
CS542: Distributed Database Systems 1/21/2009

Prof. Chris Clifton 1

CS54200: Distributed

Database Systems

Serializability Theory

Chris Clifton

Transactions

• A transaction consists of read and write

operations on database objects.

• It also specifies an order in which the

operations are executed. This may be a

partial order, i.e. some pairs of operations

are not strictly ordered in time. The order

describes the “happened-before”

relationship.

CS542: Distributed Database Systems 1/21/2009

Prof. Chris Clifton 2

Transactions

• Each operation of a transaction will be

represented by the following symbols:

– r1[x] – txn T1 reads data item x

– w1[x] – txn T1 writes data item x

– c1 – txn T1 commits

– a1 – txn T1 aborts

– The start of a txn is implicit

Transaction

• A transaction Ti is a partial order with

ordering relation <i, where

– Ti {ri[x], wi[x] | x is a data item} {ai,ci};

– ai Ti iff ci Ti;

– If ti is ci or ai (whichever is in Ti), for any other

operation p Ti, p <i ti;

– If ri[x], wi[x] Ti, then either ri[x] <i wi[x] or

wi[x] <i ri[x].

CS542: Distributed Database Systems 1/21/2009

Prof. Chris Clifton 3

Transactions

• A partial order can be represented by a

directed acyclic graph (DAG).

• E.g.

r1[x]

w1[x]

w1[z] c1

Transactions

• Ignore all other actions of txns

• Can model input values as read

statements, output as write

CS542: Distributed Database Systems 1/21/2009

Prof. Chris Clifton 4

Histories

• A history captures the execution of several
transactions.

• Histories are collections of the partial orders of
txns and are partial orders too.

• They need to be more that just the sum of the
partial orders of their constituent transactions
though – they MUST order conflicting operations

• A pair of operations conflict if they both operate
on the same data item and at least one of them
is a write.

Complete Histories

• Let T = {T1, T2, …, Tn} be a set of transactions. A

complete history H over T is a partial order with

ordering relation <H where:

– H = Ti;

– <H <i; and

– For any two conflicting operation, p, q H, either p <H

q or q <H p.

• A history is simply a prefix of a complete history.

n

i 1

CS542: Distributed Database Systems 1/21/2009

Prof. Chris Clifton 5

Example

• T1 = r1[x] w1[x]  c1

• T2 = r2[x]w2[y]w2[x] c2

• T3 = r3[y]w3[x]w3[y]  c3

r1[x] w1[x]  c1

r3[y]w3[x]w3[y]  c3

r2[x]w2[y]w2[x] c2

Orders implied by transitivity are omitted.

For total orders, we can drop the arrows.

Committed Projection of a

History

• The committed projection of a history H,

denoted C(H), is the history obtained from

H by deleting all operations that do not

belong to committed txns.

• This is important for the definition of

serializable histories.

CS542: Distributed Database Systems 1/21/2009

Prof. Chris Clifton 6

Equivalent Histories

• We want to allow only those histories that are
EQUIVALENT to some serial history.

• We define two histories H and H’ to be
equivalent () if
– They are defined over the same set of transactions

and have the same operations; and

– They order conflicting operations of non-aborted
transactions in the same way; that is, for any
conflicting operations pi and qj belonging to
transactions Ti and Tj (respectively) where aj, ai H,
if pi < H qj then pi <H’ qj.

Serializable Histories

• Because only the complete execution of

txns represents a consistent state, we

define a history to be serializable (SR) if its

committed projection, C(H), is equivalent

to some serial history Hs.

• A serialization graph can be used to

determine whether a history is serializable.

CS542: Distributed Database Systems 1/21/2009

Prof. Chris Clifton 7

Serialization Graph (SG)

• The SG(H) is a directed graph whose nodes are
committed txns in H, and whose edges are Ti Tj
such that one of Ti’s operations precedes and
conflicts with one of Tj’s operations in H.

