Ethics Considerations
Prof. Chris Clifton
19 April 2022

Ethics Issues for Data Mining & ML

What’s the Problem?

- Privacy
 - Training data
 - Allowed uses

- Fairness
 - Inequitable outcomes
 - Variance in accuracy

- Data inaccuracy
- Explainability
 - See Dawn or Doom lecture

- Redress
 - What if someone disputes results?
What is Privacy?

- "The right to be let alone" - Warren & Brandeis, 4 Harvard L.R. 193 (Dec. 15, 1890)
 - My information protected so it doesn’t adversely affect me in the future
- Control over data
 - My information used only in ways I approve
- Issues:
 - Disclosure / sharing
 - Approved use
 - Recourse

Data Privacy: The Goal

- Protect the Individual
 - “Everyone has the right to the protection of personal data concerning him or her. Such data must be processed fairly for specified purposes and on the basis of the consent of the person concerned or some other legitimate basis laid down by law. Everyone has the right of access to data which has been collected concerning him or her, and the right to have it rectified.” – Charter of Fundamental Rights of the European Union
- Challenges: What do we mean by
 - “concerning” an individual
 - Protection
 - Consent
 - Access / rectified
“Obvious” answers

• Concerning an individual
 – Has your name/address/other identifying information
• Protection
 – Only used/accessed in expected, intended, authorized ways
• Consent
 – You know and agree to what is done with the data
• Access/Rectify
 – You can see the data and correct errors

Consent

• When you apply for a (job, grad school, …), do you consent to that data being used with an ML model to decide if you should be accepted?
 – Amazon tried it: https://www.reuters.com/article/us-amazon-com-jobs-automation-insight-idUSKCN1MK08G
• What about having your data used as training data to make decisions about others?
 – Ungraded assignment (post-midterm): Read the terms of service and privacy policy of Facebook or some other social media you use, and think about this question.
“Obvious” answers

- Concerning an individual
 - Has your name/address/other identifying information
- Protection
 - Only used/accessed in expected, intended, authorized ways
- Consent
 - You know and agree to what is done with the data
- Access/Rectify
 - You can see the data and correct errors

Concerning an Individual: IC 24-4.9-2-10

Sec. 10. "Personal information" means:

1. a Social Security number that is not encrypted or redacted; or
2. an individual's first and last names, or first initial and last name, and one (1) or more of the following data elements that are not encrypted or redacted:
 1. A driver's license number.
 2. A state identification card number.
 3. A credit card number.
 4. A financial account number or debit card number in combination with a security code, password, or access code that would permit access to the person's account.
The AOL Awakening

- In Aug 2006, AOL released its customers web searches for research studies
- 20 Million unique queries of 650K unique users
- `<user-id>` was replaced with a `<random number>`
- NY Times reporter successfully found the identity of an individual from the queries
 - Queries included “60 single men” “landscapers in Lilburn, Ga”
 - Many more queries contained enough information to uniquely identify the person
- And it keeps going (Netflix, NYC Taxi, …)

AOL fired its CTO over this issue;
Two researchers were forced out

Re-identifying “anonymous” data (Sweeney ’01)

- 37 US states mandate collection of information
- Dr. Sweeney purchased the voter registration list for Cambridge Massachusetts – 54,805 people
- 69% unique on postal code and birth date
- 87% US-wide with all three

- Solution: k-anonymity
 - Any combination of values appears at least k times
- Developed systems that guarantee k-anonymity
 - Minimize distortion of results
Quiz: Indiana Breach Disclosure Law

IC 24-4.9-2-10

Suppose someone in the Dean's office downloaded student information (unencrypted) onto a USB to give to the registrar, and then the USB key disappeared. Which of the following information on the USB key would be considered "Personal Information" and trigger Indiana's Breach Disclosure law:

A. Student name, address, and unpaid parking violations
B. Student name, address, and photo
C. Student name and Purdue ID number
D. Student name, address, email, telephone, date of birth, and last four digits of social security number

Redaction:

IC 24-4.9-2-11

(a) Data are redacted for purposes of this article if the data have been altered or truncated so that not more than the last four (4) digits of:
 (1) a driver's license number;
 (2) a state identification number; or
 (3) an account number;

is accessible as part of personal information.

