Introduction

- Two main types of textual information.
 - Facts and Opinions
 - Note: factual statements can imply opinions too.
 - Most current text information processing methods (e.g., web search, text mining) work with factual information.
 - Sentiment analysis or opinion mining
 - computational study of opinions, sentiments and emotions expressed in text.
 - Why opinion mining now? Mainly because of the Web; huge volumes of opinionated text.
Introduction – user-generated media

• Importance of opinions:
 – Opinions are important because whenever we need to make a decision, we want to hear others’ opinions.
 – In the past,
 • Individuals: opinions from friends and family
 • Businesses: surveys, focus groups, consultants …

• Word-of-mouth on the Web
 – User-generated media: One can express opinions on anything in reviews, forums, discussion groups, blogs …
 – Opinions of global scale: No longer limited to:
 • Individuals: one’s circle of friends
 • Businesses: Small scale surveys, tiny focus groups, etc.

A Fascinating Problem!

• Intellectually challenging & major applications.
 – A popular research topic in recent years in NLP and Web data mining.
 – 20-60 companies in USA alone
• It touches every aspect of NLP and yet is restricted and confined.
 – Little research in NLP/Linguistics in the past.
• Potentially a major technology from NLP.
 – But “not yet” and not easy!
 – Data sourcing and data integration are hard too!
An Example Review

- “I bought an iPhone a few days ago. It was such a nice phone. The touch screen was really cool. The voice quality was clear too. Although the battery life was not long, that is ok for me. However, my mother was mad with me as I did not tell her before I bought the phone. She also thought the phone was too expensive, and wanted me to return it to the shop.

…”

What do we see?

- Opinions, targets of opinions, and opinion holders

Target Object (Liu, Web Data Mining book, 2006)

- **Definition (object)**: An object o is a product, person, event, organization, or topic. o is represented as
 - a hierarchy of components, sub-components, and so on.
 - Each node represents a component and is associated with a set of attributes of the component.

 - **Canon S500** [picture quality, size, appearance, ...]
 - **Lens** [.....]
 - **Battery** [battery life, size, ...]

- An opinion can be expressed on any node or attribute of the node.
- To simplify our discussion, we use the term features to represent both components and attributes.
What is an Opinion? (Liu, a Ch. in NLP handbook)

• An opinion is a quintuple
 \((o_j, f_{jk}, s_{ijkl}, h_i, t_i)\),
 where
 – \(o_j\) is a target object.
 – \(f_{jk}\) is a feature of the object \(o_j\).
 – \(s_{ijkl}\) is the sentiment value of the opinion of the opinion holder \(h_i\) on feature \(f_{jk}\) of object \(o_j\) at time \(t_i\). \(s_{ijkl}\) is +ve, -ve, or neu, or a more granular rating.
 – \(h_i\) is an opinion holder.
 – \(t_i\) is the time when the opinion is expressed.

Objective – structure the unstructured

• Objective: Given an opinionated document,
 – Discover all quintuples \((o_j, f_{jk}, s_{ijkl}, h_i, t_i)\),
 • i.e., mine the five corresponding pieces of information in each quintuple, and
 – Or, solve some simpler problems

• With the quintuples,
 – Unstructured Text → Structured Data
 • Traditional data and visualization tools can be used to slice, dice and visualize the results in all kinds of ways
 • Enable qualitative and quantitative analysis.
Sentiment Classification: doc-level

• Classify a document (e.g., a review) based on the overall sentiment expressed by opinion holder
 – Classes: Positive, or negative (and neutral)

• In the model, \((o_j, f_{jk}, s_{ijk}, h_i, t_i)\),

• It assumes
 – Each document focuses on a single object and contains opinions from a single opinion holder.
 – It considers opinion on the object, \(o_j\) (or \(o_j = f_{jk}\))

Subjectivity Analysis
(Wiebe et al 2004)

• Sentence-level sentiment analysis has two tasks:
 – Subjectivity classification: Subjective or objective.
 • Objective: e.g., \(I\) bought an iPhone a few days ago.
 • Subjective: e.g., \(It\) is such a nice phone.
 – Sentiment classification: For subjective sentences or clauses, classify positive or negative.
 • Positive: \(It\) is such a nice phone.

