
1

CS590D: Data Mining
Prof. Chris Clifton

January 25, 2005
Association Rules

CS590D 2

Mining Association Rules in
Large Databases

• Association rule mining
• Algorithms for scalable mining of (single-

dimensional Boolean) association rules in
transactional databases

• Mining various kinds of association/correlation
rules

• Constraint-based association mining
• Sequential pattern mining
• Applications/extensions of frequent pattern

mining
• Summary

2

CS590D 3

What Is Association Mining?

• Association rule mining:
– Finding frequent patterns, associations, correlations, or causal

structures among sets of items or objects in transaction
databases, relational databases, and other information
repositories.

– Frequent pattern: pattern (set of items, sequence, etc.) that
occurs frequently in a database [AIS93]

• Motivation: finding regularities in data
– What products were often purchased together? — Beer and

diapers?!
– What are the subsequent purchases after buying a PC?
– What kinds of DNA are sensitive to this new drug?
– Can we automatically classify web documents?

CS590D 4

Why Is Association Mining
Important?

• Foundation for many essential data mining tasks
– Association, correlation, causality
– Sequential patterns, temporal or cyclic association,

partial periodicity, spatial and multimedia association
– Associative classification, cluster analysis, iceberg

cube, fascicles (semantic data compression)

• Broad applications
– Basket data analysis, cross-marketing, catalog

design, sale campaign analysis
– Web log (click stream) analysis, DNA sequence

analysis, etc.

3

5

Basic Concepts:
Association Rules

B, E, F40

A, D30

A, C20

A, B, C10

Items boughtTransaction-id • Itemset X={x1, …, xk}

• Find all the rules X�Y with
min confidence and support
– support, s, probability that

a transaction contains X∪Y
– confidence, c, conditional

probability that a
transaction having X also
contains Y.

Let min_support = 50%,
min_conf = 50%:

A � C (50%, 66.7%)
C � A (50%, 100%)

Customer
buys diaper

Customer
buys both

Customer
buys beer

CS590D 6

Mining Association Rules:
Example

For rule A ⇒ C:
support = support({A}∪{C}) = 50%
confidence = support({A}∪{C})/support({A}) =

66.6%

Min. support 50%
Min. confidence 50%

B, E, F40

A, D30

A, C20

A, B, C10

Items boughtTransaction-id

50%{A, C}

50%{C}

50%{B}

75%{A}

SupportFrequent pattern

4

CS590D 7

Mining Association Rules:
What We Need to Know

• Goal: Rules with high support/confidence
• How to compute?

– Support: Find sets of items that occur
frequently

– Confidence: Find frequency of subsets of
supported itemsets

• If we have all frequently occurring sets of
items (frequent itemsets), we can compute
support and confidence!

CS590D 8

Mining Association Rules in
Large Databases

• Association rule mining
• Algorithms for scalable mining of (single-

dimensional Boolean) association rules in
transactional databases

• Mining various kinds of association/correlation
rules

• Constraint-based association mining
• Sequential pattern mining
• Applications/extensions of frequent pattern

mining
• Summary

5

CS590D 9

Apriori: A Candidate Generation-
and-Test Approach

• Any subset of a frequent itemset must be frequent
– if {beer, diaper, nuts} is frequent, so is {beer, diaper}
– Every transaction having {beer, diaper, nuts} also contains {beer,

diaper}

• Apriori pruning principle: If there is any itemset which is
infrequent, its superset should not be generated/tested!

• Method:
– generate length (k+1) candidate itemsets from length k frequent

itemsets, and
– test the candidates against DB

• Performance studies show its efficiency and scalability
• Agrawal & Srikant 1994, Mannila, et al. 1994

10

Frequency ≥ 50%, Confidence 100%:
A � C
B � E

BC � E
CE � B
BE � C

The Apriori Algorithm—An Example

Database TDB

1st scan

C1
L1

L2

C2 C2

2nd scan

C3 L33rd scan

B, E40

A, B, C, E30

B, C, E20

A, C, D10

ItemsTid

1{D}

3{E}

3{C}

3{B}

2{A}

supItemset

3{E}

3{C}

3{B}

2{A}

supItemset

{C, E}

{B, E}

{B, C}

{A, E}

{A, C}

{A, B}

Itemset
1{A, B}
2{A, C}
1{A, E}
2{B, C}
3{B, E}
2{C, E}

supItemset

2{A, C}
2{B, C}
3{B, E}
2{C, E}

supItemset

{B, C, E}

Itemset

2{B, C, E}
supItemset

6

CS590D 11

The Apriori Algorithm

• Pseudo-code:
Ck: Candidate itemset of size k
Lk : frequent itemset of size k

L1 = {frequent items};
for (k = 1; Lk !=∅; k++) do begin

Ck+1 = candidates generated from Lk;
for each transaction t in database do

increment the count of all candidates in
Ck+1 that are contained in t

Lk+1 = candidates in Ck+1 with min_support
end

return ∪k Lk;

CS590D 12

Important Details of Apriori

• How to generate candidates?
– Step 1: self-joining Lk

– Step 2: pruning

• How to count supports of candidates?

• Example of Candidate-generation
– L3={abc, abd, acd, ace, bcd}

– Self-joining: L3*L3

• abcd from abc and abd

• acde from acd and ace

– Pruning:
• acde is removed because ade is not in L3

– C4={abcd}

7

CS590D 13

How to Generate Candidates?

• Suppose the items in Lk-1 are listed in an order

• Step 1: self-joining Lk-1

insert into Ck

select p.item 1, p.item 2, …, p.item k-1, q.item k-1

from Lk-1 p, Lk-1 q

where p.item 1=q.item 1, …, p.item k-2=q.item k-2, p.item k-1 < q.item k-1

• Step 2: pruning
∀ itemsets c in C k do

∀ (k-1)-subsets s of c do

if (s is not in Lk-1) then delete c from Ck

CS590D 14

How to Count Supports of
Candidates?

• Why counting supports of candidates a problem?
– The total number of candidates can be very huge

– One transaction may contain many candidates

• Method:
– Candidate itemsets are stored in a hash-tree

– Leaf node of hash-tree contains a list of itemsets and counts

– Interior node contains a hash table

– Subset function: finds all the candidates contained in a
transaction

8

CS590D 15

Example: Counting Supports of
Candidates

1,4,7

2,5,8

3,6,9
Subset function

2 3 4
5 6 7

1 4 5
1 3 6

1 2 4
4 5 7 1 2 5

4 5 8
1 5 9

3 4 5 3 5 6
3 5 7
6 8 9

3 6 7
3 6 8

Transaction: 1 2 3 5 6

1 + 2 3 5 6

1 2 + 3 5 6

1 3 + 5 6

CS590D 16

Efficient Implementation of Apriori
in SQL

• Hard to get good performance out of pure SQL (SQL-92)
based approaches alone

• Make use of object-relational extensions like UDFs,
BLOBs, Table functions etc.

– Get orders of magnitude improvement

• S. Sarawagi, S. Thomas, and R. Agrawal. Integrating

association rule mining with relational database systems:
Alternatives and implications. In SIGMOD’98

9

CS590D 17

Challenges of Frequent
Pattern Mining

• Challenges
– Multiple scans of transaction database

– Huge number of candidates

– Tedious workload of support counting for candidates

• Improving Apriori: general ideas

– Reduce passes of transaction database scans

– Shrink number of candidates

– Facilitate support counting of candidates

18

DIC: Reduce Number of Scans

• Once both A and D are
determined frequent, the
counting of AD begins

• Once all length-2 subsets of
BCD are determined frequent,
the counting of BCD begins

ABCD

ABC ABD ACD BCD

AB AC BC AD BD CD

A B C D

{}

Itemset lattice

Transactions

1-itemsets
2-itemsets

…
Apriori

1-itemsets
2-items

3-itemsDIC
S. Brin R. Motwani, J. Ullman,
and S. Tsur. Dynamic itemset
counting and implication rules

for market basket data. In
SIGMOD’97

10

CS590D 19

Partition: Scan Database Only
Twice

• Any itemset that is potentially frequent in DB
must be frequent in at least one of the partitions
of DB
– Scan 1: partition database and find local frequent

patterns
– Scan 2: consolidate global frequent patterns

• A. Savasere, E. Omiecinski, and S. Navathe. An
efficient algorithm for mining association in large
databases. In VLDB’95

CS590D 21

Sampling for Frequent
Patterns

• Select a sample of original database, mine
frequent patterns within sample using Apriori

• Scan database once to verify frequent itemsets
found in sample, only borders of closure of
frequent patterns are checked
– Example: check abcd instead of ab, ac, …, etc.

