Thus far, we have assumed that there is only a single copy of each data item.

This copy is placed at one of the sites, which is responsible for concurrency control and recovery for that data item.

However, for a data item that is accessed often from different sites, this could lead to a significant amount of communication.

Moreover, when a site fails, all data residing on that site becomes unavailable.
Replication

- To increase availability of data, and to reduce communication for remote data, data can be replicated.
- From the user’s point of view, replication (like distribution, physical and logical organization of data), should be transparent.
- I.e. the user should not be aware that some (or all) data items are replicated, and should see no difference in performance.
- The user can be a programmer or an end user.

1 Copy Serializability

- The correctness definition for replicated databases is therefore that it should behave as though all transactions are executed in a serial manner on a single copy database.
- This is the notion of one copy serializability, i.e. 1SR.
- The user must be given a one copy view of the database.
- How is this achieved?
- Read-only is easy. For writes we must manage carefully!
Write-All approach

• This is the obvious first solution:
 – Reads can be satisfied by any copy in the system,
 – Writes must all modify every copy of the data item being written.
• This is a very effective solution – it completely eliminates the problem of multiple copies, and gives each txn the correct view. HOWEVER
• It is very poor in terms of performance and progress:
 – Failures have a crippling effect on transactions!

Write-All-Available

• Allow a txn to proceed even though failures make it impossible to write all copies of the data.
• Allow the txn to simply write to every site that is available. Those that are down can be ignored.
• Thus some copies of the data may be out of sync, i.e. may not contain the latest updates.
Example

- Consider the following execution. Note that multiple copies are marked using the upper case subscripts.
 \[w_0[x_A] w_0[x_B] w_0[y_C] c_0 \quad r_1[y_C] w_1[x_A] c_1 \quad r_2[x_B] w_2[y_C] c_2 \]

- \(T_2 \) reads copy \(x_B \) from \(T_0 \), even though it should have read from \(T_1 \).

- Thus the above history is not equivalent to \(T_0 T_1 T_2 \).

- Is it equivalent to some other serial one-copy history?

- \(\text{NO!} \) \(w_0[y_C] < r_1[y_C] < w_2[y_C] \), there is no other equivalent serial execution.

- This is interesting, because the execution actually seems to be a serial execution of the transactions!!!

Example (contd.)

- So what has gone wrong?

- The problem is that the write by \(T_1 \) into \(x \), did not update all copies of \(x - x_B \) in particular.

- This could only mean that site B must have been down when \(T_1 \) wrote \(x \), and must have recovered before \(T_2 \) read \(x \).

- I.e. the failures must have been as such:
 \[w_0[x_A] w_0[x_B] w_0[y_C] c_0 \quad \text{fail}_B \quad w_1[x_A] c_1 \quad \text{Recover}_B \quad r_2[x_B] w_2[y_C] c_2 \]

- Thus the problem is that \(T_2 \) read a copy at a site that had failed and upon recovery did not re-sync with the other sites! Fixing this is still not enough!!
Assumptions

- Again, we will assume the same model for the database.
- The TM now maps all reads onto a read of some copy, and all writes onto a write on all (available) copies. It uses directories of copies to determine where copies are stored.
- Failures are assumed to be fail stop.
- We begin by ignoring communication failures.
- Thus a copy x_A at a site A is available to site B if A correctly executes each read/write of x_A from site B, and B receives the acknowledgement.
Assumptions.

• Therefore site failures are detectable.
• The timing of updating multiple copies can vary:
 – Immediate: as soon as the write is received.
 – Deferred: could delay the updating of copies. Update copies only upon commitment or abortion. Intentions lists can be piggybacked with VOTE_REQ msgs.
• Delayed updating results in
 – Fewer messages
 – Cheaper aborts
 – Delayed commitment
 – Delayed detection of conflicting operations. Can be solved by using a primary copy approach.

Replicated Data History.

• Let $h(\)$ be a function that maps
 – $r_i[x] \rightarrow r_i[x_A]$ for some copy x_A of x.
 – $w_i[x] \rightarrow w_i[x_{A1}], \ldots, w_i[x_{Am}]$, for some copies of x
 – $c_i \rightarrow c_i$
 – $a_i \rightarrow a_i$
Replicated Data History

• A complete replicated data (RD) history H over T={T_0, \ldots, T_n} is a partial order with ordering relation $<$ where:
 – $H=h(U_{i=0..n} T_i)$ for some translation function h;
 – For each T_i and all operations p_i, q_i in T_i, if $p_i < q_i$, then every operation in $h(p_i)$ is related by $<$ to every operation in $h(q_i)$.
 – For every $r_j[x_A]$ there is at least one $w_i[x_A] < r_j[x_A]$.
 – All pairs of conflicting operations are related by $<$, where two operations conflict if they operate on the same copy and at least one is a write; and
 – If $w_i[x] < r_i[x]$ and $h(r_i[x]) = r_j[x_A]$ then $w_i[x_A]$ must be in $h(w_i[x])$.

