Since the choice of items fromF is random in both the real
and simulated execution, and the real items exactly match
in the real and simulation, theRuleSet site N − 1 receives
in Phase 4 is computationally indistinguishable from the real
execution.

Therefore, we can conclude that above protocol is privacy-
preserving in the semi-honest model with the stated assump-
tions.

The information disclosed by points 1-3 could be relaxed to
the number of itemsets support by1 site, 2 sites, ...,N sites
if we assume anonymous message transmission. The number
of jointly supported itemsets can also be masked by allowing
sites to inject itemsets that are not really supported locally.
These fake itemsets will simply fail to be globally supported,
and will be filtered from the final result when global support is
calculated as shown in the next section. The jointly supported

itemsets “leak” then becomes an upper bound rather than
exact, at an increased cost in the number of candidates that
must be checked for global support. While not truly zero-
knowledge, it reduces the confidence (and usefulness) of the
leaked knowledge of the number of jointly supported itemsets.
In practical terms, revealing the size (but not content) of
intersections between sites is likely to be of little concern.

2) Testing support threshold without revealing support
count: Protocol 1 gives the full set of locally large itemsets
LL(k). We still need to determine which of these itemsets
are supported globally. Step 4 of the FDM algorithm forces
each site to reveal its own support count for every itemset in
LL(k). All we need to know is for each itemsetX ∈ LL(k),
is X.sup ≥ s% × |DB|? The following allows us to reduce
this to a comparison against a sum of local values (theexcess
supportat each site):

X.sup ≥ s ∗ |DB| = s ∗ (

n
∑

i=1

|DBi|)

n
∑

i=1

X.supi ≥ s ∗ (

n
∑

i=1

|DBi|)

n
∑

i=1

(X.supi − s ∗ |DBi|) ≥ 0

Therefore, checking for support is equivalent to checking if
∑n

i=1(X.supi − s ∗ |DBi|) ≥ 0. The challenge is to do this
without revealingX.supi or |DBi|. An algorithm for this is
given in Protocol 2.

The first site generates a random numberxr for each itemset
X, adds that number to its(X.supi − s ∗ |DBi|), and sends
it to the next site. (All arithmetic ismodm ≥ 2 ∗ |DB|, for
reasons that will become apparent later.) The random number
masks the actual excess support, so the second site learns
nothing about the first site’s actual database size or support.
The second site adds its excess support and sends the value
on. The random value now hides both support counts. The last
site in the change now has

∑n
i=1(X.supi − s ∗ |DBi|) + xr

(mod m). Since the total database size|DB| ≤ m/2, negative
summation will be mapped to some number that is bigger then
or equal tom/2. (−k = m − k mod m.) The last site needs
to test if this sum minusxr (mod m) is less thenm/2. This
can be done securely using Yao’s generic method [11]. Clearly
this algorithm is secure as long as there is no collusion, as no
site can distinguish what it receives from a random number.
Alternatively, the first site can simply sendxr to the last site.
The last site learns the actual excess support, but does not
learn the support values for any single site. In addition, ifwe
consider the excess support to be a valid part of the global
result, this method is still secure.

Theorem 3.2:Protocol 2 privately computes globally sup-
ported itemsets in the semi-honest model.

Proof: To show that Protocol 2 is secure under the
semi-honest model, we have to show that a polynomial time
simulator can simulate the view of the parties during the
execution of the protocol, based on their local inputs and the
global result. We also use the general composition theorem
for semi-honest computation [9]. The theorem says that ifg

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, TO APPEAR

securely reduces tof , and f is computed securely, then the
computation off(g) is secure. In our context,f is the secure
comparison of two integers, andg is Protocol 2. First, we
show that the view of any site during the addition phase can
be efficiently simulated given the input of that site and the
global output. Sitei uniformly chooses a random integersr,
0 ≤ sr < m. Next, we show that view and the output of the
simulator are computationally indistinguishable by showing
that the probability of seeing a givenx in both is equal. In
the following equations,xr is the random number added at
the beginning of Protocol 2,0 ≤ Xr < m. The arithmetic
is assumed to bemod m. Also note thatX.supi is fixed for
each site.