• Scan database again to find missed frequent
patterns

• H. Toivonen. Sampling large databases for
association rules. In VLDB’96

11

CS590D 22

DHP: Reduce the Number of
Candidates

• A k-itemset whose corresponding hashing
bucket count is below the threshold cannot be
frequent
– Candidates: a, b, c, d, e
– Hash entries: {ab, ad, ae} {bd, be, de} …
– Frequent 1-itemset: a, b, d, e
– ab is not a candidate 2-itemset if the sum of count of

{ab, ad, ae} is below support threshold

• J. Park, M. Chen, and P. Yu. An effective hash-
based algorithm for mining association rules. In
SIGMOD’95

CS590D 23

Eclat/MaxEclat and VIPER:
Exploring Vertical Data Format

• Use tid-list, the list of transaction-ids containing an itemset

• Compression of tid-lists
– Itemset A: t1, t2, t3, sup(A)=3

– Itemset B: t2, t3, t4, sup(B)=3

– Itemset AB: t2, t3, sup(AB)=2

• Major operation: intersection of tid-lists

• M. Zaki et al. New algorithms for fast discovery of association rules.
In KDD’97

• P. Shenoy et al. Turbo-charging vertical mining of large databases.
In SIGMOD’00

12

CS590D 24

Bottleneck of Frequent-pattern
Mining

• Multiple database scans are costly
• Mining long patterns needs many passes of

scanning and generates lots of candidates
– To find frequent itemset i1i2…i100

• # of scans: 100

• # of Candidates: (100
1) + (100

2) + … + (1
1
0
0
0

0) = 2100-1 =
1.27*1030 !

• Bottleneck: candidate-generation-and-test
• Can we avoid candidate generation?

CS590D: Data Mining
Prof. Chris Clifton

January 27, 2005
Association Rules

13

CS590D 26

Mining Frequent Patterns
Without Candidate Generation

• Grow long patterns from short ones using

local frequent items

– “abc” is a frequent pattern

– Get all transactions having “abc”: DB|abc

– “d” is a local frequent item in DB|abc � abcd

is a frequent pattern

27

Construct FP-tree from a
Transaction Database

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Header Table

Item frequency head
f 4

c 4
a 3
b 3
m 3
p 3

min_support = 3

TID Items bought (ordered) frequent items
100 {f, a, c, d, g, i, m, p} { f, c, a, m, p}
200 {a, b, c, f, l, m, o} { f, c, a, b, m}
300 {b, f, h, j, o, w} { f, b}
400 {b, c, k, s, p} {c, b, p}
500 {a, f, c, e, l, p, m, n} { f, c, a, m, p}

1. Scan DB once, find
frequent 1-itemset
(single item pattern)

2. Sort frequent items in
frequency descending
order, f-list

3. Scan DB again,
construct FP-tree

F-list=f-c-a-b-m-p

14

CS590D 28

Benefits of the FP-tree
Structure

• Completeness
– Preserve complete information for frequent pattern

mining
– Never break a long pattern of any transaction

• Compactness
– Reduce irrelevant info—infrequent items are gone
– Items in frequency descending order: the more

frequently occurring, the more likely to be shared
– Never be larger than the original database (not count

node-links and the count field)
– For Connect-4 DB, compression ratio could be over

100

CS590D 29

Partition Patterns and
Databases

• Frequent patterns can be partitioned into
subsets according to f-list
– F-list=f-c-a-b-m-p
– Patterns containing p
– Patterns having m but no p
– …
– Patterns having c but no a nor b, m, p
– Pattern f

• Completeness and non-redundency

15

CS590D 30

Find Patterns Having P From P-
conditional Database

• Starting at the frequent item header table in the FP-tree
• Traverse the FP-tree by following the link of each frequent item p
• Accumulate all of transformed prefix paths of item p to form p’s

conditional pattern base

Conditional pattern bases

item cond. pattern base

c f:3

a fc:3

b fca:1, f:2, c:2

m fca:2, fcab:1

p fcam:2, cb:1

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Header Table

Item frequency head
f 4

c 4
a 3
b 3
m 3
p 3

CS590D 31

From Conditional Pattern-bases to
Conditional FP-trees

• For each pattern-base
– Accumulate the count for each item in the base
– Construct the FP-tree for the frequent items of the pattern base

m-conditional pattern base:
fca:2, fcab:1

{}

f:3

c:3

a:3
m-conditional FP-tree

All frequent
patterns relate tom

m,

fm, cm, am,

fcm, fam, cam,

fcam

����
����

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Header Table
Item frequency head
f 4

c 4
a 3
b 3
m 3
p 3

16

CS590D 32

Recursion: Mining Each
Conditional FP-tree

{}

f:3

c:3

a:3
m-conditional FP-tree

Cond. pattern base of “am”: (fc:3)

{}

f:3

c:3
am-conditional FP-tree

Cond. pattern base of “cm”: (f:3)
{}

f:3

cm-conditional FP-tree

Cond. pattern base of “cam”: (f:3)

{}

f:3

cam-conditional FP-tree

33

A Special Case: Single Prefix Path
in FP-tree

• Suppose a (conditional) FP-tree T has a shared single prefix-path P

• Mining can be decomposed into two parts

– Reduction of the single prefix path into one node

– Concatenation of the mining results of the two parts

����

a2:n2

a3:n3

a1:n1

{}

b1:m1
C1:k1

C2:k2 C3:k3

b1:m1
C1:k1

C2:k2 C3:k3

r1

+
a2:n2

a3:n3

a1:n1

{}

r1 =

17

CS590D 34

Mining Frequent Patterns With
FP-trees

• Idea: Frequent pattern growth
– Recursively grow frequent patterns by pattern and

database partition

• Method
– For each frequent item, construct its conditional

pattern-base, and then its conditional FP-tree
– Repeat the process on each newly created

conditional FP-tree
– Until the resulting FP-tree is empty, or it contains only

one path—single path will generate all the
combinations of its sub-paths, each of which is a
frequent pattern

CS590D 35

Scaling FP-growth by DB
Projection

• FP-tree cannot fit in memory?—DB
projection

• First partition a database into a set of
projected DBs

• Then construct and mine FP-tree for each
projected DB

• Parallel projection vs. Partition projection
techniques
– Parallel projection is space costly

18

36

Partition-based Projection

• Parallel projection needs
a lot of disk space

• Partition projection
saves it

Tran. DB
fcamp
fcabm
fb
cbp
fcamp

p-proj DB
fcam
cb

fcam

m-proj DB
fcab
fca

fca

b-proj DB
f
cb

…

a-proj DB
fc
…

c-proj DB
f
…

f-proj DB
…

am-proj DB
fc
fc
fc

cm-proj DB
f
f
f

…

CS590D 37

FP-Growth vs. Apriori: Scalability
With the Support Threshold

0

10

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5 3

Support threshold(%)

R
u
n
 t
im

e
(s

e
c.

)

D1 FP-grow th runtime

D1 Apriori runtime

Data set T25I20D10K

19

CS590D 38

FP-Growth vs. Tree-Projection:
Scalability with the Support Threshold

0

20

40

60

80

100

120

140

0 0.5 1 1.5 2

Support threshold (%)

R
u

n
ti

m
e

(s
ec

.)

D2 FP-growth

D2 TreeProjection

Data set T25I20D100K

CS590D 39

Why Is FP-Growth the Winner?

• Divide-and-conquer:
– decompose both the mining task and DB according to the

frequent patterns obtained so far

– leads to focused search of smaller databases

• Other factors
– no candidate generation, no candidate test

– compressed database: FP-tree structure

– no repeated scan of entire database

– basic ops—counting local freq items and building sub FP-tree,
no pattern search and matching

20

CS590D 40

Implications of the
Methodology

• Mining closed frequent itemsets and max-patterns

– CLOSET (DMKD’00)

• Mining sequential patterns

– FreeSpan (KDD’00), PrefixSpan (ICDE’01)

• Constraint-based mining of frequent patterns

– Convertible constraints (KDD’00, ICDE’01)

• Computing iceberg data cubes with complex measures

– H-tree and H-cubing algorithm (SIGMOD’01)

CS590D 41

Max-patterns

• Frequent pattern {a1, …, a100} � (100
1) +

(100
2) + … + (1

1
0

0
0
0) = 2100-1 = 1.27*1030

frequent sub-patterns!
• Max-pattern: frequent patterns without

proper frequent super pattern
– BCDE, ACD are max-patterns
– BCD is not a max-pattern

A,C,D,F30

B,C,D,E,20

A,B,C,D,E10

ItemsTid

Min_sup=2

21

CS590D 42

MaxMiner: Mining Max-
patterns

• 1st scan: find frequent items
– A, B, C, D, E

• 2nd scan: find support for
– AB, AC, AD, AE, ABCDE
– BC, BD, BE, BCDE
– CD, CE, CDE, DE,

• Since BCDE is a max-pattern, no need to check
BCD, BDE, CDE in later scan

• R. Bayardo. Efficiently mining long patterns from
databases. In SIGMOD’98

A,C,D,F30

B,C,D,E,20

A,B,C,D,E10

ItemsTid

Potential
max-patterns

CS590D 43

Frequent Closed Patterns

• Conf(ac�d)=100% � record acd only
• For frequent itemset X, if there exists no

item y s.t. every transaction containing X
also contains y, then X is a frequent
closed pattern
– “acd” is a frequent closed pattern

• Concise rep. of freq pats
• Reduce # of patterns and rules
• N. Pasquier et al. In ICDT’99

c, e, f50

a, c, d, f40

c, e, f30

a, b, e20

a, c, d, e, f10

ItemsTID

Min_sup=2

22

CS590D 44

Mining Frequent Closed Patterns:
CLOSET

• Flist: list of all frequent items in support ascending order

– Flist: d-a-f-e-c

• Divide search space

– Patterns having d

– Patterns having d but no a, etc.

