Text

Principles of Distributed Database Systems
(Second Edition)
Tamer Ozsu and Patrick Valduriez
Prentice Hall, 1999

http://www.cs.ualberta.ca/~database/ddbook.html
Course Objective

• This course will cover fundamental concepts and issues of distributed database systems
 – The course is *not* about the use of a distributed database management system
• Students are expected to have an undergraduate-level familiarity with concepts of database systems and distributed computing

Topics

• Distributed transaction processing and concurrency control
• Distributed reliability
• Distributed query processing
• Parallel database systems
Grading

- Midterm Exam (20%)
- Final Exam (Comprehensive, 25%)
- Written assignments and Lab Projects (45%)
- Evaluation of instructor based on in-class contributions, discussions, and overall performance (10%)

Projects

- Largely to be developed, but it is suggested that you:
 - Be comfortable with Java programming
 - can learn a small subset of CORBA (necessary help will be provided in class).
 - CORBA will be available on the CS machines – you do not need to have it on your end.
- Other requirements will be discussed as they arise
What is a DBMS?

- A very large, integrated collection of data.
- Models real-world enterprise.
 - Entities (e.g., students, courses)
 - Relationships (e.g., Madonna is taking CS564)
- A Database Management System (DBMS) is a software package designed to store and manage databases.
Why Use a DBMS?

- Data independence and efficient access.
- Reduced application development time.
- Data integrity and security.
- Uniform data administration.
- Concurrent access, recovery from crashes.

Why use a Distributed DBMS?

- Data is commonly distributed among several sites in the real world
- Multiple copies of data provide improved reliability and availability.
- Performance can be improved through the use of multiple, distributed hardware devices.
- Centralizing the data may not be acceptable.
What is distributed?

- Processing Logic
- Functions
- Data
- Control

What is a Distributed DBMS?

- A distributed database (DDB) is a collection of multiple, logically interrelated databases distributed over a computer network.
- A distributed DBMS (DDBMS) is the software that manages the DDB and provides an access mechanism that makes this distribution transparent.
What is not a DDBMS?

- A timesharing computer system.
- A loosely or tightly coupled multiprocessor system.
- A database system which resides at one of the nodes of a network of computers – this is a centralized database on a network node.
- Distributed application servers connected to a centralized database.

Centralized DBMS on a network

Site 1

Site 2

Site 3

Site 4

Site 5

Site 6
Distributed DBMS Environment

Implicit Assumptions

- Data stored at a number of sites → each site logically consists of a single processor.
- Processors at different sites are interconnected by a computer network → no multiprocessors (parallel database systems)
- DDBMS is a database, not a collection of files → data is logically related as exhibited in the users’ access patterns (relational data model)
Shared-Memory Architecture

• Examples: symmetric multiprocessors (Sequent, Encore) and some mainframes (IBM3090, Bull’s DPS8)

(C) Oszu & Valduriez

Shared-Disk Architecture

• Examples: DEC’s VAX Cluster, IBM’s IMS/VS Data Sharing

(C) Oszu & Valduriez
Shared-Nothing Architecture

- Examples: Teradata’s DBC, Tandem, Intel’s Paragon, NCR’s 3600 and 3700

Applications

- Manufacturing – especially multi-plant
- Military command and control
- Airlines
- Hotel Chains
- Any organization which has a decentralized organization structure.
Distributed DBMS Promises

- Transparent management of distributed, fragmented, and replicated data.
- Improved reliability/availability through distributed transactions.
- Improved performance.
- Easier and more economical system expansion.

Transparency

- Transparency is the separation of the higher level semantics of a system from the lower level implementation issues.
- Fundamental issue is to provide DATA INDEPENDENCE in the distributed environment.
 - Network (distribution) transparency
 - Replication transparency
 - Fragmentation transparency
Example

EMP: (ENO, ENAME, ETITLE)
ASG: (ENO, PNO, RESP, DUR)
PROJ: (PNO, PNAME, BUDGET, LOC)
PAY: (TITLE, SAL)

SELECT ENAME, SAL
FROM EMP, ASG, PAY
WHERE DUR > 12
AND EMP.ENO=ASG.ENO
AND EMP.TITLE=PAY.TITLE
Potentially Improved Performance

- Proximity of data to its point of use (Requires some support for fragmentation and replication)
- Parallelism in execution
 - Inter-query parallelism
 - Intra-query parallelism

Parallelism Requirements

- Have as much of the data required by each application at the site where the application executes
 - Full replication
- How about updates?
 - Updates to replicated data requires implementation of distributed concurrency control and commit protocols.
Distributed DBMS Issues

- Distributed Database Design
 - How to distribute the database
 - Replicated and non-replicated distribution.
 - Directory management
- Query Processing
 - Convert user transactions to data manipulation instructions
 - Optimization problem
 - Generally it is NP-hard.

(C) Oszu & Valduriez

Distributed DBMS Issues

- Concurrency Control
 - Synchronization of concurrent accesses
 - Consistency and isolation of transactions’ effects
 - Deadlock Management
- Reliability
 - How to make the system resilient to failures
 - Atomicity and durability.

(C) Oszu & Valduriez