Given txns {T_0, T_1, T_2, T_3}:

$T_0 = w_0[x] \rightarrow c_0$
$w_0[y] \rightarrow c_0$

$T_1 = r_1[x] \rightarrow w_1[x] \rightarrow c_1$

$T_2 = w_2[x] \rightarrow r_2[x] \rightarrow w_2[y] \rightarrow c_2$

$T_3 = r_3[x] \rightarrow r_3[y] \rightarrow c_3$

The following is an example of an RD history:
Reads-From Relationship

• Let H be an RD history.
• Txn T_j reads-x-from T_i in H if for some copy x_A, T_j reads-x_A-from T_i, that is, if $w_i[x_A] < r_j[x_A]$ and no $w_k[x_A]$ $(k <> i)$ falls between these operations.
• Since reads-from are unique on copies, and a txn reads only one copy, then reads-from relationships on data items are unique too.

Serialization Graph

• Consider only complete histories with committed transactions only.
• I.e. we assume recoverable execution.
• What does that mean for replicated data?
• An RD history H, is recoverable if whenever T_i reads (any copy) from T_j in H and c_i is in H, then c_j is in H and $c_j < c_i$.
• The Serialization graph is generated as before, except that conflicting operations are now defined on copies rather than data items.
Serialization Graph

- Let H be an RD history involving transaction T_i. If $SG(H)$ is acyclic and for some x, $w_i[x] < r_i[x]$, then T_i reads-x-from T_i in H.

- **Proof:**
 - From conditions (2) and (5) on RD histories, $w_i[x] < r_i[x]$ implies that for some copy x_A of x, $w_i[x_A] < r_i[x_A]$.
 - Suppose, T_i didn’t read x from T_i in H. Then there must exist some $w_k[x_A]$ ($k<>i$) in H such that $w_i[x_A] < w_k[x_A] < r_i[x_A]$.
 - But then $SG(H)$ is acyclic.

Serializability

- **Acyclicity** of the serialization graph does NOT guarantee serializability for RD histories.
- A history is serializable if it is equivalent to a 1C history.
- The same order for conflicting operations does not work since the conflicting operation in the RD history and the 1C history are not the same.
- View equivalence is more natural for RD histories since the reads-from-relationships and final writes behave similarly in both types of histories.
RD history equivalence

- Given an RD history H, define $w_i[x_A]$ to be a final write for x_A in H if a_i is not in H and for all $w_j[x_A]$ in H ($j <> i$), either a_j is in H, or $w_j[x_A] < w_i[x_A]$.

- Two RD histories are equivalent if they are view equivalent, that is, they have the same reads-from relationships and final writes.

RD history equivalence

- An RD history H over T is equivalent to a 1C history H_{1C} over T if
 1. H and H_{1C} have the same reads-from relationships on data items (i.e., $T_j.reads-x-from T_i$ in H iff the same holds in H_{1C}), and
 2. For each final write $w_i[x]$ in H_{1C}, $w_i[x_A]$ is a final write in H for some copy x_A of x.

An RD history is one-copy serializable (1SR) if it is equivalent to a serial 1C history.
Examples

- Is 1SR, it is equivalent to $T_0 \ T_2 \ T_1 \ T_3$.
- But, $w_0[x_A] \ w_0[x_B] \ w_0[y_C] \ c_0 \ r_1[y_C] \ w_1[x_A] \ c_1 \ r_2[x_B] \ w_2[y_C] \ c_2$ is not.
- However, it is a serial history!!
- Thus not every serial RD history is 1SR.

Final Writes

- Let H be an RD history over T, with acyclic SG(H). Let H_{1C} be a serial 1C history over T such that the order of transactions in H_{1C} is consistent with SG(H). If $w_i[x]$ is a final write for x in H_{1C}, then every write, $w_i[x_A]$, by T_i into some copy x_A of x is a final write for x_A in H.

Proof:
- Suppose $w_i[x]$ is a final write for x in H_{1C}. Let $w_i[x_A]$ be any write into x by T_i in H. If $w_i[x_A]$ is not a final write, then there is some $w_j[x_A]$ ($j \neq i$) such that a_j is not in H and $w_i[x_A] < w_j[x_A]$.
- Thus $T_i \rightarrow T_j$ is in SG(H), so T_j precedes T_i in H_{1C}.
- $\Rightarrow a_j$ is not in H_{1C} and $w_i[x] < w_j[x]$ in H_{1C}, contradicting the choice of $w_i[x]$ as a final write.
Serializability

• Thus we can ignore final writes – they must be the same.
• **Theorem:** Let H be an RD history. If H has the same reads-from relationships as a serial 1C history H_{1C}, where the order of transactions in H_{1C} is consistent with $SG(H)$, then H is 1SR.