• Find frequent closed pattern recursively

– Every transaction having d also has cfa � cfad is a frequent

closed pattern

• J. Pei, J. Han & R. Mao. CLOSET: An Efficient Algorithm for Mining

Frequent Closed Itemsets", DMKD'00.

c, e, f50
a, c, d, f40
c, e, f30
a, b, e20
a, c, d, e, f10

ItemsTID

Min_sup=2

CS590D 45

Mining Frequent Closed
Patterns: CHARM

• Use vertical data format: t(AB)={T1, T12, …}

• Derive closed pattern based on vertical intersections
– t(X)=t(Y): X and Y always happen together

– t(X)⊂t(Y): transaction having X always has Y

• Use diffset to accelerate mining
– Only keep track of difference of tids

– t(X)={T1, T2, T3}, t(Xy)={T1, T3}

– Diffset(Xy, X)={T2}

• M. Zaki. CHARM: An Efficient Algorithm for Closed Association Rule Mining,
CS-TR99-10, Rensselaer Polytechnic Institute

• M. Zaki, Fast Vertical Mining Using Diffsets, TR01-1, Department of
Computer Science, Rensselaer Polytechnic Institute

23

CS590D 46

Visualization of Association Rules:
Pane Graph

CS590D 47

Visualization of Association Rules: Rule Graph

24

CS590D 48

Mining Association Rules in
Large Databases

• Association rule mining

• Algorithms for scalable mining of (single-dimensional Boolean)

association rules in transactional databases

• Mining various kinds of association/correlation rules

• Constraint-based association mining

• Sequential pattern mining

• Applications/extensions of frequent pattern mining

• Summary

CS590D 49

Mining Various Kinds of Rules or
Regularities

• Multi-level, quantitative association rules,

correlation and causality, ratio rules, sequential

patterns, emerging patterns, temporal

associations, partial periodicity

• Classification, clustering, iceberg cubes, etc.

25

50

Multiple-level Association
Rules

• Items often form hierarchy
• Flexible support settings: Items at the lower level

are expected to have lower support.
• Transaction database can be encoded based on

dimensions and levels
• explore shared multi-level mining

uniform support

Milk
[support = 10%]

2% Milk
[support = 6%]

Skim Milk
[support = 4%]

Level 1
min_sup = 5%

Level 2
min_sup = 5%

Level 1
min_sup = 5%

Level 2
min_sup = 3%

reduced support

CS590D 51

ML/MD Associations with Flexible
Support Constraints

• Why flexible support constraints?
– Real life occurrence frequencies vary greatly

• Diamond, watch, pens in a shopping basket

– Uniform support may not be an interesting model

• A flexible model
– The lower-level, the more dimension combination, and the long

pattern length, usually the smaller support

– General rules should be easy to specify and understand

– Special items and special group of items may be specified
individually and have higher priority

26

CS590D 52

Multi-dimensional Association

• Single-dimensional rules:

buys(X, “milk”) ⇒ buys(X, “bread”)

• Multi-dimensional rules: ≥ 2 dimensions or predicates

– Inter-dimension assoc. rules (no repeated predicates)

age(X,”19-25”) ∧ occupation(X,“student”) ⇒ buys(X,“coke”)

– hybrid-dimension assoc. rules (repeated predicates)

age(X,”19-25”) ∧ buys(X, “popcorn”) ⇒ buys(X, “coke”)

• Categorical Attributes

– finite number of possible values, no ordering among values

• Quantitative Attributes

– numeric, implicit ordering among values

CS590D 53

Multi-level Association:
Redundancy Filtering

• Some rules may be redundant due to “ancestor”
relationships between items.

• Example

– milk ⇒ wheat bread [support = 8%, confidence = 70%]

– 2% milk ⇒ wheat bread [support = 2%, confidence = 72%]

• We say the first rule is an ancestor of the second rule.

• A rule is redundant if its support is close to the
“expected” value, based on the rule’s ancestor.

27

CS590D 54

Multi-Level Mining: Progressive
Deepening

• A top-down, progressive deepening approach:
– First mine high-level frequent items:

milk (15%), bread (10%)
– Then mine their lower-level “weaker” frequent

itemsets:
2% milk (5%), wheat bread (4%)

• Different min_support threshold across multi-
levels lead to different algorithms:
– If adopting the same min_support across multi-levels

then toss t if any of t’s ancestors is infrequent.
– If adopting reduced min_support at lower levels

then examine only those descendents whose ancestor’s
support is frequent/non-negligible.

CS590D 55

Techniques for Mining MD
Associations

• Search for frequent k-predicate set:
– Example: {age, occupation, buys} is a 3-predicate set
– Techniques can be categorized by how age are treated

1. Using static discretization of quantitative attributes
– Quantitative attributes are statically discretized by using

predefined concept hierarchies

2. Quantitative association rules
– Quantitative attributes are dynamically discretized into

“bins”based on the distribution of the data

3. Distance-based association rules
– This is a dynamic discretization process that considers the

distance between data points

28

CS590D 57

Static Discretization of
Quantitative Attributes

• Discretized prior to mining using concept hierarchy.

• Numeric values are replaced by ranges.

• In relational database, finding all frequent k-predicate sets will

require k or k+1 table scans.

• Data cube is well suited for mining.

• The cells of an n-dimensional

cuboid correspond to the

predicate sets.

• Mining from data cubes

can be much faster.

(income)(age)

()

(buys)

(age, income) (age,buys) (income,buys)

(age,income,buys)

Quantitative Association
Rules

• Numeric attributes are dynamically discretized
– Such that the confidence or compactness of the rules mined is

maximized

• 2-D quantitative association rules: Aquan1 ∧ Aquan2 ⇒ Acat

• Cluster “adjacent”
association rules
to form general
rules using a 2-D
grid

• Example

age(X,”30-34”) ∧∧∧∧ income(X,”24K -
48K”)

⇒⇒⇒⇒ buys(X,”high resolution TV”)

29

CS590D 59

Mining Distance-based
Association Rules

• Binning methods do not capture the semantics of interval
data

• Distance-based partitioning, more meaningful
discretization considering:
– density/number of points in an interval
– “closeness” of points in an interval

Price($)
Equi-width
(width $10)

Equi-depth
(depth 2)

Distance-
based

7 [0,10] [7,20] [7,7]
20 [11,20] [22,50] [20,22]
22 [21,30] [51,53] [50,53]
50 [31,40]
51 [41,50]
53 [51,60]

CS590D 60

Interestingness Measure:
Correlations (Lift)

• play basketball ⇒ eat cereal [40%, 66.7%] is misleading

– The overall percentage of students eating cereal is 75% which is higher

than 66.7%.

• play basketball ⇒ not eat cereal [20%, 33.3%] is more accurate,

although with lower support and confidence

• Measure of dependent/correlated events: lift

500020003000Sum(col.)

12502501000Not cereal

375017502000Cereal

Sum (row)Not basketballBasketbal
l

,

()

() ()A B

P A B
corr

P A P B

∪=

30

CS590D 61

Mining Association Rules in
Large Databases

• Association rule mining

• Algorithms for scalable mining of (single-dimensional Boolean)

association rules in transactional databases

• Mining various kinds of association/correlation rules

• Constraint-based association mining

• Sequential pattern mining

• Applications/extensions of frequent pattern mining

• Summary

CS590D 62

Constraint-based Data
Mining

• Finding all the patterns in a database
autonomously? — unrealistic!
– The patterns could be too many but not focused!

• Data mining should be an interactive process
– User directs what to be mined using a data mining

query language (or a graphical user interface)

• Constraint-based mining
– User flexibility: provides constraints on what to be

mined
– System optimization: explores such constraints for

efficient mining—constraint-based mining

31

CS590D 63

Constraints in Data Mining

• Knowledge type constraint:
– classification, association, etc.

• Data constraint — using SQL-like queries
– find product pairs sold together in stores in Vancouver in Dec.’00

• Dimension/level constraint
– in relevance to region, price, brand, customer category

• Rule (or pattern) constraint
– small sales (price < $10) triggers big sales (sum > $200)

• Interestingness constraint
– strong rules: min_support ≥ 3%, min_confidence ≥ 60%

CS590D 64

Constrained Mining vs. Constraint-
Based Search

• Constrained mining vs. constraint-based search/reasoning
– Both are aimed at reducing search space
– Finding all patterns satisfying constraints vs. finding some (or

one) answer in constraint-based search in AI
– Constraint-pushing vs. heuristic search
– It is an interesting research problem on how to integrate them

• Constrained mining vs. query processing in DBMS
– Database query processing requires to find all
– Constrained pattern mining shares a similar philosophy as

pushing selections deeply in query processing

32

CS590D 65

Constrained Frequent Pattern Mining:
A Mining Query Optimization Problem

• Given a frequent pattern mining query with a set of constraints C,
the algorithm should be
– sound: it only finds frequent sets that satisfy the given

constraints C
– complete: all frequent sets satisfying the given constraints C are

found
• A naïve solution

– First find all frequent sets, and then test them for constraint
satisfaction

• More efficient approaches:
– Analyze the properties of constraints comprehensively
– Push them as deeply as possible inside the frequent pattern

computation.