E.g. r3[x]  w3[x]  c3

r1[x]  w1[x]  w1[y]  c1

r2[x]  w2[y]  c2 T2 T1 T3

NOTE: SG may not be transitive!

Serializability Theorem

A History H is serializable iff SG(H)
is acyclic

CS542: Distributed Database Systems 1/21/2009

Prof. Chris Clifton 8

Serializability Theorem

• Theorem: A history H is serializable iff SG(H)
is acyclic.

• Proof: IF

• Suppose H is a history over T={T1, T2, …,
Tn}.

• WLOG assume T1, T2, …, Tm (m < n) are all
txns in T that are committed in H.

• Thus T1, T2, …, Tm are the nodes in SG(H).

• Since SG(H) is acyclic, it can be topologically
sorted.

Serializability Theorem

• Let i1, i2, …, im, be a permutation of 1,2,…,m
such that Ti1, Ti2, …, Tim is a topological sort
of SG(H).

• Let Hs be the serial history Ti1, Ti2, …, Tim.

• We claim that C(H) Hs.

• Let pi Ti and qj Tj, where Ti, Tj are
committed in H.

• Suppose pi, qj conflict and pi <H qj.

• By the definition of SG(H), Ti Tj is in
SG(H).

CS542: Distributed Database Systems 1/21/2009

Prof. Chris Clifton 9

Serializability Theorem

• Therefore in any topological sort of SG(H),
Ti must appear before Tj.

• Thus in Hs all operations of Ti must
precede all operations of Tj, and in
particular, pi <Hs qj.

• Thus any two conflicting operations are
ordered in the same way in C(H) as Hs.
Thus C(H) Hs, which is serial, therefore
H is SR.

Serializability Theorem

• ONLY IF:

• Suppose H is SR. Let Hs be a serial history
equivalent to C(H).

• Consider an edge Ti Tj in SG(H).

• Thus there are two conflicting operations pi,
qj of Ti, Tj (respectively), such that pi <H qj.

• Because C(H) Hs, pi <Hs qj.

• Because Hs is serial, and pi precedes qj, it
implies that Ti precedes Tj in Hs.

CS542: Distributed Database Systems 1/21/2009

Prof. Chris Clifton 10

Serializability Theorem

• Thus we see that if Ti Tj is in SG(H),
then Ti precedes Tj in Hs.

• Suppose that there is a cycle in SG(H),
say T1T2…TkT1

• This implies that T1 appears before itself in
Hs, which is absurd.

• Thus no cycle can exist in SG(H) if H is
SR.

• QED

Recoverable Histories

• A txn Ti reads x from Tj in history H if

– wj[x] < ri[x];

– NOT (aj < ri[x]) and

– If there is some wk[x] such that wj[x] < wk[x] <
ri[x], then ak < ri[x].

• A history is Recoverable (RC) if, whenever Ti reads
from Tj (i j) in H, ci H, cj < ci.

• A history Avoids Cascading Aborts (ACA) if,
whenever Ti reads x from Tj (i j) in H, ci < ri[x].

• A history H is Strict (ST) if whenever wj[x] < oi[x] (i
j), either aj < oi[x] or cj < oi[x], where oi[x] is ri[x] or
wi[x].

CS542: Distributed Database Systems 1/21/2009

Prof. Chris Clifton 11

Examples

• T1=w1[x] w1[y] w1[z] c1

• T2=r2[u] w2[x] r2[y] w2[y] c2

• w1[x] w1[y] r2[u] w2[x] r2[y] w2[y] c2 w1[z] c1

• Not RC

• w1[x] w1[y] r2[u] w2[x] r2[y] w2[y] w1[z] c1 c2

• RC, not ACA

• w1[x] w1[y] r2[u] w1[z] w2[x] c1 r2[y] w2[y] c2

• RC, ACA, not Strict

RC

ACA

ST Serial

SR

CS542: Distributed Database Systems 1/21/2009

Prof. Chris Clifton 12

Prefix Commit-closed

• A property of a history is called prefix commit-

closed if, whenever the property is true of history

H, it is also true of history C(H’), for any prefix H’

of H.

