

Outline

- Introduction to federated search
- Main research problems
 - Resource Representation
 - Resource Selection
 - Results Merging

Note: This is a primary research focus of Prof. Luo Si

Visible Web: Information can be copied (crawled) and accessed by conventional search engines like Google or Yahoo!

Hidden Web: Information hidden from conventional engines. Provide source-specific search engine but no arbitrary crawling of the data

- No arbitrary crawl of the data

Can NOT → Index (promptly)

- Updated too frequently to be crawled

Hidden Web contained in (Hidden) information sources that provide text search engines to access the hidden information



Introduction

Hidden Web is:

- Larger than Visible Web
(2-50 times, Sherman 2001)
- Created by professionals

Searched by
Federated Search

Federated Search Environments:

Small companies: Probably cooperative information sources

Big companies (organizations): Probably uncooperative information source

Web: Uncooperative information sources



Introduction

Information source recommendation: Recommend information sources for users' text queries

- Useful when users want to browse the selected sources
- Contain resource representation and resource selection components

Federated document retrieval: Search selected sources and merge individual ranked lists

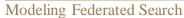
- Most complete solution
- Contain all of resource representation, resource selection and results merging

Introduction

Application in real world

- FedStats project: Web site to connect dozens of government agencies with uncooperative search engines
 - Previously use centralized solution (ad-hoc retrieval), but suffer a lot from missing new information and broken links
 - Require federated search solution: A prototype of federated search solution for FedStats is on-going in Carnegie Mellon University
- Good candidate for evaluation of federated search algorithms
- But, not enough relevance judgments, _____ Requires Thorough not enough control... **Simulation**

Introduction



TREC data

- Large text corpus, thorough queries and relevance judgments

Simulation with TREC news/government data

- Professional well-organized contents
- Often be divided into O(100) information sources
- Simulate environments of large companies or domain specific hidden Web
- Most commonly used, many baselines (Lu et al., 1996)(Callan, 2000)....
- Normal or moderately skewed size testbeds: Trec123 or Trec4 Kmeans
- Skewed: Representative (large source with the same relevant doc density), Relevant (large source with higher relevant doc density), Nonrelevant (large source with lower relevant doc density)

Introduction

Simulation multiple types of search engines

- **INQUERY**: Bayesian inference network with Okapi term formula, doc score range [0.4, 1]
- Language Model: Generation probabilities of query given docs doc score range [-60, -30] (log of the probabilities)
- **Vector Space Model**: SMART "lnc.ltc" weighting doc score range [0.0, 1.0]

Federated search metric

- Information source size estimation: Error rate in source size estimation
- Information source recommendation: **High-Recall**, select information sources with most relevant docs
- Federated doc retrieval: **High-Precision** at top ranked docs

Outline

- Introduction to federated search
- Main research problems
 - ➤ Resource Representation
 - Resource Selection
 - Results Merging

Research Problems (Resource Representation)

- Previous Research on Resource Representation
- Resource descriptions of words and the occurrences
 - STARTS protocol (Gravano et al., 1997): Cooperative protocol
 - Query-Based Sampling (Callan et al., 1999):
 - Send random queries and analyze returned docs
 - Good for uncooperative environments

Centralized sample database: Collect docs from Query-Based Sampling (QBS)

- For query-expansion (Ogilvie & Callan, 2001), not very successful
- Successful utilization for other problems, throughout this proposal

Research Problems (Resource Representation)

Important for resource selection and provide users useful information

- Capture-Recapture Model (Liu and Yu, 1999) Use two sets of independent queries, analyze overlap of returned doc ids But require large number of interactions with information sources

Sample-Resample Model (Si and Callan, 2003)

Assume: Search engine indicates num of docs matching a one-term query

Strategy: Estimate df of a term in sampled docs

Get total df from by resample query from source

Scale the number of sampled docs to estimate source size

Research Problems (Resource Representation)

To conduct component-level study

- Capture-Recapture: about 385 queries (transactions)
- Sample-Resample: 80 queries and 300 docs for sampled docs (sample) + 5 queries (resample) = 385 transactions

Estimated Source Size Measure:

Actual Source Size Collapse every 10th Absolute error ratio AER= source of Trec123

	Trec123	Trec123-10Col
	(Avg AER, lower is	(Avg AER, lower is
	better)	better)
Cap-Recapture	0.729	0.943
Sample-Resample	0.232	0.299

Outline

- Introduction to federated search
- Main research problems
 - Resource Representation
 - ➤ Resource Selection
 - Results Merging

Research Problems (Resource Selection)

High-Recall: Select the (few) information sources that have the most relevant documents

Research on Resource Selection

Resource selection algorithms that need training data

- Decision-Theoretic Framework (DTF) (Nottelmann & Fuhr, 1999, 2003) DTF causes large human judgment costs
- **Lightweight probes** (Hawking & Thistlewaite, 1999) Acquire training data in an online manner, large communication costs

Research Problems (Resource Selection)

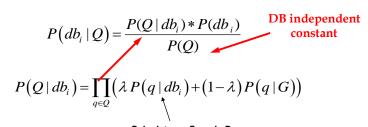
"Big document" resource selection approach: Treat information sources as big documents, rank them by similarity of user query

