Administrivia

• Course web page is active
 – https://www.cs.purdue.edu/~clifton/cs54701/
• Piazza is active
 – Course discussion forum, Q&A
• Watch for a “pre-quiz” (I’ll send email)
 – Goal is to determine what the class knows, what needs review
 – Grade will be for participation, not for getting it right.
Basic Concepts of IR:
Outline

Basic Concepts of Information Retrieval:
• Task definition of Ad-hoc IR
 – Terminologies and concepts
 – Overview of retrieval models
• Text representation
 – Indexing
 – Text preprocessing
• Evaluation
 – Evaluation methodology
 – Evaluation metrics

Ad-hoc IR: Terminologies

Terminologies:
• Query
 – Representative data of user’s information need: text (default) and other media
• Document
 – Data candidate to satisfy user’s information need: text (default) and other media
• Database|Collection|Corpus
 – A set of documents
• Corpora
 – A set of databases
 – Valuable corpora from TREC (Text Retrieval Evaluation Conference)
Ad-hoc IR: Introduction

• Ad-hoc Information Retrieval:
• Search a collection of documents to find relevant documents that satisfy different information needs (i.e., queries)
• Example: Web search

Ad-hoc IR vs. Filtering

• Filtering: Queries are stable (e.g., Asian High-Tech) while the collection changes (e.g., news)
• More for filtering in later lectures
Content Based Filtering

Filtering

Information Needs are Stable
System should make a delivery decision on the fly when a document “arrives”

User Profile:

Asian High-Tech

Filtering System

AD-hoc IR: Basic Process

Information Need

Representation

Query

Retrieval Model

Indexed Objects

Retrieved Objects

Evaluation/Feedback
AD-hoc IR: Overview of Retrieval Model

Retrieval Models

- Boolean
- Vector space
 - Basic vector space
 - Extended Boolean
- Probabilistic models
 - Statistical language models: Lemur
 - Two Possion model: Okapi
 - Bayesian inference networks: Inquery
- Citation/Link analysis models
 - Page rank: Google
 - Hub & authorities: Clever

Determine whether a document is relevant to query

- Relevance is difficult to define
 - Varies by judges
 - Varies by context (i.e., jointly by a set of documents and queries)
- Different retrieval methods estimate relevance differently
 - Word occurrence of document and query
 - In probabilistic framework, P(query|document) or P(Relevance|query,document)
 - Estimate semantic consistency between query and document
Types of Retrieval Models

- **Exact Match (Document Selection)**
 - Example: Boolean Retrieval Method
 - Query defines the exact retrieval criterion
 - Relevance is a binary variable; a document is either relevant (i.e., match query) or irrelevant (i.e., mismatch)
 - Result is a set of documents
 - Documents are unordered
 - Often in reverse-chronological order (e.g., Pubmed)

- **Best Match (Document Ranking)**
 - Example: Most probabilistic models
 - Query describes the desired retrieval criterion
 - Degree of relevance is a continuous/integral variable; each document matches query to some degree
 - Result in a ranked list (top ones match better)
 - Often return a partial list (e.g., rank threshold)
Types of Retrieval Models

Exact Match (Selection) vs. Best Match (Ranking)

- Best Match is usually more accurate/effective
 - Do not need precise query; representative query generates good results
 - Users have control to explore the rank list: view more if need every piece; view less if need one or two most relevant

- Exact Match
 - Hard to define the precise query; too strict (terms are too specific) or too coarse (terms are too general)
 - Users have no control over the returned results
 - Still prevalent in some markets (e.g., legal retrieval)

AD-hoc IR: Basic Process

1. Information Need
2. Query
 - Representation
3. Retrieval Model
 - Indexed Objects
4. Retrieved Objects
 - Evaluation/Feedback
Text Representation: What you see

It never leaves my side, April 6, 2002

Reviewer: "dage456" (Carmichael, CA USA) - See all my reviews
It fits in the palm of your hand and is the size of a deflated wallet (wonder where the money went). I have had my ipod now for 4 months and cannot imagine how I used to get by with my old rio 600 with is 64 megs of ram and.. usb connection. Because of its size this little machine goes with my everywhere and its ten hour battery life means I can listen to stuff all day long.