Pr
[

V IEWProtocol2
i = x

]

= Pr

[

xr = x −
k=i−1
∑

k=1

X.supi

]

=
1

m
= Pr [sr = x]

= Pr [Simulatori = x]

Therefore, what each site sees during the addition phase is
indistinguishable from that simulated with a random number
generator. During the comparison phase we can use the generic
secure method, so from the composition theorem we conclude
that Protocol 2 is secure in the semi-honest model.

C. Securely Finding Confidence of a Rule

To find if the confidence of a ruleX ⇒ Y is higher
than the given confidence thresholdc, we have to check if
{X∪Y }.sup

Y.sup ≥ c. Protocol 2 only revealsif an itemset is
supported, it does not reveal the support count. The following
equations show how to securely compute if confidence exceeds
a threshold using Protocol 2. The support of{X ∪ Y } .supi

is denoted asXY.supi.

{X ∪ Y } .sup

Y.sup
≥ c ⇒

∑i=n
i=1 XY.supi

∑i=n
i=1 X.supi

≥ c

⇒
i=n
∑

i=1

XY.supi ≥ c ∗ (

i=n
∑

i=1

X.supi)

⇒
i=n
∑

i=1

(XY.supi − c ∗ X.supi) ≥ 0

Since each site knowsXY.supi and X.supi, we can easily
use Protocol 2 to securely calculate the confidence of a rule.

IV. SECURITY AGAINST COLLUSION

Collusion in Protocol 1 could allow a site to know its own
frequent itemsets after encryption by all parties. Using this, it
can learn the size of the intersection between its own itemsets
and those of another party. Specifically, if sitei colludes with
site i−1, it can learn the size of its intersection with sitei+1.
Collusion between sites 0 and 1 exacerbates the problem, as
they know encrypted values of itemsets for all odd (even) sites.
This may reveal the actual itemsets; if|LLi(k) ∩LLi+1(k)| =

|LLi(k)|, then sitei has learned a subset of the itemsets at site
i + 1.

Collusion can be a problem for our second protocol, because
site i + 1 and site i − 1 can collude to reveal sitei’s
excess support value. This protocol can be made resilient
against collusions using a straightforward technique fromthe
cryptographic community. The basic idea is each party divides
its input into n parts, and send then − 1 pieces to different
sites. To reveal any parties input,n − 1 party must collude.
The following is a brief summary of the protocol, details can
be found in [17]. (A slightly more efficient version can be
found in [18].)

1) Each sitei randomly choosesn elements such thatxi =
∑n

j=1 zi,j mod m wherexi is the input of sitei. Site i
sendszi,j to site j.

2) Every sitei computeswi =
∑n

j=1 zj,i mod m and sends
wi to siten.

3) Siten computes the final result
∑n

i=1 wi mod m

The above protocol can easily be used to improve our
second protocol. Assume site0 is the starting site in our
protocol and siteN − 1 is the last site. Choosem such that
2 ∗ |DB| ≤ m. Setx1 = X.sup1 − s ∗ d1 + xr mod m and
xi = X.supi − s ∗ di mod m, i 6= 1. After this point, the
above protocol can be used to find

∑n
i=1(X.supi − s ∗ di) +

xr mod m. At the end, one secure addition and comparison
is done as in Protocol 2 to check if itemsetX is globally
supported.

V. D IFFICULTIES WITH THE TWO-PARTY CASE

The two party case is problematic. First, globally supported
itemsets that are not supported at one site are known to be
supported at the other site – this is an artifact of the result.
Protocol 1 is worse yet, as itemsets that are supported at
one site but not supported globally will become known to
the other site. To retain any privacy, we must dispense with
local pruning entirely (steps 1 and 2 of the FDM algorithm)
and compute support for all candidates inCG(k) (as computed
from L(k−1)). Second, the secure comparison phase at the end
of the protocol 2 cannot be removed, as otherwise the support
of one site is disclosed to the other. It is difficult to improve
on this, as evidenced by the following theorem.

Theorem 5.1:For itemset X, to check whether
X.sup1+X.sup2

d1+d2

≥ k can be securely computed if and
only if Yao’s millionaire problem securely solved for arbitrary
a and b.

Proof: Checking X.sup1+X.sup2

d1+d2

≥ k is equivalent to
checking(X.sup1 − k ∗ d1) ≥ (k ∗ d2 −X.sup2). If we have
a = X.sup1 − k ∗ d1 and b = k ∗ d2 − X.sup2, we have an
instance of Yao’s millionaire problem fora andb. Assume we
have a secure protocol that computes whether X is supported
globally or not for arbitraryX.sup1, X.sup2, d1, d2 and k.
Take X.sup1 = 3a, d1 = 4a, X.sup2 = b, d2 = 4 ∗ b and
k = 0.5. This is equivalent to checking whethera ≥ b.

