How to Choose a Data Mining System?

- Commercial data mining systems have little in common
 - Different data mining functionality or methodology
 - May even work with completely different kinds of data sets
- Need multiple dimensional view in selection
- Data types: relational, transactional, text, time sequence, spatial?
- System issues
 - running on only one or on several operating systems?
 - a client/server architecture?
 - Provide Web-based interfaces and allow XML data as input and/or output?
How to Choose a Data Mining System? (2)

- **Data sources**
 - ASCII text files, multiple relational data sources
 - support ODBC connections (OLE DB, JDBC)?

- **Data mining functions and methodologies**
 - One vs. multiple data mining functions
 - One vs. variety of methods per function
 - More data mining functions and methods per function provide the user with greater flexibility and analysis power

- **Coupling with DB and/or data warehouse systems**
 - Four forms of coupling: no coupling, loose coupling, semitight coupling, and tight coupling
 - Ideally, a data mining system should be tightly coupled with a database system

How to Choose a Data Mining System? (3)

- **Scalability**
 - Row (or database size) scalability
 - Column (or dimension) scalability
 - Curse of dimensionality: it is much more challenging to make a system column scalable that row scalable

- **Visualization tools**
 - “A picture is worth a thousand words”
 - Visualization categories: data visualization, mining result visualization, mining process visualization, and visual data mining

- **Data mining query language and graphical user interface**
 - Easy-to-use and high-quality graphical user interface
 - Essential for user-guided, highly interactive data mining
Examples of Data Mining Systems (1)

- **IBM Intelligent Miner**
 - A wide range of data mining algorithms
 - Scalable mining algorithms
 - Toolkits: neural network algorithms, statistical methods, data preparation, and data visualization tools
 - Tight integration with IBM's DB2 relational database system

- **SAS Enterprise Miner**
 - A variety of statistical analysis tools
 - Data warehouse tools and multiple data mining algorithms

- **Microsoft SQLServer 2000**
 - Integrate DB and OLAP with mining
 - Support OLEDB for DM standard

Examples of Data Mining Systems (2)

- **SGI MineSet**
 - Multiple data mining algorithms and advanced statistics
 - Advanced visualization tools

- **Clementine (SPSS)**
 - An integrated data mining development environment for end-users and developers
 - Multiple data mining algorithms and visualization tools

- **DBMiner (DBMiner Technology Inc.)**
 - Multiple data mining modules: discovery-driven OLAP analysis, association, classification, and clustering
 - Efficient, association and sequential-pattern mining functions, and visual classification tool
 - Mining both relational databases and data warehouses
CRISP-DM: Data Mining Process

- Cross-Industry Standard Process for Data Mining (CRISP-DM)
- European Community funded effort to develop framework for data mining tasks
- Goals:
 - Encourage interoperable tools across entire data mining process
 - Take the mystery/high-priced expertise out of simple data mining tasks

Why Should There be a Standard Process?

- Framework for recording experience
 - Allows projects to be replicated
- Aid to project planning and management
- “Comfort factor” for new adopters
 - Demonstrates maturity of Data Mining
 - Reduces dependency on “stars”

The data mining process must be reliable and repeatable by people with little data mining background.
Process Standardization

- CRoss Industry Standard Process for Data Mining
- Initiative launched Sept. 1996
- SPSS/ISL, NCR, Daimler-Benz, OHRA
- Funding from European commission
- Over 200 members of the CRISP-DM SIG worldwide
 - DM Vendors - SPSS, NCR, IBM, SAS, SGI, Data Distilleries, Syllogic, Magnify, ...
 - System Suppliers / consultants - Cap Gemini, ICL Retail, Deloitte & Touche, ...
 - End Users - BT, ABB, Lloyds Bank, AirTouch, Experian, ...