• However. (Liu, Chapter in NLP handbook)
 – Subjective sentences ≠ +ve or –ve opinions
 • E.g., \(I\) think he came yesterday.
 – Objective sentence ≠ no opinion
 • Imply –ve opinion: My phone broke in the second day.
Feature-Based Sentiment Analysis

• Sentiment classification at both document and sentence (or clause) levels are not sufficient,
 – they do not tell what people like and/or dislike
 – A positive opinion on an object does not mean that the opinion holder likes everything.
 – An negative opinion on an object does not mean …..

• Objective: Discovering all quintuples
 \[(o_j, f_{jk}, s_{ijkl}, h_i, t_l)\]

• With all quintuples, all kinds of analyses become possible.

Feature-Based Opinion Summary
(Hu & Liu, KDD-2004)

"I bought an iPhone a few days ago. It was such a nice phone. The touch screen was really cool. The voice quality was clear too. Although the battery life was not long, that is ok for me. However, my mother was mad with me as I did not tell her before I bought the phone. She also thought the phone was too expensive, and wanted me to return it to the shop. …"

Feature Based Summary:

Feature1: Touch screen
Positive: 212
 • The touch screen was really cool.
 • The touch screen was so easy to use and can do amazing things.

Negative: 6
 • The screen is easily scratched.
 • I have a lot of difficulty in removing finger marks from the touch screen.

Feature2: battery life

Note: We omit opinion holders
Summary of reviews of
Cell Phone 1

Comparison of reviews of
Cell Phone 1
Cell Phone 2

Visual Comparison (Liu et al. WWW-2005)

• It performs feature-based sentiment analysis.

Demo 1: Compare consumer opinions on three GPS systems, Garmin, Magellan, Tomtom.
 – Based on a set of features, price, map, software, quality, size, etc.

Demo 2: Instant page analysis
 – The user gives a URL, and the system identifies opinions on the page instantly.

• We also have a Twitter opinion monitoring system (not demo-ed)
Demo 1: Compare 3 GSPs on different features

- Each bar shows the proportion of +ve opinion

![Chart showing comparison of GPS features](chart.png)

Demo 1: Detail opinion sentences

- You can click on any bar to see the opinion sentences. Here are negative opinion sentences on the maps feature of Garmin.
- The pie chart gives the proportions of opinions.

![Pie chart showing sentiment](pie_chart.png)
Demo 1: # of feature mentions

- People talked a lot about prices than other features. They are quite positive about price, but not about maps and software.

Demo 1: Aggregate opinion trend

- More complains in July - Aug, and in Oct – Dec!
Other goodies of OpinionEQ

- Allow the user to choose
 - Products/brands,
 - Features
 - Sites
 - Time periods
 for opinion comparison.
- Work on an individual feature for detailed analysis.
- Allow the user to see the full opinion text and also the actual page in the site from where the opinion text was extracted.

Demo 2 – Instant page analysis

- Given a URL, it automatically identifies opinions on the page. Green: +ve, and red: -ve
Demo 2 – Instant page analysis

• It also extract the opinions in the page and list them.