The above theorem implies that if we develop a method that
can check securely if an itemset is globally supported for the
two party case in semi-honest model, it is equivalent to finding

KANTARCIOǦLU AND CLIFTON 9

a new solution to Yao’s millionaire problem. This problem is
well studied in cryptography and to our knowledge, there is
no significantly faster way for arbitrarya andb than using the
generic circuit evaluation solution.

It is worth noting that eliminating local pruning and using
Protocol 2 to compute the global support of all candidates in
CG(k) is secure under the definitions of secure multi-party
computation, for two or more parties. The problem with the
two-party case is that knowing a rule is supported globally
that is not supported at one’s own site reveals that the other
site supports that rule. This is true no matter how secure
computation, it is an artifact of the result. Thus, extending
to secure computation in the two party case is unlikely to be
of use.

VI. COMMUNICATION AND COMPUTATION COSTS

We now give cost estimates for association rule mining
using the method we have presented. The number of sites is
N . Let the total number of locally large candidate itemsets be
|CGi(k)|, and the number of candidates that can be directly
generated by the globally large (k-1) itemsets be|CG(k)|
(= apriori gen(L(k−1))). The excess supportX.supi − |DBi|
of an itemsetX can be represented inm = dlog2(2 ∗ |DB|)e
bits. Lett be the number of bits in the output of the encryption
of an itemset. A lower bound ont is log2(|CG(k)|); based on
current encryption standardst = 512 is a more appropriate
value.2

The total bit-communication cost for Protocol 1 isO(t ∗
|CG(k)| ∗ N2), however, as much of this happens in parallel
we can divide byN to get an estimate of the communication
time. For comparison, the FDM algorithm requiresO(t ∗ | ∪i

LLi(k)| ∗ N) for the corresponding steps, with effectively the
same reduction in time due to parallelism (achieved through
broadcast as opposed to simultaneous point-to-point transmis-
sions). The added cost of Protocol 1 is due to paddingLLei(k)

to hide the actual number of local itemsets supported, and the
increase in bits required to represent encrypted itemsets.The
worst-case value for|CG(k)| is

(item domain size
k

)

, however,
the optimizations that make the a-priori algorithm effective
in practice would fail for such large|CG(k)|. In practice,
only in the first round (k = 1) will this padding pose a
high cost; |CG(1)| = the size of the domain of items. In
later iterations, the size of|CG(k)| will be much closer to
|LLei(k)|. The computation cost increase due to encryption
is O(t3 ∗ |CG(k)| ∗ N2), wheret is the number of bits in the
encryption key. Heret3 represents the bit-wise cost of modular
exponentiation.

Protocol 2 requiresO(m ∗ | ∪i LLi(k)| ∗ (N + t)) bits
of communication. Thet factor is for the secure circuit
evaluations between sitesN −1 and0 required to determine if
each itemset is supported. FDM actually requires an additional
factor of N due to the broadcast of local support instead of
point-to-point communication. However, the broadcast results
in a single round instead ofN rounds of our method. The

2The worst-case bound on|CG(k)| is
(item domain size

k

)

. t = 512 can
represent such worst-case itemsets for 50 million possibleitems andk = 20,
adequate for most practical cases.

final secure comparison requires a computation cost ofO(| ∪i

LLi(k)| ∗ m ∗ t3).
As discussed in Section V, using only Protocol 2 directly

on CG(k) is fully secure assuming the desired result includes
all globally large itemsets. The communication costs becomes
O(m ∗ |CG(k)| ∗ N), but because the communication in
Protocol 2 is sequential the communication time is roughly
the same as the full protocol. The encryption portion of the
computation cost becomesO(|CG(k)| ∗m ∗ t3) for the secure
comparison at the end of the protocol. However, there is a
substantial added cost in computing the support, as we must
compute support for all|CG(k)| itemsets. This is generally
much greater than the|CGi(k) ∪ (∪iLLi(k))| required under
the full algorithm (or FDM), as shown in [3]. It is reasonable
to expect that this cost will dominate the other costs, as it is
linear in |DB|.