CS590D: Data Mining
Prof. Chris Clifton

February 1, 2005
Association Rules

33

CS590D 67

Anti-Monotonicity in Constraint-
Based Mining

• Anti-monotonicity
– When an itemset S violates the constraint,

so does any of its superset

– sum(S.Price) ≤ v is anti-monotone

– sum(S.Price) ≥ v is not anti-monotone

• Example. C: range(S.profit) ≤ 15 is anti-
monotone
– Itemset ab violates C

– So does every superset of ab

TransactionTID

a, b, c, d, f10

b, c, d, f, g, h20

a, c, d, e, f30

c, e, f, g40

TDB (min_sup=2)

-10h

20g

30f

-30e

10d

-20c

0b

40a

ProfitItem

68

Which Constraints Are Anti-
Monotone?

nosupport(S) ≤≤≤≤ ξξξξ

norange(S) ≥≥≥≥ v

nosum(S) ≥≥≥≥ v (a ∈∈∈∈ S, a ≥≥≥≥ 0)

nocount(S) ≥≥≥≥ v

nomax(S) ≥≥≥≥ v

yesmax(S) ≤≤≤≤ v
yesmin(S) ≥≥≥≥ v

nomin(S) ≤≤≤≤ v
yesS ⊆⊆⊆⊆ V

noS ⊇⊇⊇⊇ V

yessupport(S) ≥≥≥≥ ξξξξ
convertibleavg(S) θθθθ v, θθθθ ∈∈∈∈ { ====, ≤≤≤≤, ≥≥≥≥ }

yesrange(S) ≤≤≤≤ v

yessum(S) ≤≤≤≤ v (a ∈∈∈∈ S, a ≥≥≥≥ 0)

yes count(S) ≤≤≤≤ v

Nov ∈∈∈∈ S

AntimonotoneConstraint

34

CS590D 69

Monotonicity in Constraint-
Based Mining

• Monotonicity

– When an intemset S satisfies the
constraint, so does any of its superset

– sum(S.Price) ≥ v is monotone

– min(S.Price) ≤ v is monotone

• Example. C: range(S.profit) ≥ 15
– Itemset ab satisfies C

– So does every superset of ab

TransactionTID

a, b, c, d, f10

b, c, d, f, g, h20

a, c, d, e, f30

c, e, f, g40

TDB (min_sup=2)

-10h

20g

30f

-30e

10d

-20c

0b

40a

ProfitItem

70

Which Constraints Are
Monotone?

yessupport(S) ≤≤≤≤ ξξξξ

yesrange(S) ≥≥≥≥ v

yessum(S) ≥≥≥≥ v (a ∈∈∈∈ S, a ≥≥≥≥ 0)

yescount(S) ≥≥≥≥ v

yesmax(S) ≥≥≥≥ v

nomax(S) ≤≤≤≤ v
nomin(S) ≥≥≥≥ v

yesmin(S) ≤≤≤≤ v
noS ⊆⊆⊆⊆ V

yesS ⊇⊇⊇⊇ V

nosupport(S) ≥≥≥≥ ξξξξ
convertibleavg(S) θθθθ v, θθθθ ∈∈∈∈ { ====, ≤≤≤≤, ≥≥≥≥ }

norange(S) ≤≤≤≤ v

nosum(S) ≤≤≤≤ v (a ∈∈∈∈ S, a ≥≥≥≥ 0)

nocount(S) ≤≤≤≤ v

yesv ∈∈∈∈ S
MonotoneConstraint

35

CS590D 71

Succinctness

• Succinctness:

– Given A1, the set of items satisfying a succinctness constraint C,

then any set S satisfying C is based on A1 , i.e., S contains a

subset belonging to A1

– Idea: Without looking at the transaction database, whether an
itemset S satisfies constraint C can be determined based on the

selection of items

– min(S.Price) ≤ v is succinct

– sum(S.Price) ≥ v is not succinct

• Optimization: If C is succinct, C is pre-counting pushable

72

Which Constraints Are
Succinct?

nosupport(S) ≤≤≤≤ ξξξξ

norange(S) ≥≥≥≥ v

nosum(S) ≥≥≥≥ v (a ∈∈∈∈ S, a ≥≥≥≥ 0)

weaklycount(S) ≥≥≥≥ v

yesmax(S) ≥≥≥≥ v

yesmax(S) ≤≤≤≤ v
yesmin(S) ≥≥≥≥ v

yesmin(S) ≤≤≤≤ v

yesS ⊆⊆⊆⊆ V

yesS ⊇⊇⊇⊇ V

nosupport(S) ≥≥≥≥ ξξξξ
noavg(S) θθθθ v, θθθθ ∈∈∈∈ { ====, ≤≤≤≤, ≥≥≥≥ }

norange(S) ≤≤≤≤ v

nosum(S) ≤≤≤≤ v (a ∈∈∈∈ S, a ≥≥≥≥ 0)

weaklycount(S) ≤≤≤≤ v

yesv ∈∈∈∈ S
SuccinctConstraint

36

73

The Apriori Algorithm —
Example

TID Items
100 1 3 4
200 2 3 5
300 1 2 3 5
400 2 5

Database D itemset sup.
{1} 2
{2} 3
{3} 3
{4} 1
{5} 3

itemset sup.
{1} 2
{2} 3
{3} 3
{5} 3

Scan D

C1
L1

itemset
{1 2}
{1 3}
{1 5}
{2 3}
{2 5}
{3 5}

itemset sup
{1 2} 1
{1 3} 2
{1 5} 1
{2 3} 2
{2 5} 3
{3 5} 2

itemset sup
{1 3} 2
{2 3} 2
{2 5} 3
{3 5} 2

L2

C2 C2

Scan D

C3 L3itemset
{2 3 5}

Scan D itemset sup
{2 3 5} 2

Naïve Algorithm: Apriori +
Constraint

TID Items
100 1 3 4
200 2 3 5
300 1 2 3 5
400 2 5

Database D itemset sup.
{1} 2
{2} 3
{3} 3
{4} 1
{5} 3

itemset sup.
{1} 2
{2} 3
{3} 3
{5} 3

Scan D

C1
L1

itemset
{1 2}
{1 3}
{1 5}
{2 3}
{2 5}
{3 5}

itemset sup
{1 2} 1
{1 3} 2
{1 5} 1
{2 3} 2
{2 5} 3
{3 5} 2

itemset sup
{1 3} 2
{2 3} 2
{2 5} 3
{3 5} 2

L2

C2 C2

Scan D

C3 L3itemset
{2 3 5}

Scan D itemset sup
{2 3 5} 2

Constraint:

Sum{S.price < 5}

37

75

The Constrained Apriori Algorithm: Push an
Anti-monotone Constraint Deep

TID Items
100 1 3 4
200 2 3 5
300 1 2 3 5
400 2 5

Database D itemset sup.
{1} 2
{2} 3
{3} 3
{4} 1
{5} 3

itemset sup.
{1} 2
{2} 3
{3} 3
{5} 3

Scan D

C1
L1

itemset
{1 2}
{1 3}
{1 5}
{2 3}
{2 5}
{3 5}

itemset sup
{1 2} 1
{1 3} 2
{1 5} 1
{2 3} 2
{2 5} 3
{3 5} 2

itemset sup
{1 3} 2
{2 3} 2
{2 5} 3
{3 5} 2

L2

C2 C2

Scan D

C3 L3itemset
{2 3 5}

Scan D itemset sup
{2 3 5} 2

Constraint:

Sum{S.price < 5}

76

The Constrained Apriori Algorithm:
Push a Succinct Constraint Deep

TID Items
100 1 3 4
200 2 3 5
300 1 2 3 5
400 2 5

Database D itemset sup.
{1} 2
{2} 3
{3} 3
{4} 1
{5} 3

itemset sup.
{1} 2
{2} 3
{3} 3
{5} 3

Scan D

C1
L1

itemset
{1 2}
{1 3}
{1 5}
{2 3}
{2 5}
{3 5}

itemset sup
{1 2} 1
{1 3} 2
{1 5} 1
{2 3} 2
{2 5} 3
{3 5} 2

itemset sup
{1 3} 2
{2 3} 2
{2 5} 3
{3 5} 2

L2

C2 C2

Scan D

C3 L3itemset
{2 3 5}

Scan D itemset sup
{2 3 5} 2

Constraint:

min{S.price <= 1 }

38

CS590D

Converting “Tough”
Constraints

• Convert tough constraints into anti-
monotone or monotone by properly
ordering items

• Examine C: avg(S.profit) ≥≥≥≥ 25
– Order items in value-descending order

• <a, f, g, d, b, h, c, e>

– If an itemset afb violates C

• So does afbh, afb*

• It becomes anti-monotone!

