
CS542: Distributed Database Systems 2/16/2009

Prof. Chris Clifton 1

CS54200: Distributed

Database Systems

Replicated Data

16 January, 2009

Prof. Chris Clifton

Replicated Data

• Thus far, we have assumed that there is only
a single copy of each data item.

• This copy is placed at one of the sites, which
is responsible for concurrency control and
recovery for that data item.

• However, for a data item that is accessed
often from different sites, this could lead to a
significant amount of communication.

• Moreover, when a sites fails, all data residing
on that site becomes unavailable.

2

CS542: Distributed Database Systems 2/16/2009

Prof. Chris Clifton 2

Replication

• To increase availability of data, and to reduce
communication for remote data, data can be
replicated.

• From the user’s point of view, replication (like
distribution, physical and logical organization of
data), should be transparent.

• I.e. the user should not be aware that some (or
all) data items are replicated, and should see no
difference in performance.

• The user can be a programmer or an end user.

3

1 Copy Serializability

• The correctness definition for replicated
databases is therefore that it should behave as
though all transactions are executed in a serial
manner on a single copy database.

• This is the notion of one copy serializability, I.e.
1SR.

• The user must be given a one copy view of the
database.

• How is this achieved?

• Read-only is easy. For writes we must manage
carefully!

4

CS542: Distributed Database Systems 2/16/2009

Prof. Chris Clifton 3

Write-All approach

• This is the obvious first solution:
– Reads can be satisfied by any copy in the system,

– Writes must all modify every copy of the data item
being written.

• This is a very effective solution – it completely
eliminates the problem of multiple copies, and
gives each txn the correct view. HOWEVER

• It is very poor in terms of performance and
progress:
– Failures have a crippling effect on transactions!

5

Write-All-Available

• Allow a txn to proceed even though
failures make it impossible to write all
copies of the data.

• Allow the txn to simply write to every site
that is available. Those that are down can
be ignored.

• Thus some copies of the data may be out
of sync, I.e. may not contain the latest
updates.

6

CS542: Distributed Database Systems 2/16/2009

Prof. Chris Clifton 4

Example

• Consider the following execution. Note that multiple
copies are marked using the upper case subscripts.

w0[xA] w0[xB] w0[yC] c0 r1[yC] w1[xA] c1 r2[xB] w2[yC] c2

• T2 reads copy xB from T0, even though it should
have read from T1.

• Thus the above history is not equivalent to T0T1T2.

• Is it equivalent to some other serial one-copy
history?

• NO! w0[yC] < r1[yC] < w2[yC], there is no other
equivalent serial execution.

• This is interesting, because the execution actually
seems to be a serial execution of the transactions!!!

7

Example (contd.)

• So what has gone wrong?
• The problem is that the write by T1 into x, did not

update all copies of x – xB in particular.
• This could only mean that site B must have been

down when T1 wrote x, and must have recovered
before T2 read x.

• I.e. the failures must have been as such:
w0[xA] w0[xB] w0[yC] c0 r1[yC] failB w1[xA] c1 RecoverB

r2[xB] w2[yC] c2

• Thus the problem is that T2 read a copy at a site that
had failed and upon recovery did not re-sync with
the other sites! Fixing this is still not enough!!

8

CS542: Distributed Database Systems 2/16/2009

Prof. Chris Clifton 5

CS54200: Distributed

Database Systems

Replicated Data

18 January, 2009

Prof. Chris Clifton

Assumptions

• Again, we will assume the same model for the
database.

• The TM now maps all reads onto a read of some
copy, and all writes onto a write on all (available)
copies. It uses directories of copies to determine
where copies are stored.

• Failures are assumed to be fail stop.

• We begin by ignoring communication failures.

• Thus a copy xA at a site A is available to site B if
A correctly executes each read/write of xA from
site B, and B receives the acknowledgement.

10

CS542: Distributed Database Systems 2/16/2009

Prof. Chris Clifton 6

Assumptions.

• Therefore site failures are detectable.