(b) For purposes of this article, personal information is "redacted" if the personal information has been altered or truncated so that not more than five (5) digits of a Social Security number are accessible as part of personal information.
Anonymity: The Goal

• Prevent Disclosure of Personal Information
 – GDPR: ‘personal data’ means any information relating to an identified or identifiable natural person (‘data subject’); an identifiable natural person is one who can be identified, directly or indirectly
 – Qatar Law 13 of 2016: Personal Data: Data belonging to an Individual with specified or reasonably specifiable identity whether through such Personal Data or through combining the same with any other data
 – But still use the data where appropriate!

• Problem: It can’t be done!
 – “Perfect” privacy requires zero utility (e.g., the data must be encrypted.)
 – As soon as we can use the data (e.g., decrypt), it is at risk

Why Perfect Privacy is Impossible
(Dwork, McSherry, Nissim, and Smith ‘06)

• Background Knowledge
 – Adversary may already know a lot
 – Whatever we provide (even de-identified or anonymized data) may add to that knowledge

• It may just take that “last bit of knowledge” to give the adversary the ability to violate privacy
 – We can formally prove 1 bit may be too much
What We Can Do

- **Encryption**
 - Reduce risk to minimal levels when data not in use

- **Anonymization**
 - Produce usable data that is hard to link to individuals

- **Noise addition**
 - Usable data where any link to individuals (or information we surmise about individuals) is guaranteed to be uncertain/suspect

What We Can Do: Encryption

- **Goal:** Reduce risk to minimal levels when data not in use
- **Encrypted Computation**
 - Process the data while it is encrypted
 - Decrypt final output: Generalized, non-individual results
- **Basic tools**
 - Homomorphic Encryption, Commutative Encryption, Order Preserving Encryption
- **Research Prototypes can accomplish many data processing and analysis tasks using these tools**
 - Garbled Computing: Compute without revealing either the data or the program

Garbled Computing.

GC runs as a black box on one or more host computers (some are untrusted) in a cooperative non-colluding fashion.
What We Can Do: Anonymization

- Ensure protected/sensitive data not directly identifiable
 - Remove links between protected data and identifiers
- Generalize “quasi-identifiers”: Information that when combined with external data enables re-identification
 - Birth dates, addresses, workplace, etc.
 - E.g., instead of birth date, only give year
- Anonymized data still useful for data analysis
 - Goal is general knowledge, not learning specifics about individuals
- Example: “Anatomized” database from “Private Data in the Cloud” project

<table>
<thead>
<tr>
<th>ID</th>
<th>Manufacturer</th>
<th>Drug Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Raphe Healthcare</td>
<td>Retinoic Acid</td>
</tr>
<tr>
<td>2</td>
<td>Raphe Healthcare</td>
<td>Retinoic Acid</td>
</tr>
<tr>
<td>3</td>
<td>Raphe Healthcare</td>
<td>Retinoic Acid</td>
</tr>
<tr>
<td>4</td>
<td>Envie De Neuf</td>
<td>Mild Exfoliation</td>
</tr>
<tr>
<td>5</td>
<td>Emedoutlet</td>
<td>Nexium</td>
</tr>
<tr>
<td>6</td>
<td>Gep-Tek</td>
<td>Abiraterone</td>
</tr>
<tr>
<td>7</td>
<td>Jai Radhe</td>
<td>Adapalene</td>
</tr>
<tr>
<td>8</td>
<td>Hangzhou Btech</td>
<td>Cytarabine</td>
</tr>
</tbody>
</table>

What We Can Do: Noise Addition

- Idea: Impact of noise on what we learn from the data larger than impact of any individual's data
- Formally: For $S \subseteq \text{Range}(f)$, an ϵ-differentially private mechanism M satisfies
 $$\frac{\Pr[M_f(D_1) \in S]}{\Pr[M_f(D_2) \in S]} \leq e^\epsilon$$
 where D_1 and D_2 differ on at most one element
- U.S. Census Bureau is starting to use Differential Privacy
What We Need: Legal Incentives

- “Notice and Consent” framework discourages application of technological advances
 - We can’t guarantee your privacy, so please allow us to use your data in unsafe ways
 - U.S.: Enforcement action against Snapchat for promising to protect privacy and not doing a good enough job
 - Companies get away with not even trying, as long as they tell you so
- Can legal frameworks acknowledge that privacy is at risk?
 - Require efforts to manage, not eliminate, that risk

Ethics Issues for Data Mining & ML

What’s the Problem?

