
CS542: Distributed Database Systems 1/26/2009

Prof. Chris Clifton 1

CS54200: Distributed

Database Systems

Timestamp Ordering

28 January 2009

Prof. Chris Clifton

Timestamp Ordering

• The key idea for serializability is to ensure
that conflicting operations are not executed in
an inconsistent order.

• 2PL ensures this by not allowing new locks to
be acquired once a lock is released.

• In timestamp ordering (TO), we predetermine
an order and enforce it for conflicting
operations.

• The order is based upon timestamps
assigned to each txn.

2

CS542: Distributed Database Systems 1/26/2009

Prof. Chris Clifton 2

Timestamp Ordering

• The TM assigns each txn, Ti, a unique

timestamp, ts(Ti).

• No two txns share a timestamp.

• A TO scheduler enforces:

• TO Rule: if pi[x] and qj[x] are conflicting

operations, then the DM processes pi[x]

before qj[x] iff ts(Ti) < ts(Tj).

3

Serializability

• Theorem: If H is a history representing an
execution produced by a TO scheduler, then
H is serializable.

• Proof: Consider SG(H).

• If Ti Tj is an edge in SG(H), then there must
exist conflicting operations pi[x] and qj[x] in H
such that pi[x] < qj[x].

• Hence by the TO rule, ts(Ti) < ts(Tj).

• If there is a cycle T1 T2… Tn T1 in
SG(H), then by induction, ts(T1) < ts(T1)!!!

4

CS542: Distributed Database Systems 1/26/2009

Prof. Chris Clifton 3

Basic TO

• For each operation, we pass it to the DM as
long as it is not too late!

• An operation is too late if a conflicting
operation with a larger timestamp has already
been sent to the DM.

• If an operation is too late, the earlier
operation cannot be undone, then the txn is
aborted.

• The aborted txn is restarted with a new
timestamp – why?

• This avoids cyclic restart.

5

Implementing Basic TO

• How to determine that an operation is too
late?

• Maintain for each data item x, the maximum
timestamp of a txn whose Read (Write) for x
has been sent to the DM.

• Let this be stored in max_r(w)_scheduled[x].
• When pi[x] is received, check ts(Ti) with

max_q_scheduled[x] for all operations q that
conflict with p.

• If ts(Ti) is less than any of these, Ti is too late.
• Otherwise, schedule pi[x], update

max_p_scheduled[x] to ts(Ti).

6

CS542: Distributed Database Systems 1/26/2009

Prof. Chris Clifton 4

Timing

• It is important for the scheduler to ensure that

all scheduled operations on a given object

are processed in the correct order.

• It must ensure that the DM acknowledges the

completion of all conflicting operations before

scheduling the next one.

• The scheduler maintains counts of pending

operations of each type, and a queue of

pending operations for each object.

7

Basic TO

• An operation pi[x] is accepted for scheduling if
ts(Ti) > max_q_scheduled[x] for all q that conflict
with p.

• Otherwise, pi[x] is rejected, and Ti is aborted.

• If for all types q that conflict with p, there is no
pending operation on x, and there are no waiting q
type operations on x, then pi[x] is scheduled.

• Otherwise pi[x] is inserted into the waiting Q.

• When the DM acks an operation’s completion,
schedule all possible opns on x at the head of Q.

8

CS542: Distributed Database Systems 1/26/2009

Prof. Chris Clifton 5

Strict TO

• TO does not even ensure recoverability!

• How can we enforce strictness?

• In the check for pending operations being
processed by the DM, for write operations,
we consider them pending until the DM
acknowledges the abort or commit.

• Thus a write operation “locks” the item
until the txn commits or aborts.

• TO does NOT suffer from deadlocks.

9

Strict TO = Strict 2PL?

• How do these two compare?

• They are not equal.

• E.g. r2[x] w3[x] c3 w1[y] c1 r2[y] w2[z] c2

• This history can be produced by a Strict TO
scheduler if ts(T1) < ts(T2) < ts(T3).

• This cannot be produced by a 2PL scheduler:
T2 must release its read lock on x before
w3[x] but may not set its read lock on y until
after w1[y] – not allowed by 2PL!

10

CS542: Distributed Database Systems 1/26/2009

Prof. Chris Clifton 6

TO Variants

• Distributed TO: How can TO be modified for
distributed sites?

• Simple – nothing special needed as long as ….

• Timestamps are unique across sites!

• Easy to enforce this.

• Much better than distributed 2PL – no need for
inter-site communication, unlike 2PL which
requires communication for deadlocks.

• Conservative TO: delay operations. Make
assumptions about the system or timestamps.

11

Serialization Graph Testing

• Maintain a version of the SG and check for
acyclicity.

• Basis SGT: Upon receiving pi[x] add a node
for Ti if necessary; add TiTj for each qj[x]
that conflicts and has been scheduled
previously.

• If graph has a cycle – must reject pi, abort Ti,
remove the node for Ti.

• Otherwise, if all conflicting operations have
been processed by DM, schedule pi[x].

• Must keep track of what operations have
been scheduled for each transaction!!

12

CS542: Distributed Database Systems 1/26/2009

Prof. Chris Clifton 7

Deleting Nodes

• When can nodes be deleted?

• Upon commitment? NO

• rk+1[x]w1[x]w1[y1]c1w2[x]w2[y2]c2…wk[x]wk[yk]ck

followed by wk+1[z].

• In order to accept wk+1[z], z must not be any
of x, y1, y2, …, yk. Thus the scheduler has to
remember all writes of T1,…,Tk!

• Can delete a committed txn if it is a source
it cannot be involved in any cycles. WHY?

13

Certifiers

• Extremely aggressive schedulers – no checks are
done until absolutely necessary.

• Can be based upon 2PL, TO, or SGT.

• Schedule without checks until a txn wants to
commit, at that time determine if allowing the txn
to commit makes the execution non-serializable.

• If so, abort, otherwise commit.

• May lead to too many aborts if contention is high.

• Can be very efficient if contention is low.

14

