Text Categorization (I)

- Outline
- Introduction to the task of text categorization
 - Manual vs. automatic text categorization
- Text categorization applications
- Evaluation of text categorization
- K nearest neighbor text categorization method
Text Categorization

• **Tasks**
 – Assign predefined categories to text documents /objects

• **Motivation**
 – Provide an organizational view of the data

• **Large cost of manual text categorization**
 – Millions of dollars spent for manual categorization in companies, governments, public libraries, hospitals
 – Manual categorization is almost impossible for some large scale application (Classification or Web pages)

Text Categorization

• **Automatic text categorization**
 – Learn algorithm to automatically assign predefined categories to text documents /objects
 – automatic or semi-automatic

• **Procedures**
 – **Training**: Given a set of categories and labeled document examples; learn a method to map a document to correct category (categories)
 – **Testing**: Predict the category (categories) of a new document

• Automatic or semi-automatic categorization can significantly reduce manual effort
Text Categorization: Examples

Example: U.S. Census in 1990

- Included 22 million responses
- Needed to be classified into industry categories (200+) and occupation categories (500+)
- Estimate $15 million if done by hand
- Two alternative automatic text categorization methods evaluated
 - Knowledge-Engineering (Expert System)
 - Machine Learning (K nearest neighbor method)
Example: U.S. Census in 1990

- Knowledge-Engineering Approach
 - Expert System (Designed by domain expert)
 - Hand-Coded rule
 (e.g., “Professor” and “Lecturer” \(\Rightarrow\) “Education”)
 - Development cost: 2 experts, 8 years (192 Person-months)
 - Accuracy = 47%
- Machine Learning Approach
 - K Nearest Neighbor (KNN) classification: details later; find your language by what language your neighbors speak
 - Fully automatic
 - Development cost: 4 Person-months
 - Accuracy = 60%

Many Applications!

- Web page classification (Yahoo-like category taxonomies)
- News article classification (more formal than most Web pages)
- Automatic email sorting (spam detection; into different folders)
- Word sense disambiguation (Java programming vs. Java in Indonesia)
- Gene function classification (find the functions of a gene from the articles talking about the gene)
- What is your favorite application?...
Techniques Explored in Text Categorization

- Rule-based Expert system (Hayes, 1990)
- Nearest Neighbor methods (Creecy'92; Yang'94)
- Decision symbolic rule induction (Apte'94)
- Naïve Bayes (Language Model) (Lewis'94; McCallum'98)
- Regression method (Furh'92; Yang'92)
- Support Vector Machines (Joachims'98)
- Boosting or Bagging (Schapier'98)
- Neural networks (Wiener'95)
- …..

Text Categorization: Evaluation

Performance of different algorithms on Reuters-21578 corpus: 90 categories, 7769 Training docs, 3019 test docs, (Yang, JIR 1999)
Text Categorization: Evaluation

Contingency Table Per Category (for all docs)

<table>
<thead>
<tr>
<th></th>
<th>Truth: True</th>
<th>Truth: False</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicted Positive</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>Predicted Negative</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td></td>
<td>a+c</td>
<td>b+d</td>
</tr>
</tbody>
</table>

a: number of truly positive docs
b: number of false-positive docs
c: number of false negative docs
d: number of truly-negative docs
n: total number of test documents

Text Categorization: Evaluation

Contingency Table Per Category (for all docs)

n: total number of docs

Sensitivity: \(\frac{a}{a+c}\)
truly-positive rate, the larger the better

Specificity: \(\frac{d}{b+d}\)
truly-negative rate, the larger the better

Depends on decision threshold, trade off between the values
Text Categorization: Evaluation

Recall: \(r = \frac{a}{a+c} \) percentage of positive docs detected

Precision: \(p = \frac{a}{a+b} \) how accurate are the predicted positive docs

Accuracy: \(\frac{a+d}{n} \) how accurate are all the predicted docs

F-measure: \(F_{\beta} = \frac{(\beta^2 + 1)pr}{\beta^2p + r} \)

\[
F_i = \frac{2pr}{p + r}
\]