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. FREE 2-Day Shipping: See details.</td>
<td>1. I find it great to have the temperature readout, in both Fahrenheit and Celsius (that way I can whine bi-lingually when it’s hot.</td>
</tr>
<tr>
<td>2. great little clock.</td>
<td>2. My only complaint is that the snooze button is set for only 5 minutes per.</td>
</tr>
<tr>
<td>3. I’ve owned this clock for several years - it’s dependable, durable and reliable.</td>
<td>3. A missed target for CASIO.</td>
</tr>
<tr>
<td>4. I find it great to have the temperature readout, in both Fahrenheit and Celsius (that way I can whine bi-lingually when it’s hot.</td>
<td>4. The alarm switch finally failed, and I really loved this clock, so I decided to try the PQ-15 as a replacement since the PQ-10 is no longer available.</td>
</tr>
<tr>
<td>5. The alarm switch finally failed, and I really loved this clock, so I decided to try the PQ-15 as a replacement since the PQ-10 is no longer available.</td>
<td>5. I’m disappointed - the PQ-15 is more than twice.</td>
</tr>
<tr>
<td>6. love it! May 10, 2010.</td>
<td>6. I always seem to lose track of time on the computer and phone and need something.</td>
</tr>
<tr>
<td>7. While the digits of the display are decent enough, the operations to set the clock for time, alarm or any other of the settings, are horrific.</td>
<td>7. Not worth my time or money to return the clock, and I DO NOT recommend this clock at all…</td>
</tr>
<tr>
<td>8. LLBean has a much nicer, user friendly travel clock for less and I could kick myself for not having taken the time to buy another of those.</td>
<td>8. LLBean has a much nicer, user friendly travel clock for less and I could kick myself for not having taken the time to buy another of those.</td>
</tr>
<tr>
<td>9. I bought from Amazon due to the ease of billing, which was the ONLY reason I bought this instead of the LLBean clock.</td>
<td>9. While you can’t please everyone with a product, I would not recommend this to anyone.</td>
</tr>
<tr>
<td>10. Very accurate timing but temperature is off, April 9, 2010.</td>
<td>10. Bought it in December 1996 wholesale for $13 (more than 13 years ago) and I’m still using it EVERYDAY. Bottom line: Very Very accurate and durable BUT temperature show</td>
</tr>
</tbody>
</table>

Sentiment Analysis is Challenging!

• “This past Saturday, I bought a Nokia phone and my girlfriend bought a Motorola phone with Bluetooth. We called each other when we got home. The voice on my phone was not so clear, worse than my previous phone. The battery life was long. My girlfriend was quite happy with her phone. I wanted a phone with good sound quality. So my purchase was a real disappointment. I returned the phone yesterday.”
Senti. Analy. is not Just ONE Problem

- \((o_j, f_{jk}, so_{ijkl}, h_i, t_i)\),
 - \(o_j\) - a target object: Named Entity Extraction (more)
 - \(f_{jk}\) - a feature of \(o_j\): Information Extraction
 - \(so_{ijkl}\) is sentiment: Sentiment determination
 - \(h_i\) is an opinion holder: Information/Data Extraction
 - \(t_i\) is the time: Data Extraction
- Co-reference resolution
- Relation extraction
- Synonym match (voice = sound quality) …
- None of them is a solved problem!

Extraction of competing objects

- The user first gives a few objects/products as seeds, e.g., BMW and Ford.
- The system then identifies other competing objects from the opinion corpus.
- The problem can be tackled with PU learning (Learning from positive and unlabeled examples) (Liu et al 2002, 2003).
- See (Li et al. ACL-2010)
Feature extraction

• We proposed a **double propagation** approach in (Qiu et al. IJCAI-2009).
• It exploits the dependency relations of opinions and features to extract features.
 – Opinions words modify object features, e.g.,
 – “This camera takes *great* pictures”
• The algorithm bootstraps using a set of seed opinion words (no feature input).
 – To extract features (and also opinion words)