A. Optimizations and Further Discussion

The cost of “padding”LLei(k) from F to avoid disclosing
the number of local itemsets supported can add significantlyto
the communication and encryption costs. In practice, fork >
1, |CG(k)| is likely to be of reasonable size. However,|CG(1)|
could be very large, as it is dependent only on the size of the
domain of items, and is not limited by already discovered
frequent itemsets. If the participants can agree on an upper
bound on the number of frequent items supported at any one
site that is tighter than “every item may be frequent” without
inspecting the data, we can achieve a corresponding decrease
in the costs with no loss of security. This is likely to be feasible
in practice; the very success of the a-priori algorithm is based
on the assumption that relatively few items are frequent.
Alternatively, if we are willing to leak an upper bound on the
number of itemsets supported at each site, each site can set its
own upper bound and pad only to that bound. This can be done
for every round, not justk = 1. As a practical matter, such an
approach would achieve acceptable security and would change
the |CG(k)| factor in the communication and encryption costs
of Protocol 1 toO(| ∪i LLi(k)|), equivalent to FDM.

Another way to limit the encryption cost of padding is to
pad randomly from the domain of the encryption output rather
than encrypting items fromF . Assuming|domainofEi| >>
|domainofitemsets|, the probability of padding with a value
that decrypts to a real itemset is small, and even if this occurs
it will only result in additional itemset being tested for support
in Protocol 2. When the support count is tested, such “false
hits” will be filtered out, and the final result will be correct.

The comparison phase at the end of protocol 2 can be
also removed, eliminating theO(m ∗ | ∪i LLi(k)| ∗ t) bits
of communication andO(| ∪i LLi(k)| ∗ m ∗ t3) encryption
cost. This reveals the excess support for each itemset. Practical
applications may demand this count as part of the result for
globally supported itemsets, so the only information leaked is
the support counts for itemsets in∪iLLi(k) − L(k). As these
cannot be traced to an individual site, this will generally be
acceptable in practice.

The cost estimates are based on the assumption that all
frequent itemsets (even 1-itemsets) are part of the result.If

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, TO APPEAR

exposing the globally frequent 1-itemsets is a problem, the
algorithm could easily begin with 2-itemsets (or larger). While
the worst-case cost would be unchanged, there would be an
impact in practical terms. Eliminating the pruning of globally
infrequent 1-itemsets would increase the size ofCGi(2) and
thus LLi(2), however, local pruning of infrequent 1-itemsets
should make the sizes manageable. More critical is the impact
on |CG(2)|, and thus the cost of padding to hide the number
of locally large itemsets. In practice, the size ofCG(2) will

rarely be the theoretical limit of
(item domain size

2

)

, but this
worst-case bound would need to be used if the algorithm began
with finding 2-itemsets (the problem is worse fork > 2). A
practical solution would again be to have sites agree on a
reasonable upper bound for the number of locally supported
k-itemsets for the initialk, revealing some information to
substantially decrease the amount of padding needed.

B. Practical Cost of Encryption

While achieving privacy comes at a reasonable increase in
communication cost, what about the cost of encryption? As a
test of this, we implemented Pohlig-Hellman, described in the
appendix. The encryption time per itemset represented with
t = 512 bits was 0.00428 seconds on a 700MHz Pentium 3
under Linux. Using this, and the results for the reported in [3],
we can estimate the cost of privacy-preserving associationrule
mining on the tests in [3].

The first set of experiments described in [3] contain suffi-
cient detail for us to estimate the cost of encryption. These
experiments used three sites, an item domain size of 1000,
and a total database size of 500k transactions.

The encryption cost for the initial round (k = 1) would
be 4.28 seconds at each site, as the padding need only be to
the domain size of 1000. While finding two-itemsets could
potentially be much worse (

(

1000
2

)

= 499500), in practice
|CG(2)| is much smaller. The experiment in [3] reports a total
number of candidate sets (

∑

k>1 |CG(k)|) of just over 100,000
at 1% support. This gives a total encryption cost of around
430 seconds per site, with all sites encrypting simultaneously.
This assumes none of the optimizations of Section VI-A;
if the encryption cost at each site could be cut to|LLi(k)|
by eliminating the cost of encrypting the padding items, the
encryption cost would be cut to 5% to 35% of the above on
the datasets used in [3].