Pros: size, both physical and capacity.
design: It looks beautiful
controls: simple and very easy to use
connection: FIREWIRE!!

Cons: needs the ability to bookmark. I use my ipod mostly for audiobooks. the ipod needs to include a bookmark feature for those like me.

From Amazon Customer Review of IPod

Text Representation: What computer sees

<table>
<thead>
<tr>
<th>Reviewer: "dage456" (Carmichael, CA USA) - See all my reviews</th>
<th>From Amazon Customer Review of IPod</th>
</tr>
</thead>
</table>
|See all my reviews</td></tr></table>It fits in the palm of your hand and is the size of a deflated wallet (wonder where the money went). I have had my ipod now for 4 months and cannot imagine how I used to get by with my old rio 600 with is 64 megs of ram and.. usb connection. Because of its size this little machine goes with my everywhere and its ten hour battery life means I can listen to stuff all day long. Pros: size, both physical and capacity. design: It looks beautiful controls: simple and very easy to use connection: FIREWIRE!! Cons: needs the ability to bookmark. I use my ipod mostly for audiobooks. the ipod needs to include a bookmark feature for those like me. From Amazon Customer Review of IPod
Iran's government is intensifying a birth control program _ despite opposition from radicals _ because the country's fast-growing population is imposing strains on a struggling economy.

...
Text Representation: Indexing

- Controlled Vocabulary vs. Full Text

 Controlled Vocabulary Indexing
 - Assign words from a small vocabulary or a node from an ontology
 - Often manually but can be done by learning algorithms

 Full Indexing:
 - Often index with an uncontrolled vocabulary of full text
 - Automatically while good algorithm can generate more representative keywords/ key concepts

Text Representation: Indexing

Controlled Vocabulary

Mutation of a mutL homolog in hereditary colon cancer.

Johns Hopkins Oncology Center, Baltimore, MD 21231.

Some cases of hereditary nonpolyposis colorectal cancer (HNPCC) are due to alterations in a mutS-related mismatch repair gene. A search of a large database of expressed sequence tags derived from random complementary DNA clones revealed three additional human mismatch repair genes, all related to the bacterial mutL gene. One of these genes (hMLH1) resides on chromosome 3p21, within 1 centimorgan of markers previously linked to cancer susceptibility in HNPCC kindreds. Mutations of hMLH1 that would disrupt the gene product were identified in such kindreds, demonstrating that this gene is responsible for the disease. These results suggest that defects in any of several mismatch repair genes can cause HNPCC.
MeSH Tree Structures

1. Anatomy [A]
2. Organisms [B]
3. Diseases [C]
 - Bacterial Infections and Mycoses [C01] -
 - Viral Diseases [C02] +
 - Parasitic Diseases [C03] +
 - Neoplasms [C04] +
 - Musculoskeletal Diseases [C05] +
 - Digestive System Diseases [C06] +

4. Chemicals and Drugs [D]
5. Analytical, Diagnostic and Therapeutic Techniques
6. Psychiatry and Psychology [F]
7. Biological Sciences [G]
8. Physical Sciences [H]

PMID: 8126251
TI - Mutation of a mutL homolog in hereditary colon cancer.
MH - *Adenosinetriphosphatase
MH - Amino Acid Sequence
MH - Bacterial Proteins/chemistry/*genetics
MH - Base Sequence
MH - Carrier Proteins
MH - Chromosome Mapping
MH - *Chromosomes, Human, Pair 3
MH - Codon
MH - *Colon Neoplasms
MH - Hereditary Nonpolyposis/*genetics
MH - *DNA Repair
MH - *DNA-Binding Proteins
Pros and cons of controlled vocabulary indexing

Advantages
- Many available vocabularies/ontologies (e.g., MeSH, Open Directory, UMLS)
- Normalization of indexing terms: less vocabulary mismatch, more consistent semantics
- Easy to use by RDBMS (e.g., semantic Web)
- Support concept based retrieval and browsing

Disadvantages
- Substantial efforts to be assigned manually
- Inconvenient for users not familiar with the controlled vocabulary
- Coarse representation of semantic meaning

Full text Indexing: index all text with uncontrolled vocabulary

Advantages
- (Possibly) Keep all the information within the text
- Often no human efforts; easy to build