- Privacy
 - Training data
 - Allowed uses
- Fairness
 - Inequitable outcomes
 - Variance in accuracy
- Data inaccuracy
- Explainability
 - See Dawn or Doom lecture
- Redress
 - What if someone disputes results?
What’s all the fuss?
(Dastin ‘18)

Amazon scraps secret AI recruiting tool that showed bias against women

Jeffrey Dastin

SAN FRANCISCO (Reuters) - Amazon.com Inc’s (AMZN.O) machine-learning specialists uncovered a big problem: their new recruiting engine did not like women.

- Resume screening tool
 - Trained on prior applications
 - Demonstrated bias toward male applicants
 - Manual avoidance of “obvious” discriminatory words
- Scrapped for fear of remaining biases

What’s all the fuss?
(Angwin, Larson, Mattu, Kirchner ‘16)

Machine Bias

There’s software used across the country to predict future criminals. And it’s biased against blacks.

by Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner, ProPublica
May 23, 2016

ON A SPRING AFTERNOON IN 2014, Brisha Borden was running late to pick up her god-sister from school when she spotted an unlocked kid’s blue Huffy bicycle and a silver Razor scooter. Borden and a friend grabbed the bike and scooter and tried to ride them down the street in the Fort Lauderdale suburb of Coral Springs.

- Similar cases lead to different outcomes
 - Minor theft (shoplifting, stealing a bike)
 - Black offender predicted as more likely to commit future crime than white
 - Despite white offender having criminal record!
- Statistical analysis suggests this is common
What’s all the fuss? (Sanburn ‘15)

Facebook Thinks Some Native American Names Are Inauthentic

• Ms. Lone Elk (and others) required to provide identification to use Facebook
 – Viewed as potential violation of “real name” policy
• No such barriers for “dominant majority”

What’s all the fuss? (Sweeney ‘13)

Discrimination in Online Ad Delivery

• Blacks and whites see different ads on the internet
 – Even if race not part of the profile
• Sweeney found that first names typically associated with blacks and whites lead to different ads
 – Otherwise identical profiles and histories
What’s all the fuss?
(Datta, Tschantz, and Datta ‘15)

- Study of impact of different ad privacy settings
- Disclosing Gender resulted in fewer ads for high-paying jobs

And it isn’t just CS people who notice

- In an increasingly automated world, what IF AI tools punish the poor?
- Feb. 13, 2019 Fowler Hall Purdue U.
What are the reasons?

- Discrimination intentionally programmed into the system?
 - Let’s hope not
- Historical bias in the training data?
 - May explain some, but not all
- Insensitivity on the part of developers?
 - Maybe
- Or perhaps we don’t know (yet)?

Conventional Wisdom: *It’s the Training Data*

- “Data is frequently imperfect in ways that allow these algorithms to inherit the prejudices of prior decision makers.”
- “Bias can easily creep into seemingly objective algorithms due to the selective nature of the training data”
 - Sidebar highlight in Jamie Griffiths, *The ineradicable bias at the heart of algorithm design*, The Panoply, 2/15/19
- “We often shorthand our explanation of AI bias by blaming it on biased training data. The reality is more nuanced”
 - Karen Hao, *This is how AI bias really happens—and why it’s so hard to fix*, Technology Review 2/14/19
 - Proceeds to discuss three ways that training data becomes biased (beyond historical bias)
Potential sources

• Historical bias in training data
 – Can we detect this?

• Feedback bias
 – Meth lab reports in Terre Haute
 • Increase police presence
 – Nearly 400 Meth labs in Terre Haute!
 • Is Terre Haute really the hotbed of Meth?

Credit Scoring using Decision Trees
(with Abhishek Sharma)

• Experiment in Fairness using Statlog (German Credit Data) Data Set
 Data made available by Professor Dr. Hans Hofmann, Universität Hamburg via the UCI Machine Learning Repository

• Learn a decision tree from historical decisions
 – Data about credit applications
 – Decision made
 • Better training data would be if loan was repaid…

• Decision tree: model used to make future decisions
 – Goal is to make similar decisions to historical data
Credit Dataset: Majority vs. Minority Positive Decisions

Why is Machine Learning Introducing Bias?

- Key idea: ML typically optimizes for overall accuracy
- What is going on?
 - Distinct models that work best for majority, minority
 - Optimizing for global accuracy (revenue, …) selects model that works for majority
- Accurate / effective model for majority
 - But a bad model for the minority

Facebook Thinks Some Native American Names Are Inauthentic

The social network is barring some Native Americans from logging in

If you’re Native American, Facebook might think your name is fake.

