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History of SVM

• A brief history of SVM

• SVM is inspired from statistical learning theory by Vapnik 
(1979) [3]

• Put into practical application as “Large Margin Classifiers” in 
(1992) [1]

• SVM  became famous for it success in handwritten digit 
recognition [2]

• SVM has been successfully utilized in
– Image detection

– Speaker identification

– Text categorization

– Many other problems…

[1] B.E. Boser et al. A Training Algorithm for Optimal Margin Classifiers. Proceedings of the Fifth Annual Workshop on 
Computational Learning Theory 5 144-152, Pittsburgh, 1992. 

[2] L. Bottou et al.  Comparison of classifier methods: a case study in handwritten digit recognition. Proceedings of the 12th 
IAPR International Conference on Pattern Recognition, vol. 2, pp. 77-82, 1994.

[3] V. Vapnik. The Nature of Statistical Learning Theory. 2nd edition, Springer, 1999.

Support Vector Machine

• Consider a two-class (binary classification problem like 
text categorization)
– Find a line to separate data points in two classes 

• There are many possible solutions!
– Are those decision boundaries equally good?
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Support Vector Machine

• A slight variation of the data makes some 

decision boundaries incorrect 

Large-Margin Decision 

Criterion
• The decision boundary should be far away from the data 

points of two classes as much as possible 

• Indicates the margin between data points and the decision 
boundary should be large

Positive and Negative Data 

points have equal margin

Margin
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Large-Margin Decision 

Criterion

1T

iW X b 

1T

jW X b  

Margin

Closest positive data point to boundary

Closest negative data point to boundary

The margin is:

Linear SVM

•Let {x1, ..., xn} denote input data. For example, vector representation of all 

documents

•Let yi be the binary indicator 1 or -1 that indicates  whether xi belongs to a 

particular category c or not

The decision boundary should classify all points correctly

The decision boundary can be found by solving the following constrained 
optimization problem
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More about Optimization

•Primal optimization problem

The corresponding Lagrangian of this optimization problem is

The corresponding Lagrangian dual function

The dual optimization problem function

The decision boundary can be found by solving the following constrained 
optimization problem

The corresponding Lagrangian of this optimization problem is

Linear SVM
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•Set the derivative of the Lagrangian to be zero and calculate W by ai, 

plug new form of w into the Lagrangian, the optimization problem can be 

written in terms of ai (the dual problem)

Linear SVM

The above optimization problem is a quadratic program problem, which 

means there is a global maximum of ai can always be found

Plug new form of w into the Lagrangian, the optimization problem can be 

written in terms of ai (the dual problem)

The Karush-Kuhn-Tucker 

Condition

• The optimal solution of model parameter 

satisfies

68
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(1 ( )) 0T

i i iy W X b i    

 Each support vector xi has positive weight

 Non-support vectors have a zero weight

Support Vectors
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The Karush-Kuhn-Tucker 

Condition

• The optimal solution of model parameter satisfies

– Each support vector xi has positive weight

– Non-support vectors have a zero weight

Prediction only needs to consider support 

vectors; save storage and computation

Hard Margin Linear SVM 

Solution

•The optimal parameters are
*

i i i

i SV

w y X




*( ) 1i iy W X b i SV   

Prediction is made by:

( ) ( ( ) )i i i

i SV

sign WX b sign y X X b


   
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The Karush-Kuhn-Tucker 

Condition

• What about linearly non-separable data?

The Karush-Kuhn-Tucker 

Condition

• We tolerate some error for specific data 

points as

1

2



©Jan-16 Christopher W. Clifton 920

Soft Margin Linear SVM

Introduction “slack variables”, slack variables are always positive

Introduce const C to balance error for linear boundary and the margin

The optimization problem becomes

Soft Margin Linear SVM

•The dual of the problem for soft margin linear SVM is:

*

i i i

i SV

w y X


w is calculated as

This is very similar to the optimization problem in the linear separable case, 

except that there is an upper bound C on ai now

Once again, a QP solver can be used to find ai
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Non-linear SVM

• Linear SVM only uses a line to separate 

data points, how to generalize it to non-

linear case?

• Key idea: transform Xi to a higher 

dimension space 

– Input space: the space the point xi are located

– Feature space: the space of f(xi) after 

transformation

Non-linear SVM

Key idea: transform Xi to a higher dimension space 

x1=0

x2
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Non-linear SVM

Key idea: transform Xi to a higher dimension space 

 Input space: the space the point xi are located

 Feature space: the space after transformation

Use Ф(xi) to transform low level feature to high level feature

Sometimes, the Ф(xi) transformation maps to very high 

dimensional space or even infinite dimensional space

How can we calculate the high dimensional representation for 

all data points?

The Kernel Trick

• Recall the SVM optimization problem

The data points only appear as inner product

As long as we can calculate the inner product in the feature space, 
we do not need the mapping explicitly

Many common geometric operations (angles, distances) can be 
expressed by inner products

Define the kernel function K by

Only need inner 

product
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Examples for the Kernel trick

• Suppose f(.) is given as follows

• An inner product in the feature space is

• So, if we define the kernel function as 

follows, there is no need to carry out f(.) 

explicitly

More Kernel Functions

• Polynomial kernel with degree d

• Gaussian Radial basis function kernel with 

width σ

• Two-layer sigmoid neural network
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Kernlized SVM Solution

•The optimal parameters are

* ( )i i i

i SV

w y X 




*( ) 1i iy W X b i SV   

Prediction is made by:

( ) ( ( ( ) ( )) )

( ( ( , ) ))

i i i

i SV

i i i

i SV

sign WX b sign y X X b

sign y K X X b

  







   

 





Text Categorization: Evaluation

Performance of different algorithms on Reuters-21578 corpus: 90 

categories, 7769 Training docs, 3019 test docs, (Yang, JIR 1999)
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SVM Toolkit

• SMO: Sequential Minimal Optimization

• SVM-Light

• LibSVM

• BSVM

• ……
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