There is also the encryption cost of the secure comparison
at the end of Protocol 2. Although the data reported in [3]
does not give us the exact size of∪iLLi(k), it appears to be
on the order of 2000. Based on this, the cost of the secure
comparison,O(| ∪i LLi(k)| ∗ m ∗ t3), would be about 170
seconds.

The total execution time for the experiment reported in
[3] was approximately 800 seconds. Similar numbers hold at
different support levels; the added cost of encryption would at
worst increase the total run time by roughly 75%.

VII. C ONCLUSIONS ANDFURTHER WORK

Cryptographic tools can enable data mining that would
otherwise be prevented due to security concerns. We have

given procedures to mine distributed association rules on
horizontally partitioned data. We have shown that distributed
association rule mining can be done efficiently under reason-
able security assumptions.

We believe the need for mining of data where access is
restricted by privacy concerns will increase. Examples include
knowledge discovery among intelligence services of differ-
ent countries and collaboration among corporations without
revealing trade secrets. Even within a single multi-national
company, privacy laws in different jurisdictions may prevent
sharing individual data. Many more examples can be imagined.
We would like to see secure algorithms for classification,
clustering, etc. Another possibility is secureapproximatedata
mining algorithms. Allowing error in the results may enable
more efficient algorithms that maintain the desired level of
security.

The secure multi-party computation definitions from the
cryptography domain may be too restrictive for our purposes.
A specific example of the need for more flexible definitions
can be seen in Protocol 1. The “padding” setF is defined to be
infinite, so that the probability of collision among these items
is 0. This is impractical, and intuitively allowing collisions
among the padded itemsets would seem more secure, as the
information leaked (itemsets supported in common by subsets
of the sites) would become an upper bound rather than an exact
value. However, unless we know in advance the probability of
collision among real itemsets, or more specifically we can set
the size ofF so the ratio of the collision probabilities inF
and real itemsets is constant, the protocol is less secure under
secure multi-party communication definitions. The problemis
that knowing the probability of collision among items chosen
from F enables us to predict (although generally with low
accuracy) which fully encrypted itemsets are real and which
are fake. This allows a probabilistic upper bound estimate on
the number of itemsets supported at each site. It also allowsa
probabilistic estimate of the number of itemsets supportedin
common by subsets of the sites that is tighter than the number
of collisions found in theRuleSet. Definitions that allow us
to trade off such estimates, and techniques to prove protocols
relative to those definitions, will allow us to prove the privacy
of protocols that are practically superior to protocols meeting
strict secure multi-party computation definitions.

More suitable security definitions that allow parties to
choose their desired level of security are needed, allowing
efficient solutions that maintain the desired security. Some
suggested directions for research in this area are given in [19].
One line of research is to predict the value of information for
a particular organization, allowing tradeoff between disclosure
cost, computation cost, and benefit from the result. We believe
some ideas from game theory and economics may be relevant.

In summary, it is possible to mine globally valid results
from distributed data without revealing information that com-
promises the privacy of the individual sources. Such privacy-
preserving data mining can be done with a reasonable increase
in cost over methods that do not maintain privacy. Continued
research will expand the scope of privacy-preserving data
mining, enabling most or all data mining methods to be applied
in situations where privacy concerns would appear to restrict

KANTARCIOǦLU AND CLIFTON 11

such mining.

APPENDIX

CRYPTOGRAPHICNOTES ONCOMMUTATIVE ENCRYPTION

The Pohlig-Hellman encryption scheme [15] can be used for
a commutative encryption scheme meeting the requirements
of Section II-C. Pohlig-Hellman works as follows. Given a
large primep with no small factors ofp − 1, each party
chooses a randome, d pair such thate ∗ d = 1 (mod p− 1).
The encryption of a given messageM is M e (mod p).
Decryption of a given ciphertextC is done by evaluatingCd

(mod p). Cd = M ed (mod p), and due to Fermat’s little
theorem,M ed = M1+k(p−1) = M (mod p).

It is easy to see that Pohlig-Hellman with sharedp satisfies
equation 3. Let us assume that there aren different encryption
and decryption pairs ((e1, d1), . . . , (en, dn)). For any permuta-
tion functioni, j andE = e1∗e2∗. . .∗en = ei1 ∗ei2 . . . ein

=
ei1 ∗ ei2 . . . ein

(mod p − 1):

Eei1
(. . . Eein

(M) . . .)

