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Classification and Prediction

• What is classification? What is prediction?
• Issues regarding classification and 

prediction
• Bayesian Classification
• Instance Based Methods
• Classification by decision tree induction
• Classification by Neural Networks
• Classification by Support Vector Machines 

(SVM)
• Prediction
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Classification vs. Prediction

• Classification:
– predicts categorical class labels (discrete or nominal)
– classifies data (constructs a model) based on the training set 

and the values (class labels) in a classifying attribute and uses it 
in classifying new data

• Prediction:  
– models continuous-valued functions, i.e., predicts unknown or 

missing values 

• Typical Applications
– credit approval
– target marketing
– medical diagnosis
– treatment effectiveness analysis
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Classification—A Two-Step 
Process

• Model construction: describing a set of predetermined classes
– Each tuple/sample is assumed to belong to a predefined class, as 

determined by the class label attribute
– The set of tuples used for model construction is training set
– The model is represented as classification rules, decision trees, or 

mathematical formulae
• Model usage: for classifying future or unknown objects

– Estimate accuracy of the model
• The known label of test sample is compared with the classified 

result from the model
• Accuracy rate is the percentage of test set samples that are 

correctly classified by the model
• Test set is independent of training set, otherwise over-fitting will 

occur
– If the accuracy is acceptable, use the model to classify data tuples

whose class labels are not known
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Classification Process (1): 
Model Construction

Training
Data

NAME RANK YEARS TENURED
Mike Assistant Prof 3 no
Mary Assistant Prof 7 yes
Bill Professor 2 yes
Jim Associate Prof 7 yes
Dave Assistant Prof 6 no
Anne Associate Prof 3 no

Classification
Algorithms

IF rank = ‘professor’
OR years > 6
THEN tenured = ‘yes’

Classifier
(Model)
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Classification Process (2): 
Use the Model in Prediction

Classifier

Testing
Data

NAME RANK YEARS TENURED

Tom Assistant Prof 2 no
Merlisa Associate Prof 7 no
George Professor 5 yes
Joseph Assistant Prof 7 yes

Unseen Data

(Jeff, Professor, 4)

Tenured?
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Dataset
age income student credit_rating buys_computer

<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent
31…40 high yes fair
>40 medium no excellent
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A Decision Tree for 
“buys_computer”

age?

overcast

student? credit rating?

no yes fairexcellent

<=30 >40

no noyes yes

yes

30..40
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Supervised vs. Unsupervised 
Learning

• Supervised learning (classification)

– Supervision: The training data (observations, measurements, 

etc.) are accompanied by labels indicating the class of the 

observations

– New data is classified based on the training set

• Unsupervised learning (clustering)

– The class labels of training data is unknown

– Given a set of measurements, observations, etc. with the aim of 

establishing the existence of classes or clusters in the data
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Classification and Prediction

• What is classification? What is prediction?
• Issues regarding classification and 

prediction
• Bayesian Classification
• Instance Based Methods
• Classification by decision tree induction
• Classification by Neural Networks
• Classification by Support Vector Machines 

(SVM)
• Prediction
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Issues (1): Data Preparation

• Data cleaning
– Preprocess data in order to reduce noise and 

handle missing values

• Relevance analysis (feature selection)
– Remove the irrelevant or redundant attributes

• Data transformation
– Generalize and/or normalize data
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Issues (2): Evaluating 
Classification Methods

• Predictive accuracy
• Speed and scalability

– time to construct the model
– time to use the model

• Robustness
– handling noise and missing values

• Scalability
– efficiency in disk-resident databases 

• Interpretability: 
– understanding and insight provided by the model

• Goodness of rules
– decision tree size
– compactness of classification rules
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Classification and Prediction

• What is classification? What is prediction?
• Issues regarding classification and 

prediction
• Bayesian Classification
• Instance Based Methods
• Classification by decision tree induction
• Classification by Neural Networks
• Classification by Support Vector Machines 

(SVM)
• Prediction
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Bayesian Classification: 
Why?

• Probabilistic learning:  Calculate explicit probabilities for 
hypothesis, among the most practical approaches to 
certain types of learning problems

• Incremental: Each training example can incrementally 
increase/decrease the probability that a hypothesis is 
correct.  Prior knowledge can be combined with 
observed data.