- Cue Validity Variance (CVV) (Yuwono & Lee, 1997)
- **CORI** (Bayesian Inference Network) (Callan,1995)
- KL-divergence (Xu & Croft, 1999)(Si & Callan, 2002), Calculate KL divergence between distribution of information sources and user query

CORI and KL were the state-of-the-art (French et al., 1999)(Craswell et al., 2000)

But "Big document" approach loses doc boundaries and does not optimize the goal of High-Recall

Language Model Resource Selection



Calculate on Sample Docs

In Language Model Framework, P(C_i) is set according to DB Size

$$P(C_i) = \frac{\hat{N_{C_i}}}{\sum_{j} \hat{N_{C_j}}}$$

Research Problems (Resource Selection)

Research on Resource Representation

But "Big document" approach loses doc boundaries and does not optimize the goal of High-Recall

Relevant document distribution estimation (ReDDE) (Si & Callan, 2003)

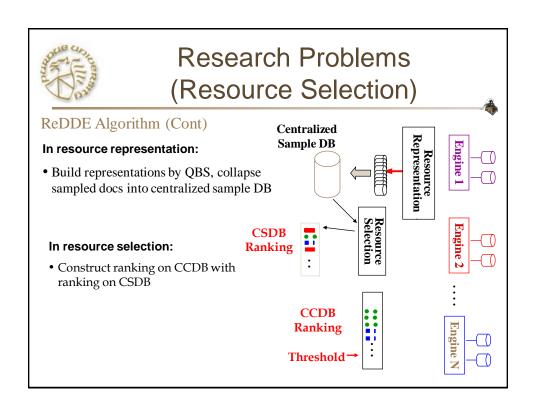
Estimate the percentage of relevant docs among sources and rank sources with no need for relevance data, much more efficient

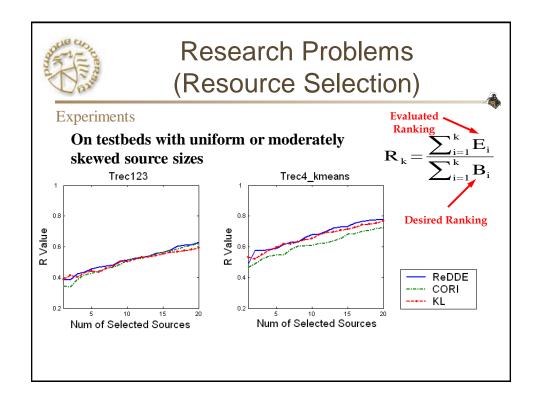
Research Problems (Resource Selection)

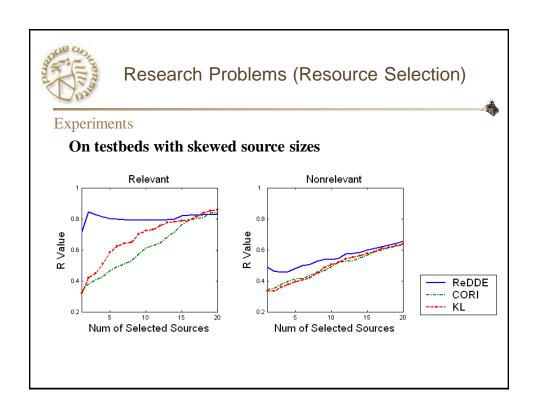
Relevant Doc Distribution Estimation (ReDDE) Algorithm

$$P(rel|d) = \begin{cases} C_Q & \text{if } Rank_{CCDB}(Q,d) < ratio* \sum_{i}^{2} N_{db_i} \end{cases} \begin{tabular}{ll} \begin{tabu$$

Problem: To estimate doc ranking on Centralized Complete DB







- · Introduction to federated search
- Main research problems
 - Resource Representation
 - Results Selection
 - ➤ Resource Merging

Research Problems (Results Merging)

Make different result lists comparable and merge them into a single list **Difficulties:**

- Information sources may use different retrieval algorithms
- Information sources have different corpus statistics

Previous Research on Results Merging

Most accurate methods directly calculate comparable scores

- Use same retrieval algorithm and same corpus statistics (Viles & French, 1997)(Xu and Callan, 1998), need source cooperation
- Download retrieved docs and recalculate scores (Kirsch, 1997), large communication and computation costs

Research Problems (Results Merging)

Methods approximate comparable scores

- Round Robin (Voorhees et al., 1997), only use source rank information and doc rank information, fast but less effective
- CORI merging formula (Callan et al., 1995), linear combination of doc scores and source scores
 - Use linear transformation, a hint for other method
 - Work in uncooperative environment, effective but need improvement

Research Problems (Results Merging)

Thought

Previous algorithms either try to **calculate** or to **mimic** the effect of the centralized scores

Can we estimate the centralized scores effectively and efficiently? Semi-Supervised Learning (SSL) Merging (Si & Callan, 2002, 2003)

- Some docs exist in both centralized sample DB and retrieved docs
 From Centralized sampled DB and individual ranked lists when long ranked lists are available
 - Download minimum number of docs with only short ranked lists
- Linear transformation maps source specific doc scores to source independent scores on centralized sample DB

