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27
PORDUE Task
« Anomalies/outliers: data points that are considerably
“different” from the remainder of the data

* Variants:
— Find all points with anomaly scores > threshold
— Find point with largest anomaly score

— Given a database D with mostly normal points, compute the
anomaly score of a point x with respect to D

© 2022 Christopher W. Clifton



27
PORDYE Examples

Department of Computer Science

« Fraud detection

Intrusion detection
Ecosystem disturbances
System monitoring
Biosurveillance/public health
Data preprocessing
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PORDUE Types of anomalies

Department of Computer Science

« Data from different classes

— “An outlier is an observation that differs so much from other
observations as to arouse suspicion that it was generated by a
different mechanism”

« Natural variation
— Extreme or unlikely variations are often interesting

 Data measurement and collection errors
- Preprocess to remove
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PORDYE Defining an outlier
« Notion of outlier is highly subjective and domain
dependent
« However, most definitions can be viewed as defining a
distribution for “normal” data and then looking for
deviations from that distribution
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PURDUE Point anomalies

Department of Computer Science

« Anindividual data instance is anomalous with respect to
the data

Source: Lazarevic et al, ECML/PKDD’08 Tutorial
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PURDUE Contextual anomalies

Department of Computer Science

 An individual data instance is anomalous within a
context

* Requires a notion of context

 Also referred to as conditional anomalies (Song et. al,
TDKE ’06) Monthly Temp
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Source: Lazarevic et al, ECML/PKDD’08 Tutorial
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PURDUE Collective anomalies

Department of Computer Science

A collection of related data instances is anomalous
» Requires a relationship among data instances, e.g.:
— Sequential, Spatial, Graph Data

» The individual instances within a collective anomaly are
not anomalous by themselves _

Anomalous Subsequence

Source: Lazarevic et al, ECML/PKDD’08 Tutorial
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PORDYE Anomaly detection
» Challenges
— How many attributes are used to define an outlier?
— How many outliers are there in the data?
— Class labels are costly (evaluation can be challenging)
— Skewed class distribution (finding needles in haystack)
« Working assumption:

— There are considerably more “normal” observations than
“abnormal” observations in the data

5
PORDUE Approaches

» Supervised
— Labels available for both normal data and anomalies
— Similar to classification with imbalanced classes

« Semi-supervised
— Labels available only for normal data

« Unsupervised
— No labels assumed

— Based on the assumption that anomalies are very rare
compared to normal data

© 2022 Christopher W. Clifton



2
FURDUE  Unsupervised (point) anomaly detection
« General method

— Build a profile of “normal” behavior based on patterns or
summary statistics for the overall population

— Use deviations from “normal” to detect anomalies
» Types of methods #

— Visual and statistical-based . &%

— Distance-based ® -

— Model-based

27 _
PURDUE Visual methods

Department of Computer Science

» Box plot (1D)
» Scatter plot (2D)

e Limitations . ‘ ]

— Time consuming N E —
— Subjective N ——

Box plot of petal length per class
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PURDUE Distance-based approaches

« Three major types of methods
— Nearest-neighbor
— Density-based
— Clustering approach

27 _
PORDUE Nearest-neighbor

Department of Computer Science

« Compute distance between every pair of points

 How to define outliers?

— Points for which there are fewer than p neighboring points
within distance d

— Top p points whose distance to k" nearest neighbor is greatest

— Top p points whose average distance to their k nearest
neighbors is greatest
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Figure 10,4,  Outlier score based on the
distance t@ nearest neighbor.
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Figure 10.5. Outlier score based on the dis-

tance to nearest neighbor. Nearby out-
liers have low outlier scores.
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Figure 10.6. Qutlier score based on distance
to the@nearest neighbor. A small cluster
becomes an outlier.

Example
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Figure 10.7. Outlier score based on the dis-
tance to the(@nearest neighbor. Clusters of
differing density.
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PORDYE Density-based
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» For each point, compute the density of
its local neighborhood of k neighbors

NG, K| TR

ZyeN(x,k) distance(x,y)

density(x, k) =

» Local outlier factor (LOF) is the ratio of
a point’s density to the average density
of its nearest neighbors

1 .
Ezyezv(x,k) density(y, k)

LOF(x) =
) density(x, k) #

+ Ouitliers are points with largest LOF
value

In the NN approach, pz is not discovered
as an outlier, while the LOF approach
considers both p1 and pz to be outliers

27
PORDUE High dimensions

* In high-dimensional space, data is sparse and notion of
proximity becomes meaningless
— Every point is almost equally good outlier from the perspective

of proximity-based definitions

» Lower-dimensional projections can be used for outlier

detection

— A point is an outlier if in some lower dimensional projection, it is
present in a local region of abnormally low density
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PORDYE Clustering-based
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» Cluster the data into groups
of different density

from all other non-candidate
points, they are outliers

 Choose points in small ﬁ‘
cluster as candidate outliers i

» Compute the distance fﬁ‘*”‘.’x
between candidate points ® |
and non-candidate clusters :if
— If candidate points are far gﬂ;g

27
PORDUE Example
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Figure 10.9. Distance of points from closest centroid.