Replicated Data
20 January, 2009
Prof. Sunil Prabhakar
Serializability

• Thus we can ignore final writes – they must be the same.

• **Theorem:** Let H be an RD history. If H has the same reads-from relationships as a serial 1C history H_{1C}, where the order of transactions in H_{1C} is consistent with $\text{SG}(H)$, then H is 1SR.

Graphs for 1SR histories

• How can we modify the serialization graphs to identify exactly the set of 1SR histories?

• The problem arises from the failure and recovery of sites:
 – A failed site will not be updated
 – Upon recovery it has inconsistent data.

• How can we capture the effects of these failures and recoveries in the serialization graph?
Example

\[T_0 = \begin{align*}
 w_0[x] & \rightarrow c_0 \\
 w_0[y] & \rightarrow c_0
\end{align*} \]

\[T_1 = \begin{align*}
 r_1[x] & \rightarrow w_1[y] \\
 r_1[x] & \rightarrow c_1
\end{align*} \]

\[T_2 = \begin{align*}
 r_2[y] & \rightarrow w_2[x] \\
 r_2[y] & \rightarrow c_2
\end{align*} \]

The following RD history can occur with 2PL on copies:

\[w_0[x_A] \]
\[w_0[x_B] \]
\[w_0[y_C] \]
\[w_0[y_D] \]
\[r_1[x_A] \]
\[y_D \downarrow \]
\[w_1[y_C] \]
\[c_1 \]
\[w_2[x_B] \]
\[c_2 \]

This is not a 1SR history! But SG is acyclic:

The problem

- In the example there were no recoveries, thus by ensuring that a recovering site synchronizes before it is accessed, we would still have non-1SR histories!
- We are failing to capture the conflict at the item level by considering only conflicts at the copy level.
- Note that two conflicting operations must contain a write which must write all (available) copies. Without failures the conflict is detected.
Replicated Data SG

- Try to synchronize two transactions that access a conflicting item.
- Define: $n_j \prec n_k$, i.e., $n_i \ll n_k$, in a directed graph, if there is a path from n_i to n_k.
- A replicated data serialization graph (RDSG) for H is $\text{SG}(H)$ with enough edges added such that for all data items, x:
 1. If T_i and T_k write x, then either $T_i \ll T_k$ or $T_k \ll T_i$.
 2. If T_j reads x from T_i, T_k writes some copy of x ($k \not= i$, $k \not= j$), and $T_i \ll T_k$, then $T_j \ll T_k$.

RDSG

- A graph that satisfies condition 1 induces a write order for H.
- If it satisfies condition 2 it induces a read order for H.
- Given a history H, the $\text{RDSG}(H)$ is not unique.
- The write order ensures that every pair of txns that write into the same item (even if they don’t write the same copy).
- Write and read order ensure that every pair of txns that read and write the same item.
Example.

- The example enforces a write order.
- However it does not enforce a read order:
 - Since T_1 reads-x-from T_0, T_2 writes x, and $T_0 \rightarrow T_2$, we add $T_1 \rightarrow T_2$ to RDSG(H);
 - Since T_2 reads-y-from T_0, T_1 writes y, and $T_0 \rightarrow T_1$, we add $T_2 \rightarrow T_1$ to the RDSG(H).

\[T_0 \xrightarrow{} T_2 \xrightarrow{} T_1 \]

- Now RDSG(H) has a cycle, as required.

1SR

- **Theorem:** Let H be an RD history. If H has an acyclic RDSG, then H is 1SR.
- **Proof:**
 - Let $H_s = T_{i1}, \ldots, T_{in}$ be a serial 1C history where T_{i1}, \ldots, T_{in} is a topological sort of RDSG(H).
 - Since RDSG(H) contains SG(H), H is 1SR if H and H_s have the same reads-from relationships.
 - Assume that T_j reads-x-from T_i in H. Suppose, by way of contradiction, that T_j reads-x-from T_k in H_s.
 - If $k=j$, then T_j must read-x-from T_k in H too since SG(H) is acyclic $\Rightarrow k <> j$.

31

32
Proof (cont)

– Since T_j reads-x-from T_i in H, $T_i \rightarrow T_j$ is in RDSG(H), so T_i precedes T_j in H_s.
– Since the RDSG induces both a read and write order, we have that either $T_k << T_i$ or $T_j << T_k$.
– Thus either T_k precedes T_i (which precedes T_j) or T_k follows T_j in H_s, both contradict that T_j reads-x-from T_k in H_s.
– Now assume T_j reads-x-from T_i in H_s. By the definition of RD histories and the reads-from relationship, T_j reads-x-from some txn in H, say T_h. By the above, T_j reads-x-from T_h in H_s. Since the reads-from relation is unique, $T_h=T_j$.