= (. . . ((M ein (mod p))ein−1 (mod p)) . . .)ei1 (mod p))

= M ein∗ein−1
...∗ei1 (mod p)

= ME (mod p)

= M ejn∗ejn−1
...∗ej1 (mod p)

= Eej1
(. . . Eejn

(M) . . .)

Equation 4 is also satisfied by the Pohlig-Hellman encryp-
tion scheme. LetM1, M2 ∈ GF (p) such thatM1 6= M2.
Any order of encryption by all parties is equal to evaluating
Eth power mod p of the plain text. Let us assume that after
encryptionsM1 andM2 are mapped to the same value. This
implies thatME

1 = ME
2 (mod p). By exponentiating both

sides with D = d1 ∗ d2 ∗ . . . ∗ dn (mod p − 1), we get
M1 = M2 (mod p), a contradiction. (Note thatE ∗ D =
e1 ∗ e2 ∗ . . . ∗ en ∗ d1 ∗ d2 ∗ . . . dn = e1 ∗ d1 . . . en ∗ dn = 1
(mod p − 1).) Therefore, the probability that two different
elements map to the same value is zero.

Direct implementation of Pohlig-Hellman is not secure.
Consider the following example, encrypting two valuesa and
b, whereb = a2. Ee(b) = Ee(a

2) = (a2)
e

(mod p) = (ae)
2

(mod p) = (Ee(a))
2

(mod p). This shows that given two
encrypted values, it is possible to determine if one is the square
of the other (even though the base values are not revealed.)
This violates the security requirement of Section II-C.

Huberman et al. provide a solution [20]. Rather than en-
crypting items directly, a hash of the items is encrypted.
The hash occurs only at the originating site, the second and
later encryption of items can use Pohlig-Hellman directly.
The hash breaks the relationship revealed by the encryption
(e.g., a = b2). After decryption, the hashed values must be
mapped back to the original values. This can be done by
hashing the candidate itemsets inCG(k) to build a lookup
table, anything not in this table is a fake “padding” itemset
and can be discarded.3

3A hash collision, resulting in a padding itemset mapping to an itemset in
the table, could result in an extra itemset appearing in the union. This would
be filtered out by Protocol 2; the final results would be correct.

We present the approach from [20] as an example; any
secure encryption scheme that satisfies Equations 3 and 4
can be used in our protocols. The above approach is used to
generate the cost estimates in Section VI-B. Other approaches,
and further definitions and discussion of their security, can be
found in [21]–[24].

ACKNOWLEDGMENT

We wish to acknowledge the contributions of Mike Atallah
and Jaideep Vaidya. Discussions with them have helped to
tighten the proofs, giving clear bounds on the information
released.

REFERENCES

[1] R. Agrawal and R. Srikant, “Fast algorithms for mining association
rules,” in Proceedings of the 20th International Conference on Very
Large Data Bases. Santiago, Chile: VLDB, Sept. 12-15 1994, pp.
487–499. [Online]. Available: http://www.vldb.org/dblp/db/conf/vldb/
vldb94-487.html

[2] D. W.-L. Cheung, J. Han, V. Ng, A. W.-C. Fu, and Y. Fu, “A fast
distributed algorithm for mining association rules,” inProceedings of the
1996 International Conference on Parallel and DistributedInformation
Systems (PDIS’96). Miami Beach, Florida, USA: IEEE, Dec. 1996,
pp. 31–42.

[3] D. W.-L. Cheung, V. Ng, A. W.-C. Fu, and Y. Fu, “Efficient mining
of association rules in distributed databases,”IEEE Trans. Knowledge
Data Eng., vol. 8, no. 6, pp. 911–922, Dec. 1996.

[4] R. Agrawal and R. Srikant, “Privacy-preserving data mining,” in
Proceedings of the 2000 ACM SIGMOD Conference on Management
of Data. Dallas, TX: ACM, May 14-19 2000, pp. 439–450. [Online].
Available: http://doi.acm.org/10.1145/342009.335438

[5] D. Agrawal and C. C. Aggarwal, “On the design and quantification
of privacy preserving data mining algorithms,” inProceedings
of the Twentieth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems. Santa Barbara, California, USA:
ACM, May 21-23 2001, pp. 247–255. [Online]. Available: http:
//doi.acm.org/10.1145/375551.375602