• Probabilistic prediction:  Predict multiple hypotheses, 
weighted by their probabilities

• Standard: Even when Bayesian methods are 
computationally intractable, they can provide a standard 
of optimal decision making against which other methods 
can be measured
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Bayes’ Theorem: Basics

• Let X be a data sample whose class label is unknown
• Let H be a hypothesis that X belongs to class C 
• For classification problems, determine P(H|X): the 

probability that the hypothesis holds given the observed 
data sample X

• P(H): prior probability of hypothesis H (i.e. the initial 
probability before we observe any data, reflects the 
background knowledge)

• P(X): probability that sample data is observed
• P(X|H) : probability of observing the sample X, given that 

the hypothesis holds
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Bayes’ Theorem

• Given training data X, posteriori probability of a 
hypothesis H, P(H|X) follows the Bayes theorem

• Informally, this can be written as 
posterior =likelihood x prior / evidence

• MAP (maximum posteriori) hypothesis

• Practical difficulty: require initial knowledge of many 
probabilities, significant computational cost
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Naïve Bayes Classifier 

• A simplified assumption: attributes are conditionally 
independent:

• The product of occurrence of say 2 elements x1 and x2, 
given the current class is C, is the product of the 
probabilities of each element taken separately, given the 
same class P([y1,y2],C) = P(y1,C) * P(y2,C)

• No dependence relation between attributes 
• Greatly reduces the computation cost, only count the 

class distribution.
• Once the probability P(X|Ci) is known, assign X to the 

class with maximum P(X|Ci)*P(Ci)

∏
=

=
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Training dataset

age income student credit_rating buys_computer
<=30 high no fair no
<=30 high no excellent no
30…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no

Class:
C1:buys_computer=
‘yes’
C2:buys_computer=
‘no’

Data sample 
X =(age<=30,
Income=medium,
Student=yes
Credit_rating=
Fair)
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Naïve Bayesian Classifier:  
Example

• Compute P(X/Ci) for each class
P(age=“<30” | buys_computer=“yes”)  = 2/9=0.222
P(age=“<30” | buys_computer=“no”) = 3/5 =0.6
P(income=“medium” | buys_computer=“yes”)= 4/9 =0.444
P(income=“medium” | buys_computer=“no”) = 2/5 = 0.4
P(student=“yes” | buys_computer=“yes)= 6/9 =0.667
P(student=“yes” | buys_computer=“no”)= 1/5=0.2
P(credit_rating=“fair” | buys_computer=“yes”)=6/9=0.667
P(credit_rating=“fair” | buys_computer=“no”)=2/5=0.4

X=(age<=30 ,income =medium, student=yes,credit_rati ng=fair)
P(X|Ci) : P(X|buys_computer=“yes”)= 0.222 x 0.444 x 0.667 x 0.0.667 =0.044

P(X|buys_computer=“no”)= 0.6 x 0.4 x 0.2 x 0.4 =0.019
P(X|Ci)*P(Ci ) : P(X|buys_computer=“yes”) * P(buys_computer=“yes”)=0.028

P(X|buys_computer=“yes”) * P(buys_computer=“yes”)=0.007
X belongs to  class “buys_computer=yes”
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Naïve Bayes Classifier: 
Comments

• Advantages : 
– Easy to implement 
– Good results obtained in most of the cases

• Disadvantages
– Assumption: class conditional independence , therefore loss of 

accuracy
– Practically, dependencies exist among variables 
– E.g.,  hospitals: patients: Profile: age, family history etc 

Symptoms: fever, cough etc., Disease: lung cancer, diabetes etc 
– Dependencies among these cannot be modeled by Naïve 

Bayesian Classifier

• How to deal with these dependencies?
– Bayesian Belief Networks 
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Bayesian Networks

• Bayesian belief network allows a subset of the variables 

conditionally independent

• A graphical model of causal relationships
– Represents dependency among the variables 

– Gives a specification of joint probability distribution 

X Y

Z
P

•Nodes: random variables
•Links: dependency
•X,Y are the parents of Z, and Y is the 
parent of P
•No dependency between Z and P
•Has no loops or cycles
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Bayesian Belief Network: An 
Example

Family
History

LungCancer

PositiveXRay

Smoker

Emphysema

Dyspnea

LC

~LC

(FH, S) (FH, ~S) (~FH, S) (~FH, ~S)

0.8

0.2

0.5

0.5

0.7

0.3

0.1

0.9

Bayesian Belief Networks

The conditional probability table 
for the variable LungCancer:
Shows the conditional probability 
for each possible combination of its 
parents

∏
=

=
n

i
ZParents iziPznzP

1
))(|(),...,1(
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Learning Bayesian 
Networks