TransactionTID

a, b, c, d, f10

b, c, d, f, g, h20

a, c, d, e, f30

c, e, f, g40

TDB (min_sup=2)

-10h

20g

30f

-30e

10d

-20c

0b

40a

ProfitItem

CS590D 78

Convertible Constraints

• Let R be an order of items

• Convertible anti-monotone
– If an itemset S violates a constraint C, so does every

itemset having S as a prefix w.r.t. R

– Ex. avg(S) ≥≥≥≥ v w.r.t. item value descending order

• Convertible monotone
– If an itemset S satisfies constraint C, so does every

itemset having S as a prefix w.r.t. R

– Ex. avg(S) ≤≤≤≤ v w.r.t. item value descending order

39

CS590D 79

Strongly Convertible
Constraints

• avg(X) ≥≥≥≥ 25 is convertible anti-monotone w.r.t.
item value descending order R: <a, f, g, d, b, h,
c, e>
– If an itemset af violates a constraint C, so

does every itemset with af as prefix, such as
afd

• avg(X) ≥≥≥≥ 25 is convertible monotone w.r.t. item
value ascending order R-1: <e, c, h, b, d, g, f, a>
– If an itemset d satisfies a constraint C, so

does itemsets df and dfa, which having d as
a prefix

• Thus, avg(X) ≥≥≥≥ 25 is strongly convertible -10h

20g

30f

-30e

10d

-20c

0b

40a

ProfitItem

CS590D 80

What Constraints Are Convertible?

……

NoNoYes
sum(S) ≥≥≥≥ v (items could be of any

value, v ≤≤≤≤ 0)

NoYesNo
sum(S) ≥≥≥≥ v (items could be of any

value, v ≥≥≥≥ 0)

NoYesNo
sum(S) ≤≤≤≤ v (items could be of any

value, v ≤≤≤≤ 0)

NoNoYes
sum(S) ≤≤≤≤ v (items could be of any

value, v ≥≥≥≥ 0)

YesYesYesmedian(S) ≤≤≤≤ , ≥≥≥≥ v

YesYesYesavg(S) ≤≤≤≤ , ≥≥≥≥ v

Strongly
convertible

Convertible
monotone

Convertible
anti-monotoneConstraint

40

Combing Them Together—A
General Picture

noyesnosupport(S) ≤≤≤≤ ξξξξ

noyesnorange(S) ≥≥≥≥ v

noyesnosum(S) ≥≥≥≥ v (a ∈∈∈∈ S, a ≥≥≥≥ 0)

weaklyyesnocount(S) ≥≥≥≥ v

yesyesnomax(S) ≥≥≥≥ v

yesnoyesmax(S) ≤≤≤≤ v
yesnoyesmin(S) ≥≥≥≥ v

yesyesnomin(S) ≤≤≤≤ v
yesnoyesS ⊆⊆⊆⊆ V

yesyesnoS ⊇⊇⊇⊇ V

nonoyessupport(S) ≥≥≥≥ ξξξξ
noconvertibleconvertibleavg(S) θθθθ v, θθθθ ∈∈∈∈ { ====, ≤≤≤≤, ≥≥≥≥ }

nonoyesrange(S) ≤≤≤≤ v

nonoyessum(S) ≤≤≤≤ v (a ∈∈∈∈ S, a ≥≥≥≥ 0)

weaklynoyes count(S) ≤≤≤≤ v

yesyesnov ∈∈∈∈ S
SuccinctMonotoneAntimonotoneConstraint

CS590D 82

Classification of Constraints

Convertible
anti-monotone

Convertible
monotone

Strongly
convertible

Inconvertible

Succinct

Antimonotone
Monotone

41

CS590D

Mining With Convertible
Constraints

• C: avg(S.profit) ≥≥≥≥ 25
• List of items in every transaction in value

descending order R:
<a, f, g, d, b, h, c, e>
– C is convertible anti-monotone w.r.t. R

• Scan transaction DB once
– remove infrequent items

• Item h in transaction 40 is dropped
– Itemsets a and f are good

TransactionTID

a, f, d, b, c10

f, g, d, b, c20

a, f, d, c, e30

f, g, h, c, e40

TDB (min_sup=2)

-10h

20g

10d

30f

-30e

-20c

0b

40a

ProfitItem

CS590D

Can Apriori Handle Convertible
Constraint?

• A convertible, not monotone nor anti-
monotone nor succinct constraint cannot
be pushed deep into the an Apriori
mining algorithm
– Within the level wise framework, no direct

pruning based on the constraint can be
made

– Itemset df violates constraint C: avg(X)>=25
– Since adf satisfies C, Apriori needs df to

assemble adf, df cannot be pruned
• But it can be pushed into frequent-

pattern growth framework!

-10h

20g

30f

-30e

10d

-20c

0b

40a

ValueItem

42

CS590D

Mining With Convertible
Constraints

• C: avg(X)>=25, min_sup=2

• List items in every transaction in value descending order R:
<a, f, g, d, b, h, c, e>

– C is convertible anti-monotone w.r.t. R

• Scan TDB once

– remove infrequent items

• Item h is dropped

– Itemsets a and f are good, …

• Projection-based mining

– Imposing an appropriate order on item projection

– Many tough constraints can be converted into (anti)-
monotone

TransactionTID

a, f, d, b, c10

f, g, d, b, c20

a, f, d, c, e30

f, g, h, c, e40

TDB (min_sup=2)

-10h

20g

10d

30f

-30e

-20c

0b

40a

ValueItem

CS590D 86

Handling Multiple Constraints

• Different constraints may require different or even
conflicting item-ordering

• If there exists an order R s.t. both C1 and C2 are
convertible w.r.t. R, then there is no conflict between the
two convertible constraints

• If there exists conflict on order of items

– Try to satisfy one constraint first

– Then using the order for the other constraint to mine frequent
itemsets in the corresponding projected database

43

CS590D 87

Mining Association Rules in
Large Databases

• Association rule mining

• Algorithms for scalable mining of (single-dimensional Boolean)

association rules in transactional databases

• Mining various kinds of association/correlation rules

• Constraint-based association mining

• Sequential pattern mining

• Applications/extensions of frequent pattern mining

• Summary

CS590D 88

Sequence Databases and
Sequential Pattern Analysis

• Transaction databases, time-series databases vs. sequence

databases

• Frequent patterns vs. (frequent) sequential patterns

• Applications of sequential pattern mining

– Customer shopping sequences:

• First buy computer, then CD-ROM, and then digital camera, within 3
months.

– Medical treatment, natural disasters (e.g., earthquakes), science &
engineering processes, stocks and markets, etc.

– Telephone calling patterns, Weblog click streams

– DNA sequences and gene structures

44

CS590D 89

What Is Sequential Pattern
Mining?

• Given a set of sequences, find the
complete set of frequent subsequences

A sequence database

A sequence : < (ef) (ab) (df) c b >

An element may contain a set of items.
Items within an element are unordered
and we list them alphabetically.

<a(bc)dc> is a subsequence
of <<a(abc)(ac)d(cf)>

Given support threshold min_sup =2, <(ab)c> is a
sequential pattern

<eg(af)cbc>40

<(ef)(ab)(df)cb>30

<(ad)c(bc)(ae)>20

<a(abc)(ac)d(cf)>10

sequenceSID

CS590D 90

Challenges on Sequential
Pattern Mining

• A huge number of possible sequential patterns
are hidden in databases

• A mining algorithm should
– find the complete set of patterns, when possible,

satisfying the minimum support (frequency) threshold

– be highly efficient, scalable, involving only a small
number of database scans

– be able to incorporate various kinds of user-specific
constraints

45

CS590D 91

Studies on Sequential Pattern
Mining

• Concept introduction and an initial Apriori-like algorithm
– R. Agrawal & R. Srikant. “Mining sequential patterns,” ICDE’95

• GSP—An Apriori-based, influential mining method (developed at
IBM Almaden)
– R. Srikant & R. Agrawal. “Mining sequential patterns: Generalizations

and performance improvements,” EDBT’96
• From sequential patterns to episodes (Apriori-like + constraints)

– H. Mannila, H. Toivonen & A.I. Verkamo. “Discovery of frequent
episodes in event sequences,” Data Mining and Knowledge Discovery,
1997

• Mining sequential patterns with constraints
– M.N. Garofalakis, R. Rastogi, K. Shim: SPIRIT: Sequential Pattern

Mining with Regular Expression Constraints. VLDB 1999

CS590D 92

A Basic Property of Sequential
Patterns: Apriori

• A basic property: Apriori (Agrawal & Sirkant’94)
– If a sequence S is not frequent
– Then none of the super-sequences of S is frequent
– E.g, <hb> is infrequent � so do <hab> and <(ah)b>

<a(bd)bcb(ade)>50

<(be)(ce)d>40

<(ah)(bf)abf>30

<(bf)(ce)b(fg)>20

<(bd)cb(ac)>10

SequenceSeq. ID Given support threshold
min_sup =2

46

CS590D 93

GSP—A Generalized Sequential
Pattern Mining Algorithm

• GSP (Generalized Sequential Pattern) mining algorithm
– proposed by Agrawal and Srikant, EDBT’96

• Outline of the method
– Initially, every item in DB is a candidate of length-1
– for each level (i.e., sequences of length-k) do

• scan database to collect support count for each
candidate sequence

• generate candidate length-(k+1) sequences from
length-k frequent sequences using Apriori