This doesn’t take into account the average distance of points to their cluster centroid (which
can vary by cluster density)... so use relative distance (ratio of distance to median distance)
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PORDYE Example
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Figure 10.1{}.distanoe of points from closest centroid.

27
PORDUE Supervised Anomaly Detection
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« Anomalies not known in advance
— Otherwise they wouldn’t be anomalies

» But what if we assume we know normal?
— Training data is from non-anomalies

* Train classifier to recognize normal
* One-Class Classification (Moya & Hush ‘96)

22
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PURDUE One-class Classification
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» Problem: “Easy” to classify training data
— Given instance, classify as normal
— Works for all the training data

* |ldeas:
— “Fake” training data

— Unpruned classifier
» Narrowly tailor to recognize positive instances

23
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PORDUE Artificial Training Data

Department of Computer Science

 Start with a large volume of
“normal” data

* Randomly generate a
comparatively small volume
of presumed anomalies

— From uniform distribution
acCross space -
 Classifier accepts some
false positives

24
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PIIJ%JE One-Class Support Vector Machine

UNIVERSITY Scholkopf, Platt, Shawe-Taylor, Smola and Williamson 2001

Department of Computer Science

 |dea: “Max-Margin” between points and “everything else”
— Accomplished through clever choice of kernel functions

— Max margin between points and origin gives boundary
separating points from “everything else”
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PURDUE One-Class Support Vector Machine

UNIVERSITY Scholkopf, Platt, Shawe-Taylor, Smola and Williamson 2001
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 Parameters
- v bounds allowed outliers
- ¥ governs classifier complexity (kernel function space)

v, width ¢ 0.5, 0.5 0.1, 0.5 0.5, 0.1
frac. SVs/OLs 0.59, 0.47 0.24, 0.03 0.65, 0.38
margin p/||w|| 0.70 0.62 0.48 27
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Anomaly Detection: Statistical

Some materials from Introduction to Data Mining by Tan, Steinbach and Kumar
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PORDUE Statistical approaches
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« Use a parametric model to describe the data (e.g., Normal
distribution)

« Apply a statistical test that evaluates how likely a point is
under the data distribution

* Need to specify a confidence limit (e.g., 3os away from
mean is an outlier)
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PURDUE Multivariate data
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1. Statistical approach
— Model data with a multivariate Gaussian

— Calculate the likelihood of a point with respect to the estimated
distribution, flag points with low likelihood as anomalous

2. Clustering approach

— Use Mahalanobis distance to take into account the covariance of the
attributes

— Calculate distance of each point to the centroid, flag points with
largest distance

(i) = J (D) = (D) 2 (x(0) — (1)
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Example
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Figure 10.3. Mahalanobis distance of points from the center of a two-dimensional set of 2002 points.
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Example: Network traffic
(Lakhina et. al '04)

Goal: Find
pairs with high traffic (e.g., by
rate, volume)

Backbone network

Y= 100 30 42 212 1729 13

Source: Sutton, CS294 UCBerkeley
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Example: Network traffic

Abilene backbone network |
traffic volume over 41 links 2t L;’"&J B, / 'hw !
collected over 4 weeks AV VAN U A A W

Perform PCA on 41-dim data
Select top 5 components to
form “normal” subspace P

Source: Sutton, CS294 UCBerkeley
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Data matrix Perform PCA on matrix Y
(o]
. .
v= | 100 30 42 212 1729 13
o
£
o
Low-dimensional data
Eigenvectors
Yv= Yi'Vi YV, \ Vi Vp ... ‘

PORDYE Example: Network traffic

Source: Sutton, CS294 UCBerkeley
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identify beginning of “anomalous” subspace

 Projections onto principal components: u; = ”—

PORDUE Example: Network traffic

Yy,

o

— Look for first projection that contains a 30 from mean to

ug
(a) Normal Behavior (b) Anomalous Behavior

ug
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PORDYE Example: Network traffic
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Abilene backbone network J [
. . 2 f 'T. ?” ‘Ell [
traffic volume over 41 links T A TR "I R
Y / M/ ?*4 'M.-r -,f.i? 1‘ L .
collected over 4 weeks Yy Vg, e
0 Mon Tue Wed TI"lu Fri Sat Sun
Project to residual subspace 210"
(everything but top 5 eigenvectors) s f threshold
S T -
y=(1-PPT)y BRI .
Flag anomalies using norm 05 ? 3 -9 \
of projected vector , '«A»zwL»‘")u"%Jl‘i"“*“"«»:-,L"”"'**“»«-W.n'*allw-Ji‘i-‘llhﬁilyli.sﬂ.i..L,L.u.w.*ﬁ-
Mon Tue Wed Thu Fri Sat Sun

Source: Sutton, CS294 UCBerkeley

27
PORDUE Anomaly detection (generally)
« Knowledge representation?
— Categorization of data points as normal/anomalies
« Pattern space?
— Set of data points (each point is given a score)
« Score function?
— Distance from mean/centroid
« Search?

— Exhaustive search
consider all points, return those with distance > threshold
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