• Several cases
– Given both the network structure and all variables 

observable: learn only the CPTs
– Network structure known, some hidden variables: 

method of gradient descent, analogous to neural 
network learning

– Network structure unknown, all variables observable: 
search through the model space to reconstruct graph 
topology 

– Unknown structure, all hidden variables: no good 
algorithms known for this purpose

• D. Heckerman, Bayesian networks for data 
mining
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Classification and Prediction

• What is classification? What is prediction?
• Issues regarding classification and 

prediction
• Bayesian Classification
• Instance Based Methods
• Classification by decision tree induction
• Classification by Neural Networks
• Classification by Support Vector Machines 

(SVM)
• Prediction
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Other Classification 
Methods

• k-nearest neighbor classifier

• case-based reasoning

• Genetic algorithm

• Rough set approach

• Fuzzy set approaches
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Instance-Based Methods

• Instance-based learning: 
– Store training examples and delay the processing (“lazy 

evaluation”) until a new instance must be classified

• Typical approaches
– k-nearest neighbor approach

• Instances represented as points in a Euclidean space.
– Locally weighted regression

• Constructs local approximation
– Case-based reasoning

• Uses symbolic representations and knowledge-based 
inference
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The k-Nearest Neighbor 
Algorithm

• All instances correspond to points in the n-D space.
• The nearest neighbor are defined in terms of Euclidean 

distance.
• The target function could be discrete- or real- valued.
• For discrete-valued, the k-NN returns the most common 

value among the k training examples nearest to xq. 
• Voronoi diagram: the decision surface induced by 1-NN 

for a typical set of training examples.
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Discussion of the k-NN 
Algorithm

• The k-NN algorithm for continuous-valued target 
functions
– Calculate the mean values of the k nearest neighbors

• Distance-weighted nearest neighbor algorithm
– Weight the contribution of each of the k neighbors according to 

their distance to the query point xq

• giving greater weight to closer neighbors
– Similarly, for real-valued target functions

• Robust to noisy data by averaging k-nearest neighbors
• Curse of dimensionality: distance between neighbors 

could be dominated by irrelevant attributes.   
– To overcome it, axes stretch or elimination of the least relevant 

attributes.

w
d xq xi

≡ 1
2( , )
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Classification and Prediction

• What is classification? What is prediction?
• Issues regarding classification and 

prediction
• Bayesian Classification
• Instance Based Methods
• Classification by decision tree induction
• Classification by Neural Networks
• Classification by Support Vector Machines 

(SVM)
• Prediction
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Training Dataset

age income student credit_rating buys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no

This 
follows an  
example 
from 
Quinlan’s 
ID3
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Output: A Decision Tree for 
“buys_computer”

age?

overcast

student? credit rating?

no yes fairexcellent

<=30 >40

no noyes yes

yes

30..40
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Algorithm for Decision Tree 
Induction

• Basic algorithm (a greedy algorithm)
– Tree is constructed in a top-down recursive divide-and-conquer manner
– At start, all the training examples are at the root
– Attributes are categorical (if continuous-valued, they are discretized in 

advance)
– Examples are partitioned recursively based on selected attributes
– Test attributes are selected on the basis of a heuristic or statistical 

measure (e.g., information gain)

• Conditions for stopping partitioning
– All samples for a given node belong to the same class
– There are no remaining attributes for further partitioning – majority 

voting is employed for classifying the leaf
– There are no samples left
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� Select the attribute with the highest information gain

� S contains si tuples of class Ci for i = {1, …, m} 

� information measures info required to classify any 
arbitrary tuple

� entropy of attribute A with values {a1,a2,…,av}

� information gained by branching on attribute A
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Attribute Selection Measure: 
Information Gain (ID3/C4.5)
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Attribute Selection by 
Information Gain Computation

g Class P: buys_computer = “yes”
g Class N: buys_computer = “no”
g I(p, n) = I(9, 5) =0.940
g Compute the entropy for age:

means “age <=30” has 5 

out of 14 samples, with 2 yes’es

and 3 no’s.   Hence

Similarly,

age pi ni I(pi, ni)
<=30 2 3 0.971
30…40 4 0 0
>40 3 2 0.971
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246.0)(),()( =−= ageEnpIageGainage income student credit_rating buys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no
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Other Attribute Selection 
Measures

• Gini index (CART, IBM IntelligentMiner)
– All attributes are assumed continuous-valued

– Assume there exist several possible split values for 
each attribute

– May need other tools, such as clustering, to get the 
possible split values

– Can be modified for categorical attributes
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Gini Index (IBM 
IntelligentMiner)

• If a data set T contains examples from n classes, gini
index, gini(T) is defined as

where pj is the relative frequency of class j in T.
• If a data set T is split into two subsets T1 and T2 with 

sizes N1 and N2 respectively, the gini index of the split 
data contains examples from n classes, the gini index 
gini(T) is defined as

• The attribute provides the smallest ginisplit(T) is chosen to 
split the node (need to enumerate all possible splitting 
points for each attribute).