• The timing of updating multiple copies can vary:
– Immediate: as soon as the write is received.

– Deffered: could delay the updating of copies. Update
copies only upon commitment or abortion. Intentions
lists can be piggybacked with VOTE_REQ msgs.

• Delayed updating results in
– Fewer messages

– Cheaper aborts

– Delayed commitment

– Delayed detection of conflicting operations. Can be
solved by using a primary copy approach.

11

Replicated Data History.

• Let h() be a function that maps

– rii[x] ri[xA] for some copy xA of x.

– wi[x] wi[xA1], …, wi[xAm], for some copies of

x

– ci ci

– ai ai

12

CS542: Distributed Database Systems 2/16/2009

Prof. Chris Clifton 7

Replicated Data History

• A complete replicated data (RD) history H
over T={T0, …, Tn} is a partial order with
ordering relation < where:
– H=h(Ui=0..n Ti) for some translation function h;

– For each Ti and all operations pi,qi in Ti, if pi<qi,
then every operation in h(pi) is related by < to
every operation in h(qi).

– For every rj[xA] there is at least one wi[xA] < rj[xA]

– All pairs of conflicting operations are related by <,
where two operations conflict if they operate on
the same copy and at least one is a write; and

– If wi[x] < ri[x] and h(ri[x])= ri[xA] then wi[xA] must be
in h(wi[x]).

13

Example

14

Given txns {T0,T1, T2, T3}:

T0 =

w0 [x]

w0 [y]

c0
w2 [x] T2 = r2 [x] c2w2 [y]

T3 =

r3 [x]

c3
r3 [y] r1 [x] T1 = w1 [x] c1

w0 [xB]

w0 [yC] c0 w2 [xB] r2 [xB]
c2

w2 [yC]

r3 [xA]

c3

r3 [yD]

r1 [xB]
w1 [xA]

c1

The following is an example of an RD history:

w0 [xA]

w0 [yD] w2 [yD]

w1 [xB]

CS542: Distributed Database Systems 2/16/2009

Prof. Chris Clifton 8

Reads-From Relationship

• Let H be an RD history.

• Txn Tj reads-x-from Ti in H if for some copy xA Tj

reads-xA-from Ti , that is, if wi[xA] < rj[xA] and
no wk[xA] (k <> i) falls between these
operations.

• Since reads-from are unique on copies,
and a txn reads only one copy, then reads-
from relationships on data items are
unique too.

15

Serialization Graph

• Consider only complete histories with committed
transactions only.

• I.e. we assume recoverable execution.

• What does that mean for replicated data?

• An RD history H, is recoverable if whenever Ti

reads (any copy) from Tj in H and ci is in H, then
cj is in H and cj < ci.

• The Serialization graph is generated as before,
except that conflicting operations are now
defined on copies rather than data items.

16

CS542: Distributed Database Systems 2/16/2009

Prof. Chris Clifton 9

Serialization Graph

• Let H be an RD history involving transaction Ti. If
SG(H) is acyclic and for some x, wi[x] <i ri[x],
then Ti reads-x-from Ti in H.

• Proof:
– From conditions (2) and (5) on RD histories, wi[x] <i

ri[x] implies that for some copy xA of x, wi[xA] < ri[xA].

– Suppose, Ti didn’t read x from Ti in H. Then there
must exist some wk[xA] (k<>i) in H such that wi[xA] <
wk[xA] < ri[xA].

– But then SG(H) is acyclic.

17

Serializability

• Acyclicity of the serialization graph does NOT
guarantee serializability for RD histories.

• A history is serializable if it is equivalent to a 1C
history.

• The same order for conflicting operations does
not work since the conflicting operation in the
RD history and the 1C history are not the same.

• View equivalence is more natural for RD
histories since the reads-from-relationships and
final writes behave similarly in both types of
histories.

18

CS542: Distributed Database Systems 2/16/2009

Prof. Chris Clifton 10

RD history equivalence

• Given an RD history H, define wi[xA] to be a
final write for xA in H if ai is not in H and for all
wj[xA] in H (j <>i), either aj is in H, or wj[xA] <
wi[xA].