– repeat until no frequent sequence or no candidate
can be found

• Major strength: Candidate pruning by Apriori

94

Finding Length-1 Sequential
Patterns

• Examine GSP using an example
• Initial candidates: all singleton

sequences
– <a>, , <c>, <d>, <e>, <f>,

<g>, <h>
• Scan database once, count support

for candidates

<a(bd)bcb(ade)>50
<(be)(ce)d>40

<(ah)(bf)abf>30
<(bf)(ce)b(fg)>20
<(bd)cb(ac)>10

SequenceSeq. ID

min_sup =2

1<h>

1<g>

2<f>

3<e>

3<d>

4<c>

5

3<a>

SupCand

47

Generating Length-2 Candidates

<ff><fe><fd><fc><fb><fa><f>

<ef><ee><ed><ec><eb><ea><e>

<df><de><dd><dc><db><da><d>

<cf><ce><cd><cc><cb><ca><c>

<bf><be><bd><bc><bb><ba>

<af><ae><ad><ac><ab><aa><a>

<f><e><d><c><a>

<f>

<(ef)><e>

<(df)><(de)><d>

<(cf)><(ce)><(cd)><c>

<(bf)><(be)><(bd)><(bc)>

<(af)><(ae)><(ad)><(ac)><(ab)><a>

<f><e><d><c><a>

51 length-2
Candidates

Without Apriori
property,
8*8+8*7/2=92
candidates

Apriori prunes
44.57% candidates

CS590D 97

Generating Length-3 Candidates and
Finding Length-3 Patterns

• Generate Length-3 Candidates
– Self-join length-2 sequential patterns

• Based on the Apriori property
• <ab>, <aa> and <ba> are all length-2 sequential

patterns � <aba> is a length-3 candidate
• <(bd)>, <bb> and <db> are all length-2 sequential

patterns � <(bd)b> is a length-3 candidate
– 46 candidates are generated

• Find Length-3 Sequential Patterns
– Scan database once more, collect support counts for

candidates
– 19 out of 46 candidates pass support threshold

48

98

The GSP Mining Process

<a> <c> <d> <e> <f> <g> <h>

<aa> <ab> … <af> <ba> <bb> … <ff> <(ab)> … <(ef)>

<abb> <aab> <aba> <baa> <bab> …

<abba> <(bd)bc> …

<(bd)cba>

1st scan: 8 cand. 6 length-1 seq.
pat.

2nd scan: 51 cand. 19 length-2 seq.
pat. 10 cand. not in DB at all

3rd scan: 46 cand. 19 length-3 seq.
pat. 20 cand. not in DB at all

4th scan: 8 cand. 6 length-4 seq.
pat.

5th scan: 1 cand. 1 length-5 seq.
pat.

Cand. cannot pass
sup. threshold

Cand. not in DB at all

<a(bd)bcb(ade)>50

<(be)(ce)d>40

<(ah)(bf)abf>30

<(bf)(ce)b(fg)>20

<(bd)cb(ac)>10

SequenceSeq. ID

min_sup =2

CS590D 100

Bottlenecks of GSP

• A huge set of candidates could be generated

– 1,000 frequent length-1 sequences generate
length-2 candidates!

• Multiple scans of database in mining

• Real challenge: mining long sequential patterns

– An exponential number of short candidates

– A length-100 sequential pattern needs 1030

candidate sequences!

500,499,1
2

9991000
10001000 =×+×

30100
100

1

1012
100

≈−=

∑

=i i

49

CS590D 101

FreeSpan: Frequent Pattern-Projected
Sequential Pattern Mining

• A divide-and-conquer approach

– Recursively project a sequence database into a set of smaller
databases based on the current set of frequent patterns

– Mine each projected database to find its patterns
• J. Han J. Pei, B. Mortazavi-Asi, Q. Chen, U. Dayal, M.C. Hsu, FreeSpan:

Frequent pattern-projected sequential pattern mining. In KDD’00.

f_list: b:5, c:4, a:3, d:3, e:3, f:2

All seq. pat. can be divided into 6 subsets:
•Seq. pat. containing item f
•Those containing e but no f
•Those containing d but no e nor f
•Those containing a but no d, e or f
•Those containing c but no a, d, e or f
•Those containing only item b

Sequence Database SDB
< (bd) c b (ac) >
< (bf) (ce) b (fg) >
< (ah) (bf) a b f >
< (be) (ce) d >
< a (bd) b c b (ade) >

CS590D 102

From FreeSpan to PrefixSpan:
Why?

• Freespan:
– Projection-based: No candidate sequence needs to

be generated

– But, projection can be performed at any point in the
sequence, and the projected sequences do will not
shrink much

• PrefixSpan
– Projection-based

– But only prefix-based projection: less projections and
quickly shrinking sequences

50

CS590D 103

Prefix and Suffix (Projection)

• <a>, <aa>, <a(ab)> and <a(abc)> are prefixes of
sequence <a(abc)(ac)d(cf)>

• Given sequence <a(abc)(ac)d(cf)>

<(_c)(ac)d(cf)><ab>
<(_bc)(ac)d(cf)><aa>

<(abc)(ac)d(cf)><a>

Suffix (Prefix-Based Projection)Prefix

CS590D 104

Mining Sequential Patterns by
Prefix Projections

• Step 1: find length-1 sequential patterns
– <a>, , <c>, <d>, <e>, <f>

• Step 2: divide search space. The complete set of
seq. pat. can be partitioned into 6 subsets:
– The ones having prefix <a>;
– The ones having prefix ;
– …
– The ones having prefix <f>

<eg(af)cbc>40

<(ef)(ab)(df)cb>30

<(ad)c(bc)(ae)>20

<a(abc)(ac)d(cf)>10

sequenceSID

51

CS590D 105

Finding Seq. Patterns with
Prefix <a>

• Only need to consider projections w.r.t. <a>
– <a>-projected database: <(abc)(ac)d(cf)>, <(_d)c(bc)(ae)>,

<(_b)(df)cb>, <(_f)cbc>

• Find all the length-2 seq. pat. Having prefix <a>: <aa>,
<ab>, <(ab)>, <ac>, <ad>, <af>
– Further partition into 6 subsets

• Having prefix <aa>;

• …

• Having prefix <af>
<eg(af)cbc>40

<(ef)(ab)(df)cb>30

<(ad)c(bc)(ae)>20

<a(abc)(ac)d(cf)>10

sequenceSID

CS590D 106

Completeness of PrefixSpan

<eg(af)cbc>40

<(ef)(ab)(df)cb>30

<(ad)c(bc)(ae)>20

<a(abc)(ac)d(cf)>10

sequenceSID

SDB

Length-1 sequential patterns

<a>, , <c>, <d>, <e>, <f>

<a>-projected database
<(abc)(ac)d(cf)>
<(_d)c(bc)(ae)>

<(_b)(df)cb>
<(_f)cbc>

Length-2 sequential
patterns
<aa>, <ab>, <(ab)>,
<ac>, <ad>, <af>

Having prefix <a>

Having prefix <aa>

<aa>-proj. db … <af>-proj. db

Having prefix <af>

-projected database …

Having prefix

Having prefix <c>, …, <f>

… …

52

CS590D 107

Efficiency of PrefixSpan

• No candidate sequence needs to be generated

• Projected databases keep shrinking

• Major cost of PrefixSpan: constructing projected

databases

– Can be improved by bi-level projections

CS590D 108

Optimization Techniques in
PrefixSpan

• Physical projection vs. pseudo-projection

– Pseudo-projection may reduce the effort of

projection when the projected database fits in

main memory

• Parallel projection vs. partition projection

– Partition projection may avoid the blowup of

disk space

53

CS590D 109

Speed-up by Pseudo-
projection

• Major cost of PrefixSpan: projection
– Postfixes of sequences often appear

repeatedly in recursive projected databases
• When (projected) database can be held in main

memory, use pointers to form projections

– Pointer to the sequence

– Offset of the postfix

s=<a(abc)(ac)d(cf)>

<(abc)(ac)d(cf)>

<(_c)(ac)d(cf)>

<a>

<ab>

s|<a>: (, 2)

s|<ab>: (, 4)

CS590D 110

Pseudo-Projection vs. Physical
Projection

• Pseudo-projection avoids physically copying
postfixes
– Efficient in running time and space when database

can be held in main memory

• However, it is not efficient when database
cannot fit in main memory
– Disk-based random accessing is very costly

• Suggested Approach:
– Integration of physical and pseudo-projection
– Swapping to pseudo-projection when the data set fits

in memory

54

CS590D 111

PrefixSpan Is Faster than GSP
and FreeSpan

0

50

100

150

200

250

300

350

400

0.00 0.50 1.00 1.50 2.00 2.50 3.00

Support threshold (%)

R
u

n
ti

m
e

(s
ec

o
n

d
)

PrefixSpan-1

PrefixSpan-2

FreeSpan

GSP

CS590D 112

Effect of Pseudo-Projection

0

40

80

120

160

200

0.20 0.30 0.40 0.50 0.60

Support threshold (%)

R
u

n
ti

m
e

 (
se

co
n

d
)

PrefixSpan-1

PrefixSpan-2

PrefixSpan-1 (Pseudo)

PrefixSpan-2 (Pseudo)

55

CS590D 113

Mining Association Rules in
Large Databases

• Association rule mining

• Algorithms for scalable mining of (single-dimensional Boolean)

association rules in transactional databases

• Mining various kinds of association/correlation rules

• Constraint-based association mining

• Sequential pattern mining

• Applications/extensions of frequent pattern mining

• Summary

CS590D 114

Associative Classification

• Mine association possible rules (PR) in form of
condset � c
– Condset: a set of attribute-value pairs

– C: class label

• Build Classifier
– Organize rules according to decreasing precedence

based on confidence and support

• B. Liu, W. Hsu & Y. Ma. Integrating classification and
association rule mining. In KDD’98

56

CS590D 118

Spatial and Multi-Media Association: A
Progressive Refinement Method

• Why progressive refinement?
– Mining operator can be expensive or cheap, fine or

rough
– Trade speed with quality: step-by-step refinement.