∑
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Extracting Classification Rules 
from Trees

• Represent the knowledge in the form of IF-THEN rules

• One rule is created for each path from the root to a leaf

• Each attribute-value pair along a path forms a conjunction

• The leaf node holds the class prediction

• Rules are easier for humans to understand

• Example

IF age = “<=30” AND student = “no” THEN buys_computer = “no”

IF age = “<=30” AND student = “yes” THEN buys_computer = “yes”

IF age = “31…40” THEN buys_computer = “yes”

IF age = “>40” AND credit_rating = “excellent” THEN buys_computer = “yes”

IF age = “<=30” AND credit_rating = “fair” THEN buys_computer = “no”
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Avoid Overfitting in 
Classification

• Overfitting:  An induced tree may overfit the training data
– Too many branches, some may reflect anomalies due to noise or 

outliers
– Poor accuracy for unseen samples

• Two approaches to avoid overfitting
– Prepruning: Halt tree construction early—do not split a node if 

this would result in the goodness measure falling below a 
threshold

• Difficult to choose an appropriate threshold
– Postpruning: Remove branches from a “fully grown” tree—get a 

sequence of progressively pruned trees
• Use a set of data different from the training data to decide 

which is the “best pruned tree”
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Approaches to Determine the 
Final Tree Size

• Separate training (2/3) and testing (1/3) sets

• Use cross validation, e.g., 10-fold cross validation

• Use all the data for training

– but apply a statistical test (e.g., chi-square) to estimate whether 
expanding or pruning a node may improve the entire distribution

• Use minimum description length (MDL) principle

– halting growth of the tree when the encoding is minimized
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Enhancements to basic 
decision tree induction

• Allow for continuous-valued attributes
– Dynamically define new discrete-valued attributes that partition 

the continuous attribute value into a discrete set of intervals

• Handle missing attribute values
– Assign the most common value of the attribute

– Assign probability to each of the possible values

• Attribute construction
– Create new attributes based on existing ones that are sparsely 

represented

– This reduces fragmentation, repetition, and replication
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Classification in Large 
Databases

• Classification—a classical problem extensively studied 
by statisticians and machine learning researchers

• Scalability: Classifying data sets with millions of 
examples and hundreds of attributes with reasonable 
speed

• Why decision tree induction in data mining?
– relatively faster learning speed (than other classification 

methods)
– convertible to simple and easy to understand classification rules
– can use SQL queries for accessing databases
– comparable classification accuracy with other methods
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Scalable Decision Tree Induction 
Methods in Data Mining Studies

• SLIQ (EDBT’96 — Mehta et al.)
– builds an index for each attribute and only class list and the 

current attribute list reside in memory

• SPRINT (VLDB’96 — J. Shafer et al.)
– constructs an attribute list data structure 

• PUBLIC (VLDB’98 — Rastogi & Shim)
– integrates tree splitting and tree pruning: stop growing the tree 

earlier

• RainForest (VLDB’98 — Gehrke, Ramakrishnan & 
Ganti)
– separates the scalability aspects from the criteria that determine 

the quality of the tree
– builds an AVC-list (attribute, value, class label)
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Presentation of Classification 
Results
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Visualization of a Decision Tree in 
SGI/MineSet 3.0
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Classification and Prediction

• What is classification? What is prediction?
• Issues regarding classification and 

prediction
• Bayesian Classification
• Instance Based methods
• Classification by decision tree induction
• Classification by Neural Networks
• Classification by Support Vector Machines 

(SVM)
• Prediction
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Classification

• Classification:
– predicts categorical class labels

• Typical Applications
– {credit history, salary}-> credit approval ( Yes/No)
– {Temp, Humidity} --> Rain (Yes/No)

Mathematically
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Linear Classification

• Binary Classification 
problem

• The data above the red 
line belongs to class ‘x’

• The data below red line 
belongs to class ‘o’

