Text Categorization (III)

Outline

- Support Vector Machine (SVM)
 A Large-Margin Classifier
 - Introduction to SVM
 - Linear, hard margin
 - Linear, Soft margin
 - Non-Linear SVM (kernel functions)
 - Discussion
History of SVM

• A brief history of SVM
• SVM is inspired from statistical learning theory by Vapnik (1979) [3]
• Put into practical application as “Large Margin Classifiers” in (1992) [1]
• SVM became famous for its success in handwritten digit recognition [2]
• SVM has been successfully utilized in
 – Image detection
 – Speaker identification
 – Text categorization
 – Many other problems...

Support Vector Machine

• Consider a two-class (binary classification problem like text categorization)
 – Find a line to separate data points in two classes
• There are many possible solutions!
 – Are those decision boundaries equally good?

Support Vector Machine

• A slight variation of the data makes some decision boundaries incorrect

Large-Margin Decision Criterion

• The decision boundary should be far away from the data points of two classes as much as possible
• Indicates the margin between data points and the decision boundary should be large

Positive and Negative Data points have equal margin
Large-Margin Decision Criterion

- Margin
- Closest positive data point to boundary: $W^T X_i + b = 1$
- Closest negative data point to boundary: $W^T X_j + b = -1$
- The margin is: $m = \frac{2}{||w||}$

Linear SVM

- Let $\{x_1, ..., x_n\}$ denote input data. For example, vector representation of all documents.
- Let y_i be the binary indicator 1 or -1 that indicates whether x_i belongs to a particular category or not.

The decision boundary should classify all points correctly:

$$y_i(w^T x_i + b) \geq 1, \quad \forall i$$

The decision boundary can be found by solving the following constrained optimization problem:

Minimize $\frac{1}{2}||w||^2$

subject to $y_i(w^T x_i + b) \geq 1, \quad \forall i$
More about Optimization

- Primal optimization problem

\[
\begin{align*}
&\text{minimize} & & f_0(x) \\
&\text{subject to} & & f_i(x) \leq 0, \quad i = 1, \ldots, m \\
& & & h_i(x) = 0, \quad i = 1, \ldots, p,
\end{align*}
\]

The corresponding Lagrangian of this optimization problem is

\[
L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)
\]

The dual optimization problem function

\[
g(\lambda, \nu) = \inf_{x \in B} L(x, \lambda, \nu) = \inf_{x \in B} \left(f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x) \right)
\]

The dual optimization problem function

\[
\begin{align*}
&\text{maximize} & & g(\lambda, \nu) \\
&\text{subject to} & & \lambda \geq 0.
\end{align*}
\]

Linear SVM

The decision boundary can be found by solving the following constrained optimization problem

\[
\begin{align*}
&\text{Minimize} & & \frac{1}{2} ||w||^2 \\
&\text{subject to} & & y_i(w^T x_i + b) \geq 1 \quad \forall i
\end{align*}
\]

The corresponding Lagrangian of this optimization problem is

\[
\mathcal{L} = \frac{1}{2} ||w||^2 - \sum_i \alpha_i \left(y_i(w^T x_i + b) - 1 \right) \quad \alpha_i \geq 0 \quad \forall i
\]
Linear SVM

- Set the derivative of the Lagrangian to be zero and calculate W by a_i, plug new form of w into the Lagrangian, the optimization problem can be written in terms of a_i (the dual problem)

$$w = \sum_{i=1}^{n} \alpha_i y_i x_i$$

Plug new form of w into the Lagrangian, the optimization problem can be written in terms of a_i (the dual problem)

$$\max W(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^T x_j$$

subject to $\alpha_i \geq 0, \sum_{i=1}^{n} \alpha_i y_i = 0$

The above optimization problem is a quadratic program problem, which means there is a global maximum of a_i can always be found.

The Karush-Kuhn-Tucker Condition

- The optimal solution of model parameter satisfies

$$\alpha_i (1 - y_i (W^T X_i + b)) = 0 \quad \forall i$$

or

$$\begin{cases} \alpha_i = 0 \\ (\alpha_i > 0) \land (1 - y_i (W^T X_i + b) = 0) \end{cases}$$

- Each support vector x_i has positive weight
- Non-support vectors have a zero weight
The Karush-Kuhn-Tucker Condition

- The optimal solution of model parameter satisfies
 - Each support vector \(x_i \) has positive weight
 - Non-support vectors have a zero weight

Prediction only needs to consider support vectors; save storage and computation

Hard Margin Linear SVM Solution

- The optimal parameters are
 \[w^* = \sum_{i \in SV} \alpha_i y_i X_i \]

\[y_i (W^* X_i - b) = 1 \quad \forall i \in SV \]

Prediction is made by:

\[\text{sign}(WX - b) = \text{sign}(\sum_{i \in SV} \alpha_i y_i (X_i \cdot X) - b) \]
The Karush-Kuhn-Tucker Condition

- What about linearly non-separable data?

