The General Pinhole Camera

Kyle Kral
Voicu Popescu

Outline
- Background
- Problem
- Solution
- Implementation
- Conclusions
- Future Work
- Acknowledgements

Background
- Computer Graphics
 - Image synthesis from geometry and color models
- Projection
 - Fundamental operation
 - Maps 3-D points to 2-D image locations

Background
- Planar Pinhole Camera (PPC)
 - Rays defined by a center of projection
 - Regular grid on an image plane
Limitations of PPC

- Limited field of view
- Limitation of all rays passing through a common point
 - rendering curved reflectors
- Does not provide sampling rate flexibility
 - shadow rendering, antialiasing, continuous local zooming

Solution

- The General Pinhole Camera (GPC) model
- Supports any set of sampling locations on the image plane
- Several GPCs sharing a center of projection
 - Combined can overcome field of view limitation
- Samples 3d scene at the desired image plane sampling locations

Three GPC Variants

- Quasi-regular set of sampling locations
 - Defined using a regular grid
 - Offset GPC
- Two sampling rates
 - Regular sampling rate + “super” pixel rate
- No pattern
 - Samples partitioned recursively using quad-tree image plane subdivision

The GPC Model

- Specifies a mapping between image points and rays
- Center of projection: C
- Image plane
 - Origin: O
 - Axes: (a, b)
- Set S of N sampling locations (u_i, v_i)
 - u_i and v_i, image plane coords.
- GPC ray is defined by the ordered pair (C, O + au_i + bv_i)
- Sampling location s, defined by the 4-tuple: (u, v, row, col)
Offset GPC Model

- Specialization of the generic GPC model
- Obtained from slightly perturbing a regular planar pinhole camera
- Define a uniform grid that maps well to the perturbed sampling location

Image plane coordinate system (O, a, b) defines a regular grid such that each cell contains at most one sampling location

Denote an offset GPC sampling location \((o_{ui}, o_{vi}, \text{row}_i, \text{col}_i)\), where image plane coordinates \((u_i, v_i)\) are replaced with offsets \((o_{ui}, o_{vi})\)

The image plane coordinates can be computed by adding the offsets to the implicit grid cell indices.

Superpixel GPC

- Anti-aliasing
 - Requires increasing resolution at some pixels
- Conventional approach
 - Increase resolution at all pixels
 - Inefficient
- GPC allows for super-sampling at only the necessary points

Superpixel Camera Model

- Edges are where anti-aliasing is key
- All pixels intersected by edge are superpixels
- Re-sampling is similar
 - Compute offsets
 - Recolor image for superpixels
Anti-Aliasing GPC Application

- Designed specifically for high-quality anti-aliasing
 - Render scene with PPC in a framebuffer which, in addition to the usual depth and color channels, also has a triangle ID channel
 - Examine the framebuffer and set superpixels. A pixel has to be rendered as a superpixel if any of its 8 immediate neighbors belongs to a different triangle and has a sufficiently contrasting color
- GPC is only concerned with anti-aliasing triangle edges with severe color changes

No Pattern in Samples

- Quad-Tree Subdivision algorithm
- Recursively divides plane into 4 pieces
- Divides sampling locations until a minimum number is reached in each cell

Preliminary Implementation

- User clicks on image
- Resample points from a new location
- User can define parameters for offset of samples

Preliminary Implementation

- Resample points from new locations
 - Based on offsets
 - Recolor image using new sample colors
 - Interpolate a transition area for blending
- Parameters:
 - r = radius
 - c = center of click
Transition Area Interpolation

- Find minimum distance to outside edge (d)
- Divide distance (d) by the total distance in transition area (r/m)
 \[\text{ratio} = \frac{d}{r/m} \]
- Multiply ratio by the distance between original dot and remapped dot (w)
 \[\text{Gives a dot in between} \]
- Move further out from center > dots more closely packed from original image

Original Image

Resample

Recolor Image with Samples
Determining Samples
- Any sampling rate can be used
- Specify different offsets for color location
- Example Visualizations:
 - Circular
 - Rectangular

Conclusions
- The General Pinhole Camera model can effectively produce images with non-uniform sampling rates
- Can be specialized
 - Several different variants for different solutions
- Applications
 - Continuous local zooming
 - Anti-aliasing
 - Multiple projector calibration
Future Work
- Implement the GPC model for 3d
- Implement a working GPC model in hardware
- Implement more variants of the GPC
- Look at different types of offsets that may be effective for different applications

Acknowledgements
- Voicu Popescu
- Computer Science Department
- Purdue University

Questions?