Rules from dependency grammar

<table>
<thead>
<tr>
<th>Relations and Constraints</th>
<th>Output</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O \rightarrow O$-$Dep \rightarrow F$ s.t. $O \in {O}$, O-$Dep \in {MR}$, $POS(F) \in {NN}$</td>
<td>$f = F$</td>
<td>The phone has a good “screen”. good (\rightarrow) mod (\rightarrow) screen</td>
</tr>
<tr>
<td>$O \rightarrow O$-$Dep \rightarrow H \leftrightarrow F$ s.t. $O \in {O}$, O-$Dep \in {MR}$, $POS(F) \in {NN}$</td>
<td>$f = F$</td>
<td>“iPod” is the best mp3 player. best (\rightarrow) mod (\rightarrow) player (\rightarrow) subj (\rightarrow) iPod</td>
</tr>
<tr>
<td>$O \rightarrow O$-$Dep \rightarrow F$ s.t. $Fe \in {F}$, O-$Dep \in {MR}$, $POS(O) \in {JJ}$</td>
<td>$o = O$</td>
<td>same as R1, with screen as the known word and good as the extracted word</td>
</tr>
<tr>
<td>$O \rightarrow O$-$Dep \rightarrow H \leftrightarrow F$ s.t. $F \in {F}$, O-$Dep \in {MR}$, $POS(O) \in {JJ}$</td>
<td>$o = O$</td>
<td>same as R1, with iPod is the known word and best as the extracted word</td>
</tr>
<tr>
<td>$F_{(6)} \rightarrow F$-$Dep \rightarrow F_{(6)}$ s.t. $F_{(6)} \in {F}$, F-$Dep \in {CONJ}$, $POS(F_{(6)}) \in {NN}$</td>
<td>$f = F_{(6)}$</td>
<td>Does the player play and with audio and “video”? video (\rightarrow) conj (\rightarrow) audio</td>
</tr>
<tr>
<td>$F \rightarrow F$-$Dep \rightarrow H \leftrightarrow F$, F-$Dep \in {F}$ s.t. $F \in {F}$, F-$Dep \in {CONJ}$, $POS(F_{(6)}) \in {NN}$</td>
<td>$f = F$</td>
<td>Canon “G3” has a great len,” len (\rightarrow) subj (\rightarrow) subj (\rightarrow) G3</td>
</tr>
<tr>
<td>$O_{(6)} \rightarrow O$-$Dep \rightarrow O_{(6)}$ s.t. $O_{(6)} \in {O}$, O-$Dep \in {CONJ}$, $POS(O_{(6)}) \in {JJ}$</td>
<td>$o = O_{(6)}$</td>
<td>The camera is amazing and “very” to use. easy (\rightarrow) conj (\rightarrow) amazing</td>
</tr>
<tr>
<td>$O \rightarrow O$-$Dep \rightarrow H \rightarrow O$-$Dep \rightarrow O_{1}$ s.t. $O \in {O}$, O-$Dep \in {O}$, $POS(O) \in {JJ}$</td>
<td>$o = O_{1}$</td>
<td>If you want to buy a saxy “cool”, accessory-available mp3 player, you can choose iPod. saxy (\rightarrow) mod (\rightarrow) player (\rightarrow) mod (\rightarrow) cool*</td>
</tr>
</tbody>
</table>
Group synonym features (Zhai et al. 2010)

- Features that are domain synonyms should be grouped together.
- Many techniques can be used to deal with the problem, e.g.,
 - Topic modeling, distributional similarity, etc
- We proposed a semi-supervised learning method

Coreference resolution (Ding and Liu 2010)

- Different from traditional coreference resolution
 - Important to resolve objects and features
 - E.g., “I bought a Canon S500 camera yesterday. It looked beautiful. I took a few photos last night. They were amazing”.
- Some specific characteristics of opinions can be exploited for better accuracy. See
 - X. Ding and B. Liu, Resolving Object and Attribute Coreference in Opinion Mining. COLING-2010.
Identify opinion orientation

• For each feature, we identify the sentiment or opinion orientation expressed by a reviewer.

• Almost all approaches make use of opinion words and phrases. But notice again (a simplistic way):
 – Some opinion words have context independent orientations, e.g., “great”.
 – Some other opinion words have context dependent orientations, e.g., “small”
 – Many ways to use opinion words.

• Machine learning methods for sentiment classification at the sentence and clause levels are also applicable.

Aggregation of opinion words

(Ding and Liu, 2008)

• Input: a pair \((f, s)\), where \(f\) is a product feature and \(s\) is a sentence that contains \(f\).

• Output: whether the opinion on \(f\) in \(s\) is positive, negative, or neutral.

• Two steps:
 – Step 1: split the sentence if needed based on BUT words (but, except that, etc).
 – Step 2: work on the segment \(s_f\) containing \(f\). Let the set of opinion words in \(s_f\) be \(w_1, \ldots, w_n\). Sum up their orientations \((1, -1, 0)\), and assign the orientation to \((f, s)\) accordingly.