CRISP-DM

- Non-proprietary
- Application/Industry neutral
- Tool neutral
- Focus on business issues
 - As well as technical analysis
- Framework for guidance
- Experience base
 - Templates for Analysis
CRISP-DM: Overview

CRISP-DM: Phases

- **Business Understanding**
 - Understanding project objectives and requirements
 - Data mining problem definition
- **Data Understanding**
 - Initial data collection and familiarization
 - Identify data quality issues
 - Initial, obvious results
- **Data Preparation**
 - Record and attribute selection
 - Data cleansing
- **Modeling**
 - Run the data mining tools
- **Evaluation**
 - Determine if results meet business objectives
 - Identify business issues that should have been addressed earlier
- **Deployment**
 - Put the resulting models into practice
 - Set up for repeated/continuous mining of the data
Phases and Tasks

Business Understanding
- Determine Business Objectives
 - Background
 - Business Objectives
 - Business Success Criteria
- Situational Assessment
 - Inventory of Resources
 - Requirements
 - Assumptions
 - Constraints
 - Risks and Contingencies
 - Terminology
 - Costs and Benefits
- Determine Data Mining Goal
 - Data Mining Goals
 - Data Mining Success Criteria
- Produce Project Plan
 - Project Plan
 - Initial Assessment of Tools and Techniques

Data Understanding
- Collect Initial Data
 - Initial Data Collection Report
- Describe Data
 - Data Description Report
- Explore Data
 - Data Exploration Report
- Verify Data
 - Data Quality Report

Data Preparation
- Data Set
 - Data Set Description
- Select Data
 - Rationale for Inclusion
 - Exclusion
- Clean Data
 - Data Cleaning Report
- Construct Data
 - Derived Attributes
 - Generated Records
- Integrate Data
 - Merged Data
- Reformat Data
 - Reformatted Data

Modeling
- Select Modeling Technique
- Modeling Technique
- Modeling Assumptions
- Generate Test Design
- Test Design
- Build Model
 - Parameter Settings
 - Models
 - Model Description
- Assess Model
 - Model Assessment
 - Revised Parameter Settings

Evaluation
- Evaluate Results
 - Assessment of Data Mining Results
 - Business Success Criteria
 - Approved Models
- Review Process
 - Review of Process
- Determine Next Steps
 - List of Possible Actions
 - Decision

Deployment
- Plan Deployment
- Deployment Plan
- Plan Monitoring and Maintenance
- Monitoring and Maintenance Plan
- Produce Final Report
 - Final Report
 - Final Presentation
- Review Project Experience
 - Documentation

Phases in the DM Process (1 & 2)

- **Business Understanding:**
 - Statement of Business Objective
 - Statement of Data Mining objective
 - Statement of Success Criteria

- **Data Understanding:**
 - Explore the data and verify the quality
 - Find outliers
Phases in the DM Process (3)

Data preparation:
- Takes usually over 90% of the time
 - Collection
 - Assessment
 - Consolidation and Cleaning
 - table links, aggregation level, missing values, etc
 - Data selection
 - active role in ignoring non-contributory data?
 - outliers?
 - Use of samples
 - visualization tools
 - Transformations - create new variables

Phases in the DM Process (4)

- Model building
 - Selection of the modeling techniques is based upon the data mining objective
 - Modeling is an iterative process - different for supervised and unsupervised learning
 - May model for either description or prediction
Phases in the DM Process (5)

- Model Evaluation
 - Evaluation of model: how well it performed on test data
 - Methods and criteria depend on model type:
 - e.g., coincidence matrix with classification models, mean error rate with regression models
 - Interpretation of model: important or not, easy or hard depends on algorithm

CS590D 18

Phases in the DM Process (6)

- Deployment
 - Determine how the results need to be utilized
 - Who needs to use them?
 - How often do they need to be used
- Deploy Data Mining results by:
 - Scoring a database
 - Utilizing results as business rules
 - interactive scoring on-line

CS590D 19
CRISP-DM: Details

• Available on-line: www.crisp-dm.org
 – 20 pages model (overview)
 – 30 page user guide (step-by-step process, hints)
 – 10 page “output” (suggested outline for a report on a data mining project)

• Has SPSS written all over it
 – But not a plug for a product (or even customized toward that product)

Why CRISP-DM?

• The data mining process must be reliable and repeatable by people with little data mining skills
• CRISP-DM provides a uniform framework for
 – guidelines
 – experience documentation
• CRISP-DM is flexible to account for differences
 – Different business/agency problems
 – Different data