The Karush-Kuhn-Tucker Condition

- We tolerate some error for specific data points as
Soft Margin Linear SVM

Introduction “slack variables”, slack variables are always positive

\[
\begin{aligned}
\{ w^T x_i + b \geq 1 - \xi_i & \quad y_i = 1 \\
 w^T x_i + b \leq -1 + \xi_i & \quad y_i = -1 \\
 \xi_i & \geq 0 \quad \forall i
\end{aligned}
\]

Introduce const \(C \) to balance error for linear boundary and the margin

\[
\frac{1}{2}||w||^2 + C \sum_i \xi_i
\]

The optimization problem becomes

Minimize \(\frac{1}{2}||w||^2 + C \sum_{i=1}^{n} \xi_i \)

subject to \(y_i (w^T x_i + b) \geq 1 - \xi_i, \quad \xi_i \geq 0 \)

The dual of the problem for soft margin linear SVM is:

\[
\begin{aligned}
\text{max. } W(\alpha) &= \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1,j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^T x_j \\
\text{subject to } C &\geq \alpha_i \geq 0, \sum_{i=1}^{n} \alpha_i y_i = 0
\end{aligned}
\]

\(w \) is calculated as \(w^* = \sum_{i \in SV} \alpha_i y_i X_i \)

This is very similar to the optimization problem in the linear separable case, except that there is an upper bound \(C \) on \(\alpha_i \) now.

Once again, a QP solver can be used to find \(\alpha_i \).
Non-linear SVM

• Linear SVM only uses a line to separate data points, how to generalize it to non-linear case?

• Key idea: transform X_i to a higher dimension space
 – Input space: the space the point x_i are located
 – Feature space: the space of $f(x_i)$ after transformation

Key idea: transform X_i to a higher dimension space
Non-linear SVM

Key idea: transform X_i to a higher dimension space

- Input space: the space the point x_i are located
- Feature space: the space after transformation

Use $\Phi(x_i)$ to transform low level feature to high level feature

Sometimes, the $\Phi(x_i)$ transformation maps to very high dimensional space or even infinite dimensional space

How can we calculate the high dimensional representation for all data points?

The Kernel Trick

- Recall the SVM optimization problem

$$\begin{align*}
\text{max. } & W(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1,j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^T x_j \\
\text{subject to } & C \geq \alpha_i \geq 0, \sum_{i=1}^{n} \alpha_i y_i = 0
\end{align*}$$

The data points only appear as inner product

As long as we can calculate the inner product in the feature space, we do not need the mapping explicitly

Many common geometric operations (angles, distances) can be expressed by inner products

Define the kernel function K by $K(x_i, x_j) = \phi(x_i)^T \phi(x_j)$
Examples for the Kernel trick

• Suppose f(.) is given as follows
 \[\phi(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}) = (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2) \]

• An inner product in the feature space is
 \[\langle \phi(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}), \phi(\begin{bmatrix} y_1 \\ y_2 \end{bmatrix}) \rangle = (1 + x_1y_1 + x_2y_2)^2 \]

• So, if we define the kernel function as follows, there is no need to carry out f(.) explicitly
 \[K(x, y) = (1 + x_1y_1 + x_2y_2)^2 \]

More Kernel Functions

• Polynomial kernel with degree d
 \[K(x, y) = (x^Ty + 1)^d \]

• Gaussian Radial basis function kernel with width \(\sigma \)
 \[K(x, y) = \exp(-\|x - y\|^2/(2\sigma^2)) \]

• Two-layer sigmoid neural network
 \[K(x, y) = \tanh(\kappa x^Ty + \theta) \]
Kernlized SVM Solution

The optimal parameters are

\[w^* = \sum_{i \in SV} \alpha_i y_i \phi(X_i) \]

\[y_i (W^* X_i - b) = 1 \quad \forall i \in SV \]

Prediction is made by:

\[\text{sign}(WX - b) = \text{sign}(\sum_{i \in SV} \alpha_i y_i (\phi(X_i) \bullet \phi(X)) - b) \]

\[= \text{sign}(\sum_{i \in SV} \alpha_i y_i (K(X_i, X) - b)) \]

Text Categorization: Evaluation

Performance of different algorithms on Reuters-21578 corpus: 90 categories, 7769 Training docs, 3019 test docs, (Yang, JIR 1999)
SVM Toolkit

- SMO: Sequential Minimal Optimization
- SVM-Light
- LibSVM
- BSVM
-

Text Categorization (III)

Outline

- Support Vector Machine (SVM)
 A Large-Margin Classifier
 - Introduction to SVM
 - Linear, hard margin
 - Linear, Soft margin
 - Non-Linear SVM (kernel functions)
 - Discussion