• Since failures may occur when a prefix of an

acceptable history has been processed, DBMS

schedulers and recovery managers must satisfy

prefix commit-closed properties for CC and

recovery, i.e. every C(H’) must be acceptable

too.

Theorem

• Serializability is a prefix commit-closed property.

• Proof: Since H is SR, SG(H) is acyclic. Consider
SG(C(H’)) where H’ is any prefix of H.

• If Ti Tj is an edge of this graph, then we have
two conflicting operations pi, qj belonging to Ti, Tj
(respectively) with pi <C(H’) qj.

• But then clearly pi <H qj and thus TiTj exists in
SG(H).

• Therefore SG(C(H’)) is a subgraph of SG(H).

• If SG(H) is acyclic, so must SG(C(H’)), hence
C(H’) is SR.

CS542: Distributed Database Systems 1/21/2009

Prof. Chris Clifton 13

Other Operations

• So far, we have limited ourselves to reads and
writes.

• However, serializability does not limit us to these.

• We just need to redefine conflicting operations as
any pair for which the result, in general, depends
upon the order of their execution.

• Effect is: value returned, and final value of data.

• Thus we need only define the notion of conflict
appropriately. For example, we could add Increment
and Decrement as basic (atomic) operations.
Assume they do not return a value.

Compatibility Matrix

Read Write Increment Decrement

Read
Y N N N

Write
N N N N

Increment
N N Y Y

Decrement
N N Y Y

CS542: Distributed Database Systems 1/21/2009

Prof. Chris Clifton 14

View Equivalence

• So far, we have based equivalence of histories

on the fact that the ordering or writes with

respect to other operations on the same object

should be the same.

• We can say that the effects are simply the

values read and the final values of data objects.

If these are the same in two histories, then they

are declared to be view equivalent.

View Equivalence

• The final write of x in a history H is the
operation wi[x] H, such that ai H and for
any wj[x] H (j i) either wj[x] < wi[x] or aj
H.

• Two histories H, H’ are view equivalent if
– they are over the same set of txns and have

the same operations;
– For any Ti ,Tj such that ai , aj H (hence ai, aj

H’) and for any x, if Ti reads x from Tj in H then
Ti reads x from Tj in H’ and

– For each x, if wi[x] is the final write of x in H
then it is also the final write of x in H’.

CS542: Distributed Database Systems 1/21/2009

Prof. Chris Clifton 15

View Serializability

• A history, H, is defined to be view serializable

(VSR) if for any prefix H’ of H, C(H’) is view

equivalent to some serial history.

• We need to ensure prefix commit closure

• w1[x] w2[x] w2[y] c2 w1[y] c1 w3[x] w3[y] c3

• The complete history is view equiv. to T1 T2 T3.

• However, upto c1 it is not view equiv. to either

T1 T2 or T2 T1!

CSR vs. VSR

• Theorem: If H is conflict serializable then it is
view serializable. The converse is not,
generally, true.

• Proof. Suppose H is CSR. Let Hs be a serial
history equivalent to C(H’).

• If Ti reads x from Tj in C(H’), then wj[x] <C(H’)
ri[x] and there is no wk[x] such that

wj[x] <C(H’) wk[x] <C(H’) ri[x].
• Hs must order these in the same way i.e.wj[x]

<Hs ri[x], and no intermediate wk[x]. Hence
they have the same reads-from relationships.

• Similarly for final writes.

CS542: Distributed Database Systems 1/21/2009

Prof. Chris Clifton 16

VSR CSR

w1[x] w2[x] w2[y] c2 w1[y] w3[x] w3[y] c3 w1[z] c1

T1

T2

T3