• Two RD histories are equivalent if they are
view equivalent, that is, they have the same
reads-from relationships and final writes.

19

RD history equivalence

• An RD history H over T is equivalent to a 1C
history H1C over T if

1. H and H1C have the same reads-from
relationships on data items (i.e., Tj reads-x-
from Ti in H iff the same holds in H1C), and

2. For each final write wi[x] in H1C , wi[xA] is a
final write in H for some copy xAof x.

An RD history is one-copy serializable (1SR) if it is
equivalent to a serial 1C history.

20

CS542: Distributed Database Systems 2/16/2009

Prof. Chris Clifton 11

Examples

• Is 1SR, it is equivalent to T0 T2 T1 T3.

• But,
w0[xA] w0[xB] w0[yC] c0 r1[yC] w1[xA] c1 r2[xB] w2[yC] c2 is
not.

• However, it is a serial history!!

• Thus not every serial RD history is 1SR.

21

w0 [xB]

w0 [yC] c0 w2 [xB] r2 [xB]
c2

w2 [yC]

r3 [xA]

c3

r3 [yD]

r1 [xB]
w1 [xA]

c1

w0 [xA]

w0 [yD] w2 [yD]

w1 [xB]

Final Writes
• Let H be an RD history over T, with acyclic

SG(H). Let H1C be a serial 1C history over T
such that the order of transactions in H1C is
consistent with SG(H). If wi[x] is a final write for
x in H1C , then every write, wi[xA], by Ti into
some copy xA of x is a final write for xA in
H.

• Proof:
– Suppose wi[x] is a final write for x in H1C. Let wi[xA] be

any write into x by Ti in H. If wi[xA] is not a final write,
then there is some wj[xA] (j <> i) such that aj is not in
H and wi[xA] < wj[xA].

– Thus Ti Tj is in SG(H), so Ti precedes Tj in H1C.

– aj is not in H1c and wi[x] < wj[x] in H1C ,
contradicting the choice of wi[x] as a final write.

22

CS542: Distributed Database Systems 2/16/2009

Prof. Chris Clifton 12

Serializability

• Thus we can ignore final writes – they

must be the same.

• Theorem: Let H be an RD history. If H has

the same reads-from relationships as a

serial 1C history H1C, where the order of

transactions in H1C is consistent with

SG(H), then H is 1SR.

23

CS54200: Distributed

Database Systems

Replicated Data

20 January, 2009

Prof. Sunil Prabhakar

CS542: Distributed Database Systems 2/16/2009

Prof. Chris Clifton 13

Serializability

• Thus we can ignore final writes – they

must be the same.

• Theorem: Let H be an RD history. If H has

the same reads-from relationships as a

serial 1C history H1C, where the order of

transactions in H1C is consistent with

SG(H), then H is 1SR.

25

Graphs for 1SR histories

• How can we modify the serialization graphs to

identify exactly the set of 1SR histories?

• The problem arises from the failure and recovery

of sites:

– A failed site will not be updated

– Upon recovery it has inconsistent data.

• How can we capture the effects of these failures

and recoveries in the serialization graph?

26

CS542: Distributed Database Systems 2/16/2009

Prof. Chris Clifton 14

Example

27

T0 =

w0 [x]

w0 [y]

c0
r2 [y] T2 = w2 [x] c2

r1 [x] T1 = w1 [y] c1

w0 [xB]

w0 [yC] c0

w2 [xB] r2 [yD] c2

The following RD history can occur with 2PL on copies:

w0 [xA]

w0 [yD] xA ↓

w1 [yC] r1 [xA] c1yD ↓

This is not a 1SR history! But SG is acyclic: T0

T2

T1

The problem

• In the example there were no recoveries, thus by
ensuring that a recovering site synchronizes
before it is accessed, we would still have non-
1SR histories!

• We are failing to capture the conflict at the item
level by considering only conflicts at the copy
level.