Harmonic average:
\[
\frac{1}{\frac{1}{x_1} + \frac{1}{x_2}}
\]

Error: \(\frac{b+c}{n} \) error rate of predicted docs

Accuracy + Error = 1

Text Categorization: Evaluation

- **Micro F1-Measure**
 - Calculate a single contingency table for all categories and calculate F1 measure
 - Treat each prediction with equal weight; better for algorithms that work well on large categories

- **Macro F1-Measure**
 - Calculate a single contingency table for every category calculate F1 measure separately and average the values
 - Treat each category with equal weight; better for algorithms that work well on many small categories
K-Nearest Neighbor Classifier

- Also called “Instance-based learning” or “lazy learning”
 - low/no cost in “training”, high cost in online prediction
- Commonly used in pattern recognition (5 decades)
- Theoretical error bound analyzed by Duda & Hart (1957)
- Applied to text categorization in 1990’s
- Among top-performing text categorization methods

From all training examples:
- Find k examples that are most similar to the new document
 - “neighbor” documents
- Assign the category that is most common in these neighbor documents
 - neighbors vote for the category
- Can also consider the distance of a neighbor
 - a closer neighbor has more weight/influence
K-Nearest Neighbor Classifier

- Idea: find your language by what language your neighbors speak

(k=1) (k=5) (k=10)

- Use K nearest neighbors to vote
 1-NN: Red; 5-NN: Brown; 10-NN: ?; Weighted 10-NN: Brown

K Nearest Neighbor: Technical Elements

- Document representation
- Document distance measure: closer documents should have similar labels; neighbors speak the same language
- Number of nearest neighbors (value of K)
- Decision threshold
K Nearest Neighbor: Framework

Training data: \(D = \{ (x_i, y_i) \}, \quad x_i \in \mathbb{R}^M, \text{docs}, \quad y_i \in \{0, 1\} \)
Test data: \(x \in \mathbb{R}^M \) The neighborhood is \(D_k \subseteq D \)

Scoring Function: \(\hat{y}(x) = \frac{1}{k} \sum_{x_i \in \mathcal{D}_k(x)} \text{sim}(x, x_i) y_i \)

Classification:
\[
\begin{cases}
 1 \text{ if } \hat{y}(x) - t > 0 \\
 0 \text{ otherwise }
\end{cases}
\]

Document Representation: \(X_i \) uses tf.idf weighting for each dimension

Choices of Similarity Functions

- **Euclidean distance**
\[
\sum_{v} (x_{1v} - x_{2v})^2
\]

- **Kullback Leibler distance**
\[
\sum_{v} x_{1v} \log \frac{x_{1v}}{x_{2v}}
\]

- **Dot product**
\[
\sum_{v} x_{1v} * x_{2v}
\]

- **Cosine Similarity**
\[
\frac{\sum_{v} x_{1v} * x_{2v}}{\sqrt{\sum_{v} x_{1v}^2} \sqrt{\sum_{v} x_{2v}^2}}
\]

- **Kernel functions**
\[
e^{-d(x_1, x_2)^2/2\sigma^2} \text{ (Gaussian Kernel)}
\]

Automatic learning of the metrics
Choices of Number of Neighbors (K)

- Find desired number of neighbors by cross validation
 - Choose a subset of available data as training data, the rest as validation data
 - Find the desired number of neighbors on the validation data
 - The procedure can be repeated for different splits; find the consistent good number for the splits

Trade off between small number of neighbors and large number of neighbors
Characteristics of KNN

Pros
- Simple and intuitive, based on local-continuity assumption
- Widely used and provide strong baseline in TC Evaluation
- No training needed, low training cost
- Easy to implement; can use standard IR techniques (e.g., tf.idf)

Cons
- Heuristic approach, no explicit objective function
- Difficult to determine the number of neighbors
- High online cost in testing; find nearest neighbors has high time complexity

Text Categorization (I)

- Outline
 - Introduction to the task of text categorization
 - Manual vs. automatic text categorization
 - Text categorization applications
 - Evaluation of text categorization
 - K nearest neighbor text categorization method
 - Lazy learning: no training
 - Local-continuity assumption: find your language by what language your neighbors speak