• Superset coverage property:
– Preserve all the positive answers—allow a positive

false test but not a false negative test.

• Two- or multi-step mining:
– First apply rough/cheap operator (superset coverage)
– Then apply expensive algorithm on a substantially

reduced candidate set (Koperski & Han, SSD’95).

119

Progressive Refinement
Mining of Spatial Associations

• Hierarchy of spatial relationship:
– “g_close_to”: near_by, touch, intersect, contain, etc.
– First search for rough relationship and then refine it.

• Two-step mining of spatial association:
– Step 1: rough spatial computation (as a filter)

• Using MBR or R-tree for rough estimation.

– Step2: Detailed spatial algorithm (as refinement)
• Apply only to those objects which have passed the rough

spatial association test (no less than min_support)

57

CS590D 120

Correlations with color, spatial relationships, etc.
From coarse to Fine Resolutionmining

Mining Multimedia
Associations

CS590D 121

Further Evolution of
PrefixSpan

• Closed- and max- sequential patterns

– Finding only the most meaningful (longest) sequential

patterns

• Constraint-based sequential pattern growth

– Adding user-specific constraints

• From sequential patterns to structured patterns

– Beyond sequential patterns, mining structured

patterns in XML documents

58

CS590D 122

Closed- and Max- Sequential
Patterns

• A closed- sequential pattern is a frequent sequence s where there is

no proper super-sequence of s sharing the same support count with

s

• A max- sequential pattern is a sequential pattern p s.t. any proper

super-pattern of p is not frequent
• Benefit of the notion of closed sequential patterns

– {<a1 a2 … a50>, <a1 a2 … a100>}, with min_sup = 1
– There are 2100 sequential patterns, but only 2 are closed

• Similar benefits for the notion of max- sequential-patterns

CS590D 123

Methods for Mining Closed-
and Max- Sequential Patterns

• PrefixSpan or FreeSpan can be viewed as projection-

guided depth-first search

• For mining max- sequential patterns, any sequence

which does not contain anything beyond the already

discovered ones will be removed from the projected DB
– {<a1 a2 … a50>, <a1 a2 … a100>}, with min_sup = 1
– If we have found a max-sequential pattern <a1 a2 …

a100>, nothing will be projected in any projected DB
• Similar ideas can be applied for mining closed-

sequential-patterns

59

CS590D 124

Constraint-Based Sequential
Pattern Mining

• Constraint-based sequential pattern mining

– Constraints: User-specified, for focused mining of desired patterns

– How to explore efficient mining with constraints? — Optimization

• Classification of constraints

– Anti-monotone: E.g., value_sum(S) < 150, min(S) > 10

– Monotone: E.g., count (S) > 5, S ⊇ {PC, digital_camera}

– Succinct: E.g., length(S) ≥ 10, S � {Pentium, MS/Office, MS/Money}

– Convertible: E.g., value_avg(S) < 25, profit_sum (S) > 160,
max(S)/avg(S) < 2, median(S) – min(S) > 5

– Inconvertible: E.g., avg(S) – median(S) = 0

CS590D 125

Sequential Pattern Growth for
Constraint-Based Mining

• Efficient mining with convertible constraints
– Not solvable by candidate generation-and-test methodology

– Easily push-able into the sequential pattern growth framework

• Example: push avg(S) < 25 in frequent pattern growth
– project items in value (price/profit depending on mining semantics)

ascending/descending order for sequential pattern growth

– Grow each pattern by sequential pattern growth

– If avg(current_pattern) � 25, toss the current_pattern
• Why?—future growths always make it bigger

• But why not candidate generation?—no structure or ordering in growth

60

CS590D 126

From Sequential Patterns to
Structured Patterns

• Sets, sequences, trees and other structures

– Transaction DB: Sets of items
• {{i1, i2, …, im}, …}

– Seq. DB: Sequences of sets:
• {<{i1, i2}, …, {im, in, ik}>, …}

– Sets of Sequences:
• {{<i1, i2>, …, <im, in, ik>}, …}

– Sets of trees (each element being a tree):
• {t1, t2, …, tn}

• Applications: Mining structured patterns in XML documents

CS590D 127

Mining Association Rules in
Large Databases

• Association rule mining

• Algorithms for scalable mining of (single-dimensional Boolean)

association rules in transactional databases

• Mining various kinds of association/correlation rules

• Constraint-based association mining

• Sequential pattern mining

• Applications/extensions of frequent pattern mining

• Summary

61

CS590D 128

Frequent-Pattern Mining:
Achievements

• Frequent pattern mining—an important task in data mining
• Frequent pattern mining methodology

– Candidate generation & test vs. projection-based (frequent-pattern
growth)

– Vertical vs. horizontal format
– Various optimization methods: database partition, scan reduction, hash

tree, sampling, border computation, clustering, etc.
• Related frequent-pattern mining algorithm: scope extension

– Mining closed frequent itemsets and max-patterns (e.g., MaxMiner,
CLOSET, CHARM, etc.)

– Mining multi-level, multi-dimensional frequent patterns with flexible
support constraints

– Constraint pushing for mining optimization
– From frequent patterns to correlation and causality

CS590D 129

Frequent-Pattern Mining:
Applications

• Related problems which need frequent pattern mining
– Association-based classification
– Iceberg cube computation
– Database compression by fascicles and frequent

patterns
– Mining sequential patterns (GSP, PrefixSpan,

SPADE, etc.)
– Mining partial periodicity, cyclic associations, etc.
– Mining frequent structures, trends, etc.

• Typical application examples
– Market-basket analysis, Weblog analysis, DNA

mining, etc.

62

CS590D 130

Frequent-Pattern Mining:
Research Problems

• Multi-dimensional gradient analysis: patterns regarding
changes and differences
– Not just counts—other measures, e.g., avg(profit)

• Mining top-k frequent patterns without support constraint

• Mining fault-tolerant associations
– “3 out of 4 courses excellent” leads to A in data mining

• Fascicles and database compression by frequent pattern
mining

• Partial periodic patterns

• DNA sequence analysis and pattern classification

CS590D 131

References: Frequent-pattern
Mining Methods

• R. Agarwal, C. Aggarwal, and V. V. V. Prasad. A tree projection algorithm
for generation of frequent itemsets. Journal of Parallel and Distributed
Computing, 2000.

• R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between
sets of items in large databases. SIGMOD'93, 207-216, Washington, D.C.

• R. Agrawal and R. Srikant. Fast algorithms for mining association rules.
VLDB'94 487-499, Santiago, Chile.

• J. Han, J. Pei, and Y. Yin: “Mining frequent patterns without candidate
generation”. In Proc. ACM-SIGMOD’2000, pp. 1-12, Dallas, TX, May 2000.

• H. Mannila, H. Toivonen, and A. I. Verkamo. Efficient algorithms for
discovering association rules. KDD'94, 181-192, Seattle, WA, July 1994.

63

CS590D 132

References: Frequent-pattern
Mining Methods

• A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for
mining association rules in large databases. VLDB'95, 432-443, Zurich,
Switzerland.

• C. Silverstein, S. Brin, R. Motwani, and J. Ullman. Scalable techniques for
mining causal structures. VLDB'98, 594-605, New York, NY.

• R. Srikant and R. Agrawal. Mining generalized association rules. VLDB'95,
407-419, Zurich, Switzerland, Sept. 1995.

• R. Srikant and R. Agrawal. Mining quantitative association rules in large
relational tables. SIGMOD'96, 1-12, Montreal, Canada.

• H. Toivonen. Sampling large databases for association rules. VLDB'96,
134-145, Bombay, India, Sept. 1996.

• M.J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New algorithms for fast
discovery of association rules. KDD’97. August 1997.

CS590D 133

References: Frequent-pattern
Mining (Performance

Improvements)
• S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic itemset counting

and implication rules for market basket analysis. SIGMOD'97, Tucson,
Arizona, May 1997.

• D.W. Cheung, J. Han, V. Ng, and C.Y. Wong. Maintenance of discovered
association rules in large databases: An incremental updating technique.
ICDE'96, New Orleans, LA.

• T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Data mining using
two-dimensional optimized association rules: Scheme, algorithms, and
visualization. SIGMOD'96, Montreal, Canada.

• E.-H. Han, G. Karypis, and V. Kumar. Scalable parallel data mining for
association rules. SIGMOD'97, Tucson, Arizona.

• J.S. Park, M.S. Chen, and P.S. Yu. An effective hash-based algorithm for
mining association rules. SIGMOD'95, San Jose, CA, May 1995.