• Note that two conflicting operations must contain
a write which must write all (available) copies.
Without failures the conflict is detected.

28

CS542: Distributed Database Systems 2/16/2009

Prof. Chris Clifton 15

Replicated Data SG

• Try to synchronize two transactions that
access a conflicting item.

• Define: nj precedes nk , i.e., ni << nk, in a
directed graph, if there is a path from ni to nk .

• A replicated data serialization graph (RDSG)
for H is SG(H) with enough edges added such
that for all data items, x:

1. If Ti and Tk write x, then either Ti << Tk or Tk << Ti

2. If Tj reads-x from Ti, Tk writes some copy of x (k <> i,
k <> j), and Ti << Tk, then Tj << Tk.

29

RDSG

• A graph that satisfies condition 1 induces a write
order for H.

• If it satisfies condition 2 it induces a read order
for H.

• Given a history H, the RDSG(H) is not unique.

• The write order ensures that every pair of txns
that write into the same item (even if they don’t
write the same copy).

• Write and read order ensure that every pair of
txns that read and write the same item.

30

CS542: Distributed Database Systems 2/16/2009

Prof. Chris Clifton 16

Example.

• The example enforces a write order.

• However it does not enforce a read order:
– Since T1 reads-x-from T0, T2 writes x, and T0 T2,

we add T1 T2 to RDSG(H);

– Since T2 reads-y-from T0, T1 writes y, and T0 T1, we
add T2 T1 to the RDSG(H).

• Now RDSG(H) has a cycle, as required.

31

T0

T2

T1

1SR

• Theorem: Let H be an RD history. If H has an
acyclic RDSG, then H is 1SR.

• Proof:
– Let Hs=Ti1, …Tin be a serial 1C history where Ti1, …,

Tin is a topological sort of RDSG(H).

– Since RDSG(H) contains SG(H), H is 1SR if H and Hs

have the same reads-from relationships.

– Assume that Tj reads-x-from Ti in H. Suppose, by way
of contradiction, that Tj reads-x-from Tk in Hs.

– If k=j, then Tj must read-x-from Tk in H too since
SG(H) is acyclic k <>j.

32

CS542: Distributed Database Systems 2/16/2009

Prof. Chris Clifton 17

Proof (cont)

– Since Tj reads-x-from Ti in H, Ti Tj is in RDSG(H),
so Ti precedes Tj in Hs.

– Since the RDSG induces both a read and write order,
we have that either Tk << Ti or Tj << Tk.

– Thus either Tk precedes Ti (which precedes Tj) or Tk

follows Tj in Hs, both contradict that Tj reads-x-from Tk

in Hs.

– Now assume Tj reads-x-from Ti in Hs. By the definition
of RD histories and the reads-from relationship, Tj

reads-x-from some txn in H, say Th. By the above, Tj

reads-x-from Th in Hs. Since the reads-from relation is
unique, Th=Ti.

33

Atomicity of Failures and

Recovery
• Another alternative, is to ensure that all transactions

view failures and recoveries consistently.

• Atomicity of failure:

• T1 sees the failures as: yD↓ T1 xA↓ but

• T2 sees the failures as: xA↓ T2 yD↓

34

w0 [xB]

w0 [yC] c0

w2 [xB] r2 [yD] c2

w0 [xA]

w0 [yD] xA ↓

w1 [yC] r1 [xA] c1yD ↓

CS542: Distributed Database Systems 2/16/2009

Prof. Chris Clifton 18

Atomicity of Failures

• We want all transactions to agree on when the
failures occurred.

• There can be no serial ordering of the failures
and T1, T2 that is consistent with the views of T1

and T2.

• We want to synchronize the recognition of
failures of sites with the read and write
operations that are taking place.

• Certain views of failures may be troublesome
and should not be allowed.

35

Atomicity of Recoveries

• We require that each copy be initialized

before it is read a copies txn can be used

for this.

• After initialization, all txns need to be

informed about the new copy so that they

can write it too.