Disadvantages
- Difficult to cross vocabulary gap (e.g., “cancer” in query, “neoplasm” in document)
- Large storage space

How to build full text Indexing:
- What are the candidates in the word vocabulary? Are they effective to represent semantic meanings
- How to bridge small vocabulary gap (e.g., car and cars)
Statistical Properties of Text

<table>
<thead>
<tr>
<th>Word</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>the</td>
<td>1130021</td>
</tr>
<tr>
<td>of</td>
<td>547311</td>
</tr>
<tr>
<td>to</td>
<td>516636</td>
</tr>
<tr>
<td>a</td>
<td>464736</td>
</tr>
<tr>
<td>in</td>
<td>390819</td>
</tr>
<tr>
<td>and</td>
<td>387703</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Word</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>market</td>
<td>52110</td>
</tr>
<tr>
<td>bank</td>
<td>47940</td>
</tr>
<tr>
<td>stock</td>
<td>47401</td>
</tr>
<tr>
<td>trade</td>
<td>47310</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Statistics collected from Wall Street Journal (WSJ), 1987

![Term Frequency vs. Term Rank](image-url)
Observations from language/corpus independent features

- A few words occur very frequently (High Peak)
 - Top 2 words: 8%-15% (e.g., words that carry no semantic meanings like “the”, “to”)

- Most words occur rarely (Heavy Tail)

- Representative words often in the middle
 - e.g., market and stock for WSJ

- Rules formally describe word occurrence patterns:
 - Zipf’s law, Heaps’ Law

Zipf’s law: relate a term’s frequency to its rank

- Rank all terms with their frequencies in descending order, for a term at a specific rank (e.g., r) collects and calculates

$$ f_r : \text{term frequency} \quad p_r = \frac{f_r}{N} : \text{relative term frequency} $$

- Zipf’s law (by observation):

$$ p_r = A/r \quad A \approx 0.1 $$

So

$$ p_r = \frac{f_r}{N} = A \Rightarrow rf_r = AN \Rightarrow \log(r) = -\log(f_r) + \log(AN) $$

So

Rank X Frequency = Constant
Statistics collected from Wall Street Journal (WSJ), 1987
Text Representation: Text Preprocessing

Text Preprocessing: extract representative index terms

- Parse query/document for useful structure
 - E.g., title, anchor text, link, tag in xml.....
- Tokenization
 - For most western languages, words separated by spaces; deal with punctuation, capitalization, hyphenation
 - For Chinese, Japanese: more complex word segmentation...
- Remove stopwords: (remove “the”, “is”,..., existing standard list)
- Morphological analysis (e.g., stemming):
 - Stemming: determine stem form of given inflected forms
- Other: extract phrases; decompounding for some European languages “rörelseuppskattningssökningssökningsintervallsinställningar”

<table>
<thead>
<tr>
<th>Word</th>
<th>Count</th>
<th></th>
<th>Count</th>
<th></th>
<th>Count</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>the</td>
<td>4</td>
<td></td>
<td>at</td>
<td>1</td>
<td>different</td>
<td>1</td>
</tr>
<tr>
<td>and</td>
<td>3</td>
<td></td>
<td>exchange</td>
<td>1</td>
<td>nontarget</td>
<td>1</td>
</tr>
<tr>
<td>by</td>
<td>3</td>
<td></td>
<td>exogenous</td>
<td>1</td>
<td>not</td>
<td>1</td>
</tr>
<tr>
<td>steroids</td>
<td>3</td>
<td></td>
<td>fluorescent</td>
<td>1</td>
<td>may</td>
<td>1</td>
</tr>
<tr>
<td>centrioles</td>
<td>2</td>
<td></td>
<td>bodies</td>
<td>1</td>
<td>from</td>
<td>1</td>
</tr>
<tr>
<td>in</td>
<td>2</td>
<td></td>
<td>can</td>
<td>1</td>
<td>growth</td>
<td>1</td>
</tr>
<tr>
<td>affect</td>
<td>1</td>
<td></td>
<td>has</td>
<td>1</td>
<td>receptor</td>
<td>1</td>
</tr>
<tr>
<td>already</td>
<td>1</td>
<td></td>
<td>cell</td>
<td>1</td>
<td>identity</td>
<td>1</td>
</tr>
<tr>
<td>Although</td>
<td>1</td>
<td></td>
<td>cells</td>
<td>1</td>
<td>level</td>
<td>1</td>
</tr>
<tr>
<td>antibodies</td>
<td>1</td>
<td></td>
<td>cilia-bearing</td>
<td>1</td>
<td>localization</td>
<td>1</td>
</tr>
</tbody>
</table>