64

CS590D 134

References: Frequent-pattern Mining
(Performance Improvements)

• G. Piatetsky-Shapiro. Discovery, analysis, and presentation of strong rules. In G.
Piatetsky-Shapiro and W. J. Frawley, Knowledge Discovery in Databases,. AAAI/MIT
Press, 1991.

• J.S. Park, M.S. Chen, and P.S. Yu. An effective hash-based algorithm for mining
association rules. SIGMOD'95, San Jose, CA.

• S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule mining with
relational database systems: Alternatives and implications. SIGMOD'98, Seattle,
WA.

• K. Yoda, T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Computing
optimized rectilinear regions for association rules. KDD'97, Newport Beach, CA, Aug.
1997.

• M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. Parallel algorithm for discovery
of association rules. Data Mining and Knowledge Discovery, 1:343-374, 1997.

CS590D 135

References: Frequent-pattern Mining (Multi-
level, correlation, ratio rules, etc.)

• S. Brin, R. Motwani, and C. Silverstein. Beyond market basket: Generalizing association rules to correlations.
SIGMOD'97, 265-276, Tucson, Arizona.

• J. Han and Y. Fu. Discovery of multiple-level association rules from large databases. VLDB'95, 420-431, Zurich,
Switzerland.

• M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A.I. Verkamo. Finding interesting rules from large
sets of discovered association rules. CIKM'94, 401-408, Gaithersburg, Maryland.

• F. Korn, A. Labrinidis, Y. Kotidis, and C. Faloutsos. Ratio rules: A new paradigm for fast, quantifiable data mining.
VLDB'98, 582-593, New York, NY

• B. Lent, A. Swami, and J. Widom. Clustering association rules. ICDE'97, 220-231, Birmingham, England.

• R. Meo, G. Psaila, and S. Ceri. A new SQL-like operator for mining association rules. VLDB'96, 122-133, Bombay,
India.

• R.J. Miller and Y. Yang. Association rules over interval data. SIGMOD'97, 452-461, Tucson, Arizona.

• A. Savasere, E. Omiecinski, and S. Navathe. Mining for strong negative associations in a large database of
customer transactions. ICDE'98, 494-502, Orlando, FL, Feb. 1998.

• D. Tsur, J. D. Ullman, S. Abitboul, C. Clifton, R. Motwani, and S. Nestorov. Query flocks: A generalization of
association-rule mining. SIGMOD'98, 1-12, Seattle, Washington.

• J. Pei, A.K.H. Tung, J. Han. Fault-Tolerant Frequent Pattern Mining: Problems and Challenges. SIGMOD
DMKD’01, Santa Barbara, CA.

65

CS590D 136

References: Mining Max-patterns
and Closed itemsets

• R. J. Bayardo. Efficiently mining long patterns from databases. SIGMOD'98,
85-93, Seattle, Washington.

• J. Pei, J. Han, and R. Mao, "CLOSET: An Efficient Algorithm for Mining
Frequent Closed Itemsets", Proc. 2000 ACM-SIGMOD Int. Workshop on
Data Mining and Knowledge Discovery (DMKD'00), Dallas, TX, May 2000.

• N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent
closed itemsets for association rules. ICDT'99, 398-416, Jerusalem, Israel,
Jan. 1999.

• M. Zaki. Generating Non-Redundant Association Rules. KDD'00. Boston,
MA. Aug. 2000

• M. Zaki. CHARM: An Efficient Algorithm for Closed Association Rule Mining,
SIAM’02

CS590D 137

References: Constraint-base
Frequent-pattern Mining

• G. Grahne, L. Lakshmanan, and X. Wang. Efficient mining of constrained correlated sets. ICDE'00, 512-521, San

Diego, CA, Feb. 2000.

• Y. Fu and J. Han. Meta-rule-guided mining of association rules in relational databases. KDOOD'95, 39-46,

Singapore, Dec. 1995.

• J. Han, L. V. S. Lakshmanan, and R. T. Ng, "Constraint-Based, Multidimensional Data Mining", COMPUTER

(special issues on Data Mining), 32(8): 46-50, 1999.

• L. V. S. Lakshmanan, R. Ng, J. Han and A. Pang, "Optimization of Constrained Frequent Set Queries with 2-

Variable Constraints", SIGMOD’99

• R. Ng, L.V.S. Lakshmanan, J. Han & A. Pang. “Exploratory mining and pruning optimizations of constrained

association rules.” SIGMOD’98

• J. Pei, J. Han, and L. V. S. Lakshmanan, "Mining Frequent Itemsets with Convertible Constraints", Proc. 2001 Int.

Conf. on Data Engineering (ICDE'01), April 2001.

• J. Pei and J. Han "Can We Push More Constraints into Frequent Pattern Mining?", Proc. 2000 Int. Conf. on

Knowledge Discovery and Data Mining (KDD'00), Boston, MA, August 2000.

• R. Srikant, Q. Vu, and R. Agrawal. Mining association rules with item constraints. KDD'97, 67-73, Newport Beach,

California

66

CS590D 138

References: Sequential Pattern
Mining Methods

• R. Agrawal and R. Srikant. Mining sequential patterns. ICDE'95, 3-

14, Taipei, Taiwan.

• R. Srikant and R. Agrawal. Mining sequential patterns:

Generalizations and performance improvements. EDBT’96.

• J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, M.-C. Hsu,
"FreeSpan: Frequent Pattern-Projected Sequential Pattern Mining",

Proc. 2000 Int. Conf. on Knowledge Discovery and Data Mining

(KDD'00), Boston, MA, August 2000.

• H. Mannila, H Toivonen, and A. I. Verkamo. Discovery of frequent
episodes in event sequences. Data Mining and Knowledge

Discovery, 1:259-289, 1997.

CS590D 139

References: Sequential Pattern
Mining Methods

• J. Pei, J. Han, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu, "PrefixSpan:
Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth",
Proc. 2001 Int. Conf. on Data Engineering (ICDE'01), Heidelberg, Germany,
April 2001.

• B. Ozden, S. Ramaswamy, and A. Silberschatz. Cyclic association rules.
ICDE'98, 412-421, Orlando, FL.

• S. Ramaswamy, S. Mahajan, and A. Silberschatz. On the discovery of
interesting patterns in association rules. VLDB'98, 368-379, New York, NY.

• M.J. Zaki. Efficient enumeration of frequent sequences. CIKM’98.
Novermber 1998.

• M.N. Garofalakis, R. Rastogi, K. Shim: SPIRIT: Sequential Pattern Mining
with Regular Expression Constraints. VLDB 1999: 223-234, Edinburgh,
Scotland.

67

CS590D 140

References: Frequent-pattern Mining
in Spatial, Multimedia, Text & Web

Databases
• K. Koperski, J. Han, and G. B. Marchisio, "Mining Spatial and Image Data through Progressive Refinement

Methods", Revue internationale de gomatique (European Journal of GIS and Spatial Analysis), 9(4):425-440,

1999.

• A. K. H. Tung, H. Lu, J. Han, and L. Feng, "Breaking the Barrier of Transactions: Mining Inter-Transaction

Association Rules", Proc. 1999 Int. Conf. on Knowledge Discovery and Data Mining (KDD'99), San Diego, CA,

Aug. 1999, pp. 297-301.

• J. Han, G. Dong and Y. Yin, "Efficient Mining of Partial Periodic Patterns in Time Series Database", Proc. 1999 Int.

Conf. on Data Engineering (ICDE'99), Sydney, Australia, March 1999, pp. 106-115

• H. Lu, L. Feng, and J. Han, "Beyond Intra-Transaction Association Analysis:Mining Multi-Dimensional Inter-

Transaction Association Rules", ACM Transactions on Information Systems (TOIS’00), 18(4): 423-454, 2000.

• O. R. Zaiane, M. Xin, J. Han, "Discovering Web Access Patterns and Trends by Applying OLAP and Data Mining

Technology on Web Logs," Proc. Advances in Digital Librar ies Conf. (ADL'98), Santa Barbara, CA, April 1998, pp.

19-29

• O. R. Zaiane, J. Han, and H. Zhu, "Mining Recurrent Items in Multimedia with Progressive Resolution

Refinement", ICDE'00, San Diego, CA, Feb. 2000, pp. 461-470

CS590D 141

References: Frequent-pattern Mining
for Classification and Data Cube

Computation
• K. Beyer and R. Ramakrishnan. Bottom-up computation of sparse and iceberg cubes.

SIGMOD'99, 359-370, Philadelphia, PA, June 1999.

• M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, and J. D. Ullman. Computing
iceberg queries efficiently. VLDB'98, 299-310, New York, NY, Aug. 1998.

• J. Han, J. Pei, G. Dong, and K. Wang, “Computing Iceberg Data Cubes with Complex
Measures”, Proc. ACM-SIGMOD’2001, Santa Barbara, CA, May 2001.

• M. Kamber, J. Han, and J. Y. Chiang. Metarule-guided mining of multi-dimensional
association rules using data cubes. KDD'97, 207-210, Newport Beach, California.

• K. Beyer and R. Ramakrishnan. Bottom-up computation of sparse and iceberg cubes.
SIGMOD’99

• T. Imielinski, L. Khachiyan, and A. Abdulghani. Cubegrades: Generalizing association
rules. Technical Report, Aug. 2000