Atomicity of Failures and Recovery

• Another alternative, is to ensure that all transactions view failures and recoveries consistently.
• Atomicity of failure:

$w_0[x_A] \rightarrow r_1[x_A] \rightarrow y_D \downarrow \rightarrow w_1[y_C] \rightarrow c_1$
$w_0[x_B] \rightarrow r_2[y_B] \rightarrow x_A \downarrow \rightarrow w_2[x_B] \rightarrow c_2$

• T_1 sees the failures as: $yD\downarrow \rightarrow T_1 \rightarrow xA\downarrow$ but
• T_2 sees the failures as: $xA\downarrow \rightarrow T_2 \rightarrow yD\downarrow$
Atomicity of Failures

- We want all transactions to agree on when the failures occurred.
- There can be no serial ordering of the failures and T_1, T_2 that is consistent with the views of T_1 and T_2.
- We want to synchronize the recognition of failures of sites with the read and write operations that are taking place.
- Certain views of failures may be troublesome and should not be allowed.

Atomicity of Recoveries

- We require that each copy be initialized before it is read a copies txn can be used for this.
- After initialization, all txns need to be informed about the new copy so that they can write it too.
- This has to be done carefully:
Example

- The problem is that T_2 should have updated the new copy of x, xB.
- Since T_1 knew about xB, and executed before T_2.
- In terms of recoveries,
 - The view of T_1 is: $xB \uparrow \rightarrow T_1$
 - The view of T_2 is: $T_2 \rightarrow xB\uparrow$
 - Since T_1 executes before T_2, this is inconsistent!!
- We want all txns to have a consistent view of the recovery of copies.
Failure-Recovery SG

- Assume that once a copy fails, it never recovers!!
- Given an RD history H over transactions $\{T_0, \ldots, T_n\}$, a failure-recovery serialization graph (FRSG) for H is a directed graph with nodes N and edges E where:
 - $N = \{T_0, \ldots, T_n\} \cup \{create[x_A] \mid x$ is a data item, and x_A is a copy of $x\} \cup \{fail[x_A]\}$
 - $E = \{T_i \rightarrow T_j \mid T_i, T_j$ is in $SG(H)\} \cup E1 \cup E2 \cup E3$, where:
 - $E1 = \{create[x_A] \rightarrow T_i \mid T_i$ reads or writes $x_A\}$;
 - $E2 = \{T_i \rightarrow fail[x_A] \mid T_i$ reads $x_A\}$;
 - $E3 = \{T_i \rightarrow create[x_A]$ or $fail[x_A] \rightarrow T_i \mid T_i$ writes some copy of x, but not $x_A\}$.

Example

- For the following RD history:

 - The following is a FRSG:
1SR

• **Theorem**: Let H be an RD history. If H has an acyclic FRSG, then H is 1SR.

• **Proof**:
 - Let $H_s = T_{i1}, \ldots, T_{in}$ be a serial 1C history where T_{i1}, \ldots, T_{in} is a topological sort of FRSG(H).
 - Since FRSG(H) contains SG(H), H is 1SR if H and H_s have the same reads-from relationships.
 - Assume that T_i reads-x_A-from T_j in H. Hence $T_i \rightarrow T_j$ is in FRSG(H), and T_i precedes T_j in H_s.
 - Let T_k be any other transaction that writes x.
 - If T_k writes x_A, then since T_j reads-x_A-from T_i in H, either $T_k \rightarrow T_i$ or $T_j \rightarrow T_k$ must be in FRSG(H).

Proof (contd.)

- If T_k does not write x_A, by defn of FRSG, either $T_k \rightarrow create[x_A]$ or $fail[x_A] \rightarrow T_k$.
- In the former case, since $create[x_A] \rightarrow T_i$, T_k precedes T_i in FRSG(H).
- In the latter case, since $T_j \rightarrow fail[x_A]$, T_j precedes T_k in the FRSG(H).
- Hence, if T_k writes x, either T_k precedes T_i or follows T_j in the FRSG and H_s.
- Thus T_j reads-x-from T_i in H_s.
- Now, suppose T_j reads-x-from T_i in H_s. By the defn of RD history, T_j reads-x-from some txn in H, say T_h. By the above, T_j reads-x-from T_h in H_s. Since reads from relationships are unique, $T_h = T_i$.
Communication Failures

• Thus far, we have ignored communication failures!
• These can lead to non-serializable executions if network partitions result from the failures.
• Handled by the use of quorums – ensuring that only one of the partitions handles transactions.
• There are several alternatives for enforcing quorums.