• In (Ding et al, WSDM-08), step 2 is changed to

\[
\sum_{i} w_i.o \quad \text{with better results. } w_i.o \text{ is the opinion orientation of } w_i, \quad d(w_i, f) \text{ is the distance from } f \text{ to } w_i.
\]
Opinions are governed by some rules, e.g.,
1. Neg \rightarrow Negative
2. Pos \rightarrow Positive
3. Negation Neg \rightarrow Positive
4. Negation Pos \rightarrow Negative
5. Desired value range \rightarrow Positive
6. Below or above the desired value range \rightarrow Negative

7. Decreased Neg \rightarrow Positive
8. Decreased Pos \rightarrow Negative
9. Increased Neg \rightarrow Negative
10. Increased Pos \rightarrow Positive
11. Consume resource \rightarrow Negative
12. Produce resource \rightarrow Positive
13. Consume waste \rightarrow Positive
14. Produce waste \rightarrow Negative
Two Main Types of Opinions

• **Direct Opinions**: direct sentiment expressions on some target objects, e.g., products, events, topics, persons.
 – E.g., “the picture quality of this camera is great.”
 – (many are much more complex).
• **Comparative Opinions**: Comparisons expressing similarities or differences of more than one object. Usually stating an ordering or preference.
 – E.g., “car x is cheaper than car y.”

Comparative Opinions (Jindal and Liu, 2006)

• **Gradable**
 – **Non-Equal Gradable**: Relations of the type greater or less than
 • Ex: “optics of camera A is better than that of camera B”
 – **Equative**: Relations of the type equal to
 • Ex: “camera A and camera B both come in 7MP”
 – **Superlative**: Relations of the type greater or less than all others
 • Ex: “camera A is the cheapest camera available in market”
Mining Comparative Opinions

- **Objective**: Given an opinionated document \(d \), extract comparative opinions:
 \[
 (O_1, O_2, F, po, h, t),
 \]
 where \(O_1 \) and \(O_2 \) are the object sets being compared based on their shared features \(F \), \(po \) is the preferred object set of the opinion holder \(h \), and \(t \) is the time when the comparative opinion is expressed.

- **Note**: not positive or negative opinions.

Opinion Spam Detection

(Jindal and Liu, 2007, 2008)

- Fake/untruthful reviews:
 - Write undeserving positive reviews for some target objects in order to promote them.
 - Write unfair or malicious negative reviews for some target objects to damage their reputations.
- Increasing number of customers wary of fake reviews (biased reviews, paid reviews)
An Example Practice of Review Spam

Belkin International, Inc
• Top networking and peripherals manufacturer | Sales ~ $500 million in 2008
• Posted an ad for writing fake reviews on amazon.com (65 cents per review)

Experiments with Amazon Reviews

• June 2006
 – 5.8mil reviews, 1.2mil products and 2.1mil reviewers.
• A review has 8 parts
 • <Product ID> <Reviewer ID> <Rating> <Date> <Review Title> <Review Body> <Number of Helpful feedbacks> <Number of Feedbacks> <Number of Helpful Feedbacks>
• Industry manufactured products “mProducts”
 e.g. electronics, computers, accessories, etc
 – 228K reviews, 36K products and 165K reviewers.
Some Tentative Results

- Negative outlier reviews tend to be heavily spammed.
- Those reviews that are the only reviews of some products are likely to be spammed.
- Top-ranked reviewers are more likely to be spammers.
- Spam reviews can get good helpful feedbacks and non-spam reviews can get bad feedbacks.

Meeting Social Sciences

- Extract and analyze political opinions.
 - Candidates and issues
- Compare opinions across cultures and lang.
 - Comparing opinions of people from different countries on the same issue or topic, e.g., Internet diplomacy
- Opinion spam (fake opinions)
 - What are social, culture, economic aspects of it?
- Opinion propagation in social contexts
- How opinions on the Web influence the real world
 - Are they correlated?
- Emotion analysis in social context & virtual world
Summary

• We briefly defined sentiment analysis problem.
 – Direct opinions: focused on feature level analysis
 – Comparative opinions: different types of comparisons
 – Opinion spam detection: fake reviews.
 • Currently working with Google (Google research award).

• A lot of applications.
• Technical challenges are still huge.
 – But I am quite optimistic.
• Interested in collaboration with social scientists
 – opinions and related issues are inherently social.

More details can be found in

• Download from:
 http://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html