• This has to be done carefully:

36

CS542: Distributed Database Systems 2/16/2009

Prof. Chris Clifton 19

Example

37

This is an incorrect history. The only equivalent serial history is:

w0 [yC] c0 w2 [xA] r2 [xA] c2w0 [xA] r1 [xA] c1w1[xB] c3r3[xB] r3[yC]w2[yC]

Which is not equivalent to T0T1T2T3. T2 should write x and y and T3

Should read these values.

w0 [yC]

c0 w2 [xA] r2 [xA] c2

w0 [xA]

r1 [xA] c1w1[xB] c3r3[xB]

r3[yC]

w2[yC]

Atomic Recoveries

• The problem is that T2 should have updated the
new copy of x, xB.

• Since T1 knew about xB, and executed before
T2.

• In terms of recoveries,
– The view of T1 is: xB ↑ T1

– The view of T2 is: T2 xB↑

– Since T1 executes before T2, this is inconsistent!!

• We want all txns to have a consistent view of the
recovery of copies.

38

CS542: Distributed Database Systems 2/16/2009

Prof. Chris Clifton 20

Failure-Recovery SG
• Assume that once a copy fails, it never

recovers!!

• Given an RD history H over transactions {T0, …,
Tn}, a failure-recovery serialization graph
(FRSG) for H is a directed graph with nodes N
and edges E where:
– N = {To, …, Tn} U {create[xA] | x is a data item, and xA

is a copy of x} U {fail[xA]}

– E= {Ti Tj | TiTj is in SG(H)} U E1 U E2 U E3,
where E1={create [xA] Ti | Ti reads or writes xA};

E2 = {Ti fail[xA] | Ti reads xA};
E3 = {Ti create[xA] or fail[xA] Ti | Ti writes

some copy of x, but not xA}.

39

Example

• For the following RD history:

• The following is a FRSG:

40

w0 [xB]

w0 [yC] c0

w2 [xB] r2 [yD] c2

w0 [xA]

w0 [yD] xA ↓

w1 [yC] r1 [xA] c1yD ↓

create [xB]

create [yC] T0

create[xA]

create [yD]

T1

T2

fail [xB]

fail [yC]

fail [xA]

fail [yD]

CS542: Distributed Database Systems 2/16/2009

Prof. Chris Clifton 21

1SR

• Theorem: Let H be an RD history. If H has an
acyclic FRSG, then H is 1SR.

• Proof:
– Let Hs=Ti1, …Tin be a serial 1C history where Ti1, …,

Tin is a topological sort of FRSG(H).

– Since FRSG(H) contains SG(H), H is 1SR if H and Hs
have the same reads-from relationships.

– Assume that Tj reads-xA-from Ti in H. Hence Ti Tj is
in FRSG(H), and Ti precedes Tj in Hs.

– Let Tk be any other transaction that writes x.

– If Tk writes xA, then since Tj reads-xA-from Ti, either
Tk Ti or Tj Tk must be in FRSG(H).

41

Proof (contd.)
– If Tk does not write xA, by defn of FRSG, either Tk

create[xA] or fail[xA] Tk.

– In the former case, since create[xA]Ti, Tk precedes
Ti in FRSG(H).

– In the latter case, since Tj fail[xA], Tj precedes Tk in
the FRSG(H).

– Hence, if Tk writes x, either Tk precedes Ti or follows
Tj in the FRSG and Hs.

– Thus Tj reads-x-from Ti in Hs.

– Now, suppose Tj reads-x-from Ti in Hs. By the defn of
RD history, Tj reads-x-from some txn in H, say Th. By
the above, Tj reads-x-from Th in Hs. Since reads from
relationships are unique, Th=Ti.

42

CS542: Distributed Database Systems 2/16/2009

Prof. Chris Clifton 22

Communication Failures

• Thus far, we have ignored communication
failures!

• These can lead to non-serializable
executions if network partitions result from
the failures.

• Handled by the use of quorums – ensuring
that only one of the partitions handles
transactions.

• There are several alternatives for
enforcing quorums.

43