24 stopwords out of total 61 words
Text Representation: Bag of Words

The simplest text representation: “bag of words”

- Query/document: a bag that contains words in it
- Order among words is ignored

```
  steroids  substance  growth  ......  steroids
  ......  exchange  ......  nontarget
  step  bodies  two
  precise  ......
```

<table>
<thead>
<tr>
<th>steroids</th>
<th>cell-banding</th>
<th>precise</th>
<th>two</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>different</td>
<td>receptor</td>
<td>unexpected</td>
</tr>
<tr>
<td>1</td>
<td>effect</td>
<td>exchange</td>
<td>regularly</td>
</tr>
<tr>
<td>1</td>
<td>already</td>
<td>exchange</td>
<td>reveal</td>
</tr>
<tr>
<td>1</td>
<td>although</td>
<td>fluorescent</td>
<td>specific</td>
</tr>
<tr>
<td>1</td>
<td>antibodies</td>
<td>3</td>
<td>step</td>
</tr>
<tr>
<td>1</td>
<td>basal</td>
<td>identity</td>
<td>substance</td>
</tr>
<tr>
<td>1</td>
<td>bones</td>
<td>level</td>
<td>ngugets</td>
</tr>
<tr>
<td>1</td>
<td>cell</td>
<td>localization</td>
<td>target</td>
</tr>
<tr>
<td>1</td>
<td>cells</td>
<td>nontarget</td>
<td>technique</td>
</tr>
</tbody>
</table>

Text Representation: Phrases

- Single word/stem indexing may not be sufficient
e.g., “hit a home run yesterday”
- More complicated indexing includes phrases (thesaurus classes)
- How to automatically identify phrases
 - Dictionary
 - Find the most common N word phrases by corpus statistics (be careful of stopwords)
 - Syntactic analysis, noun phrases
 - More sophisticated segmentation algorithm like “Hidden Markov Model”
Word Stemming

- Associate morphological variants of words into a single form
 - E.g., plurals, adverbs, inflected word forms
 - May lose the precise meaning of a word

- Different types of stemming algorithms
 - Rule-based systems: Porter Stemmer, Krovetz Stemmer
 - Porter Stemmer Example: describe/describes -> describ
 - Statistical method: Corpus-based stemming

Porter Stemmer

- It is based on a pattern of vowel-consonant sequence
 - [C](VC)^m[V], m is an integer
- Rules are divided into steps and examined in sequence
 - Step 1a: ies → i; s →; cares → care
 - Step 1b: if m>0 eed ee
 - agreed → agree
 - Step 5a, Step 5b
- Pretty aggressively:
 - nativity → native
Text Representation: Word Stemming

K Stemmer: based on morphological rules

- If word occurs in a dictionary, do not stem it
- For all other words
 - Remove inflectional endings: plurals to singular; paste tense to present tense; remove “ing”
 - Remove derivational endings by a sequence of rules: may make mistake when suffixes indicate different meanings like “sign” to “signify”

Examples of Stemming:

- Original Text:
 Information retrieval deals with the representation, storage, organization of, and access to information items

- Porter Stemmer (Stopwords removed):
 Online example:
 http://facweb.cs.depaul.edu/mobasher/classes/csc575/porter.html
 Inform retrieve deal represent storag organ access inform item
Problems with Rule-based Stemming

- Rule-based stemming may be too aggressive
 e.g., execute/executive, university/universe

- Rule-based stemming may be too conservative
 e.g., European/Europe, matrices/matrix

- It is difficult to understand the meaning the stems
 e.g., Iteration/iter, general/gener

Corpus-Based Stemming

- Hypothesis: Word variants that should be considered equally often co-occur in documents (passages or text windows) in the corpus

- Collect the statistics of co-occurrence of words in the corpus and form the connected graph

- Cut the graph by different methods and find the connected subgraphs to form equivalence classes
Text Representation: Word Stemming

(Xu & Croft, 1998)