The social network has a history of failing to realize that names they’re attempting to see aren’t real. Doug quads and even some human rights activists, for example, have experienced error messages and problems logging in the past.
Credit Dataset: Majority vs. Minority Accuracy

Removing “bias”

Decision Tree

Majority only model
Multiple Measures:
Disparate Treatment vs. Disparate Impact

- **Disparate treatment:** Individuals from different groups treated differently
 - Otherwise identical individuals have different outcome based only on group membership
- **Disparate impact:** Outcomes different between different groups
 - No individuals are “the same”
 - Different outcomes for different groups, even if some other explanation
- **Prior work largely relies on using special categories**
 - This can qualify as disparate treatment
Why Disparate Impact?

• Mortgage Redlining
 – Racial discrimination in home loans prohibited in US
 – Banks drew lines around high risk neighborhoods!!!
 – These were often minority neighborhoods
 – Result: Discrimination (redlining outlawed)

What about data mining that “singles out” minorities?

Balance Training Data

• What if we get rid of majority/minority?
 (with Murat Kantarcioglu and Yan Zhou, UT Dallas)
• Augment training data with synthetic data
 – Generated to be similar to real data
• Synthetic data skewed to eliminate disparity in training data
 – Balance sizes of privileged/unprivileged groups
 – Balance positive/negative outcomes between groups
Is Unbiased Training Data Enough?

• Rakin Haider: ML bias from unbiased data
• Assumptions:
 – Training data correct
 – Privileged and unprivileged groups of same size
 – Positive outcome probability same for both groups
• Difference
 – Different optimal models for the two groups
 – Optimal model for privileged group is higher accuracy

Result: Biased Outcome

• Resource-scarce environment (e.g., selective college admissions): Optimal accuracy global model favors privileged class
 – This wasn’t true in the training data
• Analysis based on Bayesian model
 – Presumably “good” practical ML will do the same
 – Demonstrated on a variety of real-world classifiers
 • Including some explicitly designed to reduce bias
• Reflects a type of Systemic Bias
Ideas for the Future

- Tests for Bias?
 - Or perhaps just potential bias?
 - ethicstoolkit.ai

- Fundamental changes in machine learning?
 - Objective functions other than accuracy

- IEEE-SA P7003: Standard for Algorithmic Bias Considerations
 - Work in Progress

- Understand distinction between Bias and Personalization (supported by the Mellon Foundation):
 - What determines if a recommendation is “Biased” or “Personalized”
 - Explored Participatory Design to elicit issues
 - Joint work with Kendall Roark (Data Ethicist, Purdue Libraries) and Daniel Kelly (Purdue Philosophy Dept.)

What do we do about it?
Standards and Best Practices
Ethically Aligned Design
A Vision for Prioritizing Human Well-being with Autonomous and Intelligent Systems

Version 2

- Launched December 2017 as a Request for Input
- Created by over 250 Global A/IS & Ethics professionals, in a bottom up, transparent, open and increasingly globally inclusive process
- Incorporates over 200 pages of feedback from public RFI and new Working Groups from China, Japan, Korea and more
- Thirteen Committees / Sections
- Contains over one hundred twenty key Issues and Candidate Recommendations

https://ethicsinaction.ieee.org/

IEEE P70xx Standards Projects

IEEE P7000: Model Process for Addressing Ethical Concerns During System Design
IEEE P7001: Transparency of Autonomous Systems
IEEE P7002: Data Privacy Process
IEEE P7003: Algorithmic Bias Considerations
IEEE P7004: Child and Student Data Governance
IEEE P7005: Employer Data Governance
IEEE P7006: Personal Data AI Agent Working Group
IEEE P7007: Ontological Standard for Ethically Driven Robotics and Automation
IEEE P7008: Ethically Driven Nudging for Robotic, Intelligent and Autonomous Systems
IEEE P7009: Fail-Safe Design of Autonomous and Semi-Autonomous Systems
IEEE P7010: Wellbeing Metrics Standard for Ethical AI and Autonomous Systems
IEEE P7011: Process of Identifying and Rating the Trustworthiness of News Sources
IEEE P7012: Standard for Machines Readable Personal Privacy Terms
Ethics Issues for Data Mining & ML

What’s the Problem?

- Privacy
 - Training data
 - Allowed uses

- Fairness
 - Inequitable outcomes
 - Variance in accuracy

- Data inaccuracy
- Explainability
 - See Dawn or Doom lecture
- Redress
 - What if someone disputes results?

