Need for NLP

- Vector space model limitations
 - Words in combination carry more/different meaning than isolation
 - President flew
 • to Washington
 • from the Revolution
- Words can mean different things
- Relative importance of different words
- Words vs. Concepts
Different meanings

• NLP Task: *Word Sense Disambiguation*
 – Given word, dictionary of multiple meanings
 – Determine from context which meaning applies
• Hard problem
 – SensEval 3 (2004): 65% accuracy

“Winner”: GAMBL
Decadt, Hoste, Daelemans, Bosch
“Winner”: GAMBL
Decadt, Hoste, Daelemans, Bosch

• Initial phase: Linguistic analysis
 – Tokenize
 – Part-of-speech
 – Grammatical relations

• Training data
 – Senseval-3 task (7860 words)
 – SemCor (WordNet), previous SenseEval (555,269 words)
“Winner”: GAMBL
Decadt, Hoste, Daelemans, Bosch

- Cascaded Classifiers
 - First stage: Broad context
 • Three sentences
 • Instance-based learning
 - Second stage: Narrow context
 • Seven words
 • Result of 1st classifier
 • Genetic algorithm

Different meanings

- NLP Task: *Word Sense Disambiguation*
 - Given word, dictionary of multiple meanings
 - Determine from context which meaning applies
- Hard problem
 - SensEval 3 (2004): 65% accuracy
 • “just choose most frequent sense” 60%
 • Inter-annotator agreement 72.5%
Words vs. Concepts

• Named Entity Recognition
 – People
 – Places
 – Organizations
 – Dates
 – …
 Success story – effective, learn new types of NER

• Coreference Resolution
 – Different names for same entity in same document

NER – CoNLL 2003 Winner

Florian, Ittycheriah, Jing, Zhang

• Label each word
 – Start, continue, or end a named entity

• Key: good features
 – Words and part of speech, 5 word window
 – Prefix, suffixes of surrounding words
 – Word “flags” such as firstCap, 2digit, allCaps
 – Gazetteer – 130k known names
 – Output of existing NER systems trained for different output categories
Winner: Ensemble
Florian, Ittycheriah, Jing, Zhang

• Multiple classifiers
 – Robust risk minimization
 – Maximum entropy
 – Transformation-based learning
 – Hidden Markov model

• Weighted voting

• Results: 89% accuracy
 – Baseline 60%

Template Analysis

Named Entity Recognition on Steroids

• Given a “template” of desired structured information
 – Fill in fields of template from analysis of document

• Fields:
 – Entities (named entities)
 – Relationships
 – Time/date/order
Template Analysis: Example

NAME: Fletcher Maddox
.DESCRIPTOR: former Dean of the UCSD Business School, his father the firm's CEO
CATEGORY: PERSON

NAME: Oliver
.DESCRIPTOR: His son, Chief Scientist
CATEGORY: PERSON

NAME: Ambrose
.DESCRIPTOR: Oliver's brother, the CFO of L.J.G.
CATEGORY: PERSON

NAME: UCSD Business School
DESCRIP TOR:
CATEGORY: ORGANIZATION

NAME: La Jolla Genomatics
DESCRIP TOR:
CATEGORY: ORGANIZATION

NAME: Geninfo
DESCRIP TOR:
CATEGORY: ARTIFACT

NAME: La Jolla
DESCRIP TOR:
CATEGORY: LOCATION

NAME: CA
DESCRIP TOR:
CATEGORY: LOCATION

Message Understanding Conferences

Coreference: person

Employee relation: person-descriptor

Organization: organization

Nance, who is also a paid consultant to ABC News, said...
SIFT: *Miller, Crystal, Fox, Ramshaw, Schwartz, Stone, Weischedel*

- Language model approach
 - Uses Hidden Markov Models
- Sentence-level model
 - Part of speech
 - Named Entity
 - Parse (grammatical)
 - Relationships
- Uses “outside” training data
 - Penn Treebank, additional domain-specific text
SIFT: Additional semantics

- Further breakdown (e.g., distinguish title from name in Named Entity)
- Semantic labeling
- Co-reference
- *Probability labels for all of these*

SIFT: Sentence-level output
Cross-Sentence Model

- Similar approach
- Uses sentence parse/labeling as input

Basic Tools

- Part of Speech tagging
- Sentence diagramming