[6] A. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke, “Privacy
preserving mining of association rules,” inThe Eighth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
Edmonton, Alberta, Canada, July 23-26 2002, pp. 217–228. [Online].
Available: http://doi.acm.org/10.1145/775047.775080

[7] S. J. Rizvi and J. R. Haritsa, “Maintaining data privacy in association
rule mining,” in Proceedings of 28th International Conference on Very
Large Data Bases. Hong Kong: VLDB, Aug. 20-23 2002, pp. 682–693.
[Online]. Available: http://www.vldb.org/conf/2002/S19P03.pdf

[8] Y. Lindell and B. Pinkas, “Privacy preserving data mining,” in
Advances in Cryptology – CRYPTO 2000. Springer-Verlag, Aug.
20-24 2000, pp. 36–54. [Online]. Available: http://link.springer.de/link/
service/series/0558/bibs/1880/18800036.htm

[9] O. Goldreich, “Secure multi-party computation,” Sept.1998, (working
draft). [Online]. Available: http://www.wisdom.weizmann.ac.il/∼oded/
pp.html

[10] J. Vaidya and C. Clifton, “Privacy preserving association rule mining in
vertically partitioned data,” inThe Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Edmonton,
Alberta, Canada, July 23-26 2002, pp. 639–644. [Online]. Available:
http://doi.acm.org/10.1145/775047.775142

[11] A. C. Yao, “How to generate and exchange secrets,” inProceedings of
the 27th IEEE Symposium on Foundations of Computer Science. IEEE,
1986, pp. 162–167.

[12] I. Ioannidis and A. Grama, “An efficient protocol for yao’s millionaires’
problem,” in Hawaii International Conference on System Sciences
(HICSS-36), Waikoloa Village, Hawaii, Jan. 6-9 2003.

[13] O. Goldreich, “Encryption schemes,” Mar. 2003, (working
draft). [Online]. Available: http://www.wisdom.weizmann.ac.il/∼oded/
PSBookFrag/enc.ps

[14] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining
digital signatures and public-key cryptosystems,”Communications of
the ACM, vol. 21, no. 2, pp. 120–126, 1978. [Online]. Available:
http://doi.acm.org/10.1145/359340.359342

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, TO APPEAR

[15] S. C. Pohlig and M. E. Hellman, “An improved algorithm for com-
puting logarithms over GF(p) and its cryptographic significance,” IEEE
Transactions on Information Theory, vol. IT-24, pp. 106–110, 1978.

[16] M. K. Reiter and A. D. Rubin, “Crowds: Anonymity for Web
transactions,”ACM Transactions on Information and System Security,
vol. 1, no. 1, pp. 66–92, Nov. 1998. [Online]. Available: http:
//doi.acm.org/10.1145/290163.290168

[17] J. C. Benaloh, “Secret sharing homomorphisms: Keeping
shares of a secret secret,” inAdvances in Cryptography -
CRYPTO86: Proceedings, A. Odlyzko, Ed., vol. 263. Springer-
Verlag, Lecture Notes in Computer Science, 1986, pp. 251–
260. [Online]. Available: http://springerlink.metapress.com/openurl.asp?
genre=article&issn=0302-9%743&volume=263&spage=251

[18] B. Chor and E. Kushilevitz, “A communication-privacy tradeoff for
modular addition,”Information Processing Letters, vol. 45, no. 4, pp.
205–210, 1993.

[19] C. Clifton, M. Kantarcioglu, and J. Vaidya, “Defining privacy for data
mining,” in National Science Foundation Workshop on Next Generation
Data Mining, H. Kargupta, A. Joshi, and K. Sivakumar, Eds., Baltimore,
MD, Nov. 1-3 2002, pp. 126–133.

[20] B. A. Huberman, M. Franklin, and T. Hogg, “Enhancing privacy and
trust in electronic communities,” inProceedings of the First ACM
Conference on Electronic Commerce (EC99). Denver, Colorado, USA:
ACM Press, Nov. 3–5 1999, pp. 78–86.

[21] J. C. Benaloh and M. de Mare, “One-way accumulators: A decentralized
alternative to digital signatures,” inAdvances in Cryptology –
EUROCRYPT’93, Workshop on the Theory and Application of
Cryptographic Techniques, ser. Lecture Notes in Computer Science,
vol. 765. Lofthus, Norway: Springer-Verlag, May 1993, pp. 274–
285. [Online]. Available: http://springerlink.metapress.com/openurl.asp?
genre=article&issn=0302-9%743&volume=765&spage=274

[22] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE
Trans. Inform. Theory, vol. IT-22, no. 6, pp. 644–654, Nov. 1976.