Data Inaccuracy

- Issue 1: Inaccuracy in test data
 - Ability for individuals to see the data about them used in making automated decisions
 - Ability to correct inaccuracies

- Issue 2: Inaccuracy in training data
 - Are we confident our results generalize? *Should not be dependent on small amount of inaccurate training data*
 - Do we actually know how accurate our data is?
Ethics Issues for Data Mining & ML

What’s the Problem?

- **Privacy**
 - Training data
 - Allowed uses
- **Fairness**
 - Inequitable outcomes
 - Variance in accuracy
- **Data inaccuracy**
- **Explainability**
- **Redress**
 - What if someone disputes results?

First step: Transparency

- Analyze and explain the model
 - Very difficult
 - Likely only understandable to technology and domain experts
- Analyze and explain a decision
 - Input data analysis
 - Static explanation
 - Design/Code review and statistical analysis
 - Sensitivity analysis
 - Reverse-engineering the model
Static Explanation through Causal Reasoning (Junzhe Zhang and Elias Bareinboim AAAI’18)

- The data analysis reveals that the total variation $E[Y|X = 1] - E[Y|X = 0] < 0$
 - i.e., applicants of faith has lower chance of being hired.

- A frustrated applicant sues the company, claiming the disparity is due to:
 - Direct discrimination: the direct path $X \rightarrow Y$.
 - Indirect discrimination: the indirect path $X \rightarrow W \rightarrow Y$.

- The company argues the disparity is due to:
 - Difference in educational background: the spurious path $X \leftarrow Z \rightarrow Y$.

- Challenge: We do not have access to the code of the decision-making system (or the brains of the HR personnel in charge of hiring), so how to determine who is telling the truth?

Fairness in Decision-Making, Zhang and Bareinboim, AAAI’18.

Reverse Engineering the Model

Back to Neural Nets
Visual Explanation

Dr. Nazneen Rajani

Generating Visual Explanation

- **GradCAM** (Selvaraju et al., 2017) is used to generate heat-map explanations.

Dr. Nazneen Rajani
Are Explanations Accurate?

- Do these explanations really capture how decisions are made?
 - Sensitivity Analysis, Causal Reasoning
 - Explain outcome, not process
 - Heat maps
 - maybe?
- But does it matter?

Emotional vs. Rational Decision-Making

- Humans have been shown to be emotional in their decision making
 - fMRI analysis of how decisions are made
 (De Martino, Kumaran, Seymour, Dolan, Science 2006)
- We rationalize our decisions
 - Explanations justify why we the decisions are good, not how we make them
- Is this good enough for explaining AI?
 - Does this qualify as making ethical decisions?
Ethics Issues for Data Mining & ML

What’s the Problem?

- Privacy
 - Training data
 - Allowed uses
- Fairness
 - Inequitable outcomes
 - Variance in accuracy
- Data inaccuracy
- Explainability
- Redress
 - What if someone disputes results?

(Not?) Understanding AI

- We may not fully understand how AI does what it does
 - We want AI to solve hard problems!
 - *If we can’t solve the problem, should we expect to understand how AI does it?*
- We do want reasons why AI is doing the right thing
 - *We’re figuring out how to do this*
- We just need to make sure AI does the right thing
General Guidelines: FIPPs

Fair Information Practice Principles

- **Transparency**
 - Organizations should be transparent and notify individuals
- **Individual Participation**
 - Organizations should involve the individual in the process of using PII
- **Purpose Specification**
 - Organizations should specifically articulate the authority that permits the collection of PII
- **Data Minimization**
 - Organizations should only collect PII that is directly relevant and necessary
- **Use Limitation**
 - Organizations should use PII solely for the purpose(s) specified in the notice
- **Data Quality and Integrity**
 - Organizations should, to the extent practicable, ensure that PII is accurate, relevant, timely, and complete.
- **Security**
 - Organizations should protect PII (in all media) through appropriate security safeguards
- **Accountability and Auditing**
 - Organizations should be accountable for complying with these principles

Some suggestions

- **Attend relevant talks**
 - CS colloquium series (lists.purdue.edu – cs-colloq)
 - www.purdue.edu/critical-data-studies
- **Data Ethics courses (a few)**
 - ILS 23000: Data Science and Society: Ethical, Legal, Social Issues
 - PHIL 20700: Ethics for Technology, Engineering, and Design
 - PHIL 20800: Ethics of Data Science