• Examples – SVM, 
Perceptron, Probabilistic 
Classifiers

x

x
x

x

xx

x

x

x

x
o
o
o

o
o

o

o

o

o o

o
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CS590D 53

Discriminative Classifiers
• Advantages

– prediction accuracy is generally high 
• (as compared to Bayesian methods – in general)

– robust, works when training examples contain errors
– fast evaluation of the learned target function

• (Bayesian networks are normally slow) 

• Criticism
– long training time
– difficult to understand the learned function (weights)

• (Bayesian networks can be used easily for pattern discovery)
– not easy to incorporate domain knowledge

• (easy in the form of priors on the data or distributions)
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Neural Networks

• Analogy to Biological Systems (Indeed a great example 

of a good learning system)

• Massive Parallelism allowing for computational efficiency

• The first learning algorithm came in 1959 (Rosenblatt) 

who suggested that if a target output value is provided 

for a single neuron with fixed inputs, one can 

incrementally change weights to learn to produce these 

outputs using the perceptron learning rule
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A  Neuron

• The n-dimensional input vector x is mapped into  
variable y by means of the scalar product and a 
nonlinear function mapping

µk-

f

weighted 
sum

Input
vector x

output y

Activation
function

weight
vector w

∑

w0

w1

wn

x0

x1
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A  Neuron
µk-

f

weighted 
sum

Input
vector x

output y

Activation
function

weight
vector w

∑
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Multi-Layer Perceptron

Output nodes

Input nodes

Hidden nodes

Output vector

Input vector: xi
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Network Training
• The ultimate objective of training 

– obtain a set of weights that makes almost all the tuples in the 
training data classified correctly 

• Steps
– Initialize weights with random values 

– Feed the input tuples into the network one by one

– For each unit
• Compute the net input to the unit as a linear combination of all the 

inputs to the unit

• Compute the output value using the activation function
• Compute the error
• Update the weights and the bias
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Network Pruning and Rule 
Extraction

• Network pruning
– Fully connected network will be hard to articulate

– N input nodes, h hidden nodes and m output nodes lead to h(m+N) weights

– Pruning: Remove some of the links without affecting classification accuracy of 
the network

• Extracting rules from a trained network
– Discretize activation values; replace individual activation value by the cluster 

average maintaining the network accuracy

– Enumerate the output from the discretized activation values to find rules between 
activation value and output

– Find the relationship between the input and activation value 

– Combine the above two to have rules relating the output to input
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Classification and Prediction

• What is classification? What is prediction?
• Issues regarding classification and 

prediction
• Bayesian Classification
• Instance Based Methods
• Classification by decision tree induction
• Classification by Neural Networks
• Classification by Support Vector Machines 

(SVM)
• Prediction
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SVM – Support Vector 
Machines

Support Vectors

Small Margin Large Margin
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Support vector machine(SVM).

• Classification is essentially finding the best 
boundary between classes.

• Support vector machine finds the best 
boundary points called support vectors 
and build classifier on top of them.

• Linear and Non-linear support vector 
machine.
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Example of general SVM

The dots with shadow around 
them are support vectors. 
Clearly they are the best data
points to represent the
boundary. The curve is the
separating boundary.
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Optimal Hyper plane, separable 
case.

• In this case, class 1 
and class 2 are 
separable. 

• The representing 
points are selected 
such that the margin 
between two classes 
are maximized.

• Crossed points are 
support vectors.

00 =+ ββTx

C

X

X

X

X
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Analysis of Separable case.

1.   Through out our presentation, the training data 
consists of N pairs:(x1,y1), (x2,y2) ,…, (Xn,Yn). 

2.   Define a hyper plane:

where β is a unit vector. The classification rule 
is :

}0)(:{ 0 =+= ββTxxfx

][)( 0ββ += TxsignxG
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Analysis Cont.

3. So the problem of finding optimal hyperplane
turns to: 
Maximizing  C on 
Subject to constrain:

4. It’s the same as :
Minimizing          subject to 

1||||,, 0 =βββ

.,...,1,)( 0 NiCxy T
ii =>+ ββ

||||β

.,...,1,1)( 0 Nixy T
ii =>+ ββ
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Non-separable case

When the data set is
non-separable as 
shown in the right 
figure, we will assign 
weight to each
support vector which 
will be shown in the 
constraint.

00 =+ ββTx

X

X

X

X

C

ξ*
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Non-separable Cont.

1.   Constraint changes to the following:
Where

2.   Thus the optimization problem changes to:

Min         subject to                                    
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Compute SVM.