[23] T. ElGamal, “A public key cryptosystem and a signature scheme based
on discrete logarithms,”IEEE Trans. Inform. Theory, vol. IT-31, no. 4,
pp. 469–472, July 1985.

[24] A. Shamir, R. L. Rivest, and L. M. Adleman, “Mental poker,” Laboratory
for Computer Science, MIT, Technical Memo MIT-LCS-TM-125,Feb.
1979.

Murat Kantarcıo ǧlu is a Ph.D. candidate at Purdue
University. He has a Master’s degree in Computer
Science from Purdue University and a Bachelor’s
degree in Computer Engineering from Middle East
Technical University, Ankara Turkey. His research
interests include data mining, database security and
information security. He is a student member of
ACM.

Chris Clifton is an Associate Professor of Computer
Science at Purdue University. He has a Ph.D. from
Princeton University, and Bachelor’s and Master’s
degrees from the Massachusetts Institute of Technol-
ogy. Prior to joining Purdue he held positions at The
MITRE Corporation and Northwestern University.
His research interests include data mining, database
support for text, and database security. He is a senior
member of the IEEE and a member of the IEEE
Computer Society and the ACM.

Protocol 1 Finding secure union of large itemsets of sizek

Require: N ≥ 3 sites numbered1..N − 1, set F of non-
itemsets.

Phase 0: Encryption of all the rules by all sites
for each site ido

generateLLi(k) as in steps 1 and 2 of the FDM algorithm
LLei(k) = ∅
for eachX ∈ LLi(k) do

LLei(k) = LLei(k) ∪ {Ei(X)}
end for
for j = |LLei(k)| + 1 to |CG(k)| do

LLei(k) = LLei(k) ∪ {Ei(random selection fromF)}
end for

end for

Phase 1: Encryption by all sites
for Roundj = 0 to N − 1 do

if Roundj= 0 then
Each sitei sends permutedLLei(k) to site(i+1) mod
N

else
Each sitei encrypts all items inLLe(i−j mod N)(k)

with Ei, permutes, and sends it to site(i + 1) mod N
end if

end for{At the end of Phase 1, sitei has the itemsets of
site (i + 1) mod N encrypted by every site}

Phase 2: Merge odd/even itemsets
Each sitei sendsLLei+1 mod N to site i mod 2

Site 0 setsRuleSet1 = ∪
d(N−1)/2e
j=1 LLe(2j−1)(k)

Site 1 setsRuleSet0 = ∪
b(N−1)/2c
j=0 LLe(2j)(k)

Phase 3: Merge all itemsets
Site 1 sends permutedRuleSet1 to site 0
Site 0 setsRuleSet = RuleSet0 ∪ RuleSet1

Phase 4: Decryption
for i = 0 to N − 1 do

Site i decrypts items inRuleSet usingDi

Site i sends permutedRuleSet to site i + 1 mod N
end for
Site N − 1 decrypts items inRuleSet usingDN−1

RuleSet(k) = RuleSet− F
Site N − 1 broadcastsRuleSet(k) to sites0..N − 2

KANTARCIOǦLU AND CLIFTON 13

Protocol 2 Finding the global support counts securely

Require: N ≥ 3 sites numbered0..N − 1, m ≥ 2 ∗ |DB|
rule set = ∅
at site 0:
for eachr ∈ candidate set do

choose random integerxr from a uniform distribution
over 0..m − 1;
t = r.supi − s ∗ |DBi| + xr (mod m);
rule set = rule set ∪ {(r, t)};

end for
sendrule set to site 1 ;
for i = 1 to N − 2 do

for each(r, t) ∈ rule set do
t̄ = r.supi − s ∗ |DBi| + t (mod m);
rule set = rule set − {(r, t)} ∪ {(r, t̄)} ;

end for
sendrule set to site i + 1 ;

end for
at site N-1:
for each(r, t) ∈ rule set do

t̄ = r.supi − s ∗ |DBi| + t (mod m);
securely compute if(t̄−xr) (mod m) < m/2 with the
site 0;{ Site 0 knowsxr }
if (t̄ − xr) (mod m) < m/2 then

multi-castr as a globally large itemset.
end if

end for