We can rewrite the optimization problem 
as: 

Subject to ζi>0,

Which we can solve by Lagrange.
The separable case is when γ=0.

2

1
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SVM computing Cont.

The Lagrange function for this problem is:

By formal Lagrange procedures, we get a 
dual problem:
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SVM computing Cont.

This dual problem subjects to the original 
and the K-K-T constraint. Then it turns to 
a simpler quadratic programming problem 

The solution is in the form of: 

1
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i

y xβ α
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General SVM

This classification problem
clearly do not have a good
optimal linear classifier.

Can we do better? 
A non-linear boundary as 
shown will do fine.
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General SVM Cont.

• The idea is to map the feature space into a 
much bigger space so that the boundary is 
linear in the new space.

• Generally linear boundaries in the 
enlarged space achieve better training-
class separation, and it translates to non-
linear boundaries in the original space.
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Mapping

• Mapping
– Need distances in H: 

• Kernel Function:
– Example:

• In this example, H is infinite-dimensional  

: d HΦ ℝ ֏

( ) ( )i jx xΦ ⋅Φ
( , ) ( ) ( )i j i jK x x x x= Φ ⋅Φ

2 2|| || / 2( , ) i jx x

i jK x x e σ− −=
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Degree 3 Example
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Resulting Surfaces
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General SVM Cont.

Now suppose our mapping from original 
Feature space to new space is h(xi), the dual 

problem changed to:

Note that the transformation only 
operates on the dot product.

)'(),(''
2

1

1 11 '
iiii

N

i

N

i
ii

N

i
iD xhxhyyL ∑∑∑

= ==

−= ααα

CS590D 83

General SVM Cont.

Similar to linear case, the solution can be 
written as:

But function “h” is of very high dimension 
sometimes infinity, does it mean SVM is 
impractical?
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Reproducing Kernel.

Look at  the dual problem, the solution 
only depends on                    . 
Traditional functional analysis tells us we 
need to only look at their kernel 
representation: K(X,X’)=                      
Which lies in a much smaller dimension 
Space than “h”.

)(),( 'ii xhxh

)(),( 'ii xhxh
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Restrictions and typical kernels.

• Kernel representation does not exist all 
the time, Mercer’s condition (Courant 
and Hilbert,1953) tells us the condition 
for this kind of existence.

• There are a set of kernels proven to be 
effective, such as  polynomial kernels 
and radial basis kernels.
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Example of polynomial kernel.

r degree polynomial:
K(x,x’)=(1+<x,x’>)d.
For a feature space with two inputs: x1,x2 

and 
a polynomial kernel of degree 2.
K(x,x’)=(1+<x,x’>)2

Let
and                      , then K(x,x’)=<h(x),h(x’)>.

2
25

2
1423121 )(,)(,2)(,2)(,1)( xxhxxhxxhxxhxh =====

216 2)( xxxh =

CS590D 87

Performance of SVM.

• For optimal hyper planes passing through the origin, we 
have:

• For general support vector machine.

E(# of support vectors)/(# training samples)
• SVM has been very successful in lots of applications.
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Results
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SVM vs. Neural Network

• SVM
– Relatively new concept
– Nice Generalization 

properties

– Hard to learn – learned in 
batch mode using 
quadratic programming 
techniques

– Using kernels can learn 
very complex functions

• Neural Network
– Quiet Old
– Generalizes well but 

doesn’t have strong 
mathematical 
foundation

– Can easily be learned 
in incremental fashion

– To learn complex 
functions – use 
multilayer perceptron
(not that trivial)
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Open problems of SVM.

• How do we choose Kernel function for a 
specific set of problems. Different Kernel 
will have different results, although 
generally the results are better than using 
hyper planes.

• Comparisons with Bayesian risk for 
classification problem. Minimum Bayesian 
risk is proven to be the best. When can 
SVM achieve the risk.
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Open problems of SVM

• For very large training set, support vectors 
might be of large size. Speed thus 
becomes a bottleneck.

• A optimal design for multi-class SVM 
classifier.



42

CS590D 92

SVM Related Links

• http://svm.dcs.rhbnc.ac.uk/

• http://www.kernel-machines.org/

• C. J. C. Burges. A Tutorial on Support Vector Machines for Pattern 

Recognition. Knowledge Discovery and Data Mining, 2(2), 1998. 

• SVMlight – Software (in C) http://ais.gmd.de/~thorsten/svm_light

• BOOK:  An Introduction to Support Vector Machines

N. Cristianini and J. Shawe-Taylor

Cambridge University Press
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Classification and Prediction

• What is classification? What is prediction?
• Issues regarding classification and prediction
• Bayesian Classification
• Instance-based methods
• Classification by decision tree induction
• Classification by Neural Networks
• Classification by Support Vector Machines (SVM)
• Other Classification Methods
• Prediction
• Classification accuracy
• Summary
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Association-Based 
Classification 

• Several methods for association-based 
classification 
– ARCS: Quantitative association mining and clustering 

of association rules (Lent et al’97)
• It beats C4.5 in (mainly) scalability and also accuracy

– Associative classification: (Liu et al’98)  
• It mines high support and high confidence rules in the form of 

“cond_set => y”, where y is a class label
– CAEP (Classification by aggregating emerging 

patterns) (Dong et al’99)
• Emerging patterns (EPs): the itemsets whose support 

increases significantly from one class to another
• Mine Eps based on minimum support and growth rate
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Case-Based Reasoning

• Also uses: lazy evaluation + analyze similar instances
• Difference: Instances are not “points in a Euclidean 

space”
• Example: Water faucet problem in CADET (Sycara et 

al’92)
• Methodology

– Instances represented by rich symbolic descriptions (e.g., 
function graphs)

– Multiple retrieved cases may be combined
– Tight coupling between case retrieval, knowledge-based 

reasoning, and problem solving
• Research issues

– Indexing based on syntactic similarity measure,  and when 
failure, backtracking, and adapting to additional cases



44

CS590D 96

Remarks on Lazy vs. Eager 
Learning

• Instance-based learning: lazy evaluation 
• Decision-tree and Bayesian classification:  eager evaluation
• Key differences

– Lazy method may consider query instance xq when deciding how to 
generalize beyond the training data D

– Eager method cannot since they have already chosen global 
approximation when seeing the query

• Efficiency: Lazy - less time training but more time predicting
• Accuracy

– Lazy method effectively uses a richer hypothesis space since it uses 
many local linear functions to form its implicit global approximation to 
the target function

– Eager: must commit to a single hypothesis that covers the entire
instance space
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Genetic Algorithms

• GA: based on an analogy to biological evolution
• Each rule is represented by a string of bits
• An initial population is created consisting of randomly 

generated rules
– e.g., IF A1 and Not A2 then C2 can be encoded as 100 

• Based on the notion of survival of the fittest, a new 
population is formed to consists of the fittest rules and 
their offsprings

• The fitness of a rule is represented by its classification 
accuracy on a set of training examples

• Offsprings are generated by crossover and mutation
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Rough Set Approach

• Rough sets are used to approximately or “roughly” define 
equivalent classes 

• A rough set for a given class C is approximated by two 
sets: a lower approximation (certain to be in C) and an 
upper approximation (cannot be described as not 
belonging to C) 

• Finding the minimal subsets (reducts) of attributes (for 
feature reduction) is NP-hard but a discernibility matrix is 
used to reduce the computation intensity 

CS490D:
Introduction to Data Mining

Prof. Chris Clifton

February 20, 2004
Classification
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Fuzzy Set 
Approaches

• Fuzzy logic uses truth values between 0.0 and 1.0 to 
represent the degree of membership (such as using 
fuzzy membership graph)

• Attribute values are converted to fuzzy values
– e.g., income is mapped into the discrete categories {low, 

medium, high} with fuzzy values calculated

• For a given new sample, more than one fuzzy value may 
apply

• Each applicable rule contributes a vote for membership 
in the categories

• Typically, the truth values for each predicted category 
are summed
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Classification and Prediction

• What is classification? What is prediction?
• Issues regarding classification and 

prediction
• Bayesian Classification
• Instance Based Methods
• Classification by decision tree induction
• Classification by Neural Networks
• Classification by Support Vector Machines 

(SVM)
• Other methods
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What Is Prediction?

• Prediction is similar to classification
– First, construct a model

– Second, use model to predict unknown value

• Major method for prediction is regression

– Linear and multiple regression

– Non-linear regression

• Prediction is different from classification
– Classification refers to predict categorical class label

– Prediction models continuous-valued functions
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Predictive Modeling in 
Databases

• Predictive modeling: Predict data values or construct   
generalized linear models based on the database data.

• One can only predict value ranges or category 
distributions

• Method outline:
– Minimal generalization
– Attribute relevance analysis
– Generalized linear model construction
– Prediction

• Determine the major factors which influence the 
prediction
– Data relevance analysis: uncertainty measurement, entropy 

analysis, expert judgement, etc.
• Multi-level prediction: drill-down and roll-up analysis
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Regress Analysis and Log-
Linear Models in Prediction

• Linear regression: Y = α + β X
– Two parameters , α and β specify the line and are to 

be estimated by using the data at hand.
– using the least squares criterion to the known values 

of Y1, Y2, …, X1, X2, ….
• Multiple regression: Y = b0 + b1 X1 + b2 X2.

– Many nonlinear functions can be transformed into the 
above.

• Log-linear models:
– The multi-way table of joint probabilities is 

approximated by a product of lower-order tables.
– Probability:  p(a, b, c, d) = αab βacχad δbcd
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Locally Weighted Regression

• Construct an explicit approximation to f over a local 
region surrounding query instance xq.

• Locally weighted linear regression: 
– The target function f is approximated near xq using the linear 

function: 

– minimize the squared error: distance-decreasing weight K

– the gradient descent training rule:

• In most cases, the target function is approximated by a 
constant, linear, or quadratic function.

ɵ ( ) ( ) ( )f x w w a x wnan x= + + +0 1 1 ⋯

E xq f x f x
x k nearest neighbors of xq

K d xq x( ) ( ( ) ɵ( ))
_ _ _ _

( ( , ))≡ −
∈

∑
1
2

2

∆wj K d xq x f x f x aj x
x k nearest neighbors of xq

≡ −
∈

∑η ( ( , ))(( ( ) ɵ( )) ( )
_ _ _ _
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Prediction: Numerical Data
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Prediction: Categorical Data
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Classification and Prediction

• What is classification? What is prediction?
• Issues regarding classification and 

prediction
• Bayesian Classification
• Instance Based Methods
• Classification by decision tree induction
• Classification by Neural Networks
• Classification by Support Vector Machines 

(SVM)
• Prediction

CS590D 110

Classification Accuracy: 
Estimating Error Rates

• Partition: Training-and-testing
– use two independent data sets, e.g., training set (2/3), test 

set(1/3)

– used for data set with large number of samples

• Cross-validation
– divide the data set into k subsamples

– use k-1 subsamples as training data and one sub-sample as test 
data—k-fold cross-validation

– for data set with moderate size

• Bootstrapping (leave-one-out)
– for small size data
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Bagging and Boosting

• General idea 
Training data 

Altered Training data 

Altered Training data
……..

Aggregation ….

Classifier C
Classification method (CM)

CM

Classifier C1

CM

Classifier C2

Classifier C*
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Bagging 

• Given a set S of s samples 
• Generate a bootstrap sample T from S. Cases in S may 

not appear in T or may appear more than once. 
• Repeat this sampling procedure, getting a sequence of k 

independent training sets
• A corresponding sequence of classifiers C1,C2,…,Ck is 

constructed for each of these training sets, by using the 
same classification algorithm 

• To classify an unknown sample X,let each classifier 
predict or vote 

• The Bagged Classifier C* counts the votes and assigns 
X to the class with the “most” votes
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Boosting Technique —
Algorithm

• Assign every example an equal weight  1/N
• For t = 1, 2, …, T Do 

– Obtain a hypothesis (classifier) h(t) under w(t)

– Calculate the error of h(t) and re-weight the examples 
based on the error . Each classifier is dependent on 
the previous ones. Samples that are incorrectly 
predicted are weighted more heavily

– Normalize w(t+1) to sum to 1 (weights assigned to 
different classifiers sum to 1)

• Output a weighted sum of all the hypothesis, 
with each hypothesis weighted according to its 
accuracy on the training set 
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Bagging and Boosting

• Experiments with a new boosting 
algorithm, freund et al (AdaBoost )

• Bagging Predictors, Brieman
• Boosting Naïve Bayesian Learning on 

large subset of MEDLINE, W. Wilbur 
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Classification and Prediction

• What is classification? What is prediction?
• Issues regarding classification and prediction
• Classification by decision tree induction
• Bayesian Classification
• Classification by Neural Networks
• Classification by Support Vector Machines (SVM)
• Instance Based Methods
• Prediction
• Classification accuracy
• Summary
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Summary

• Classification is an extensively studied problem (mainly in statistics, 

machine learning & neural networks)

• Classification is probably one of the most widely used data mining 

techniques with a lot of extensions

• Scalability is still an important issue for database applications:  thus 

combining classification with database techniques should be a 

promising topic

• Research directions: classification of non-relational data, e.g., text, 

spatial, multimedia, etc..
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