Design Problem

- In the general setting:
 - Making decisions about the placement of data and programs across the sites of a computer network as well as possibly designing the network itself.

- In Distributed DBMS, this entails:
 - Placement of the distributed DBMS software; and
 - Placement of the applications that run on the database.
Distributed Design

- **Top-Down**
 - Mostly in designing systems from scratch
 - Mostly in homogeneous systems
- **Bottom-Up**
 - When the constituent databases already exist at a number of sites.

Distributed Design Issues

- Why fragment?
- How to fragment?
- How much to fragment?
- How to test correctness?
- How to allocate?
- Information requirements?
Fragmentation

- What is a reasonable unit of distribution?
 - Relations
 - Views are subsets of relations → locality
 - Extra communication
 - Fragments of relations
 - Concurrent execution of a number of txns on the same relation
 - Views that cannot be defined on a single fragment will require extra processing
 - Semantic data control (especially integrity enforcement) more difficult

Types of fragmentation

- Horizontal
 - Divide tuples based upon certain properties, e.g. ranges.
- Vertical
 - Divide attributes
 - Need to replicate primary key attributes
- Hybrid
 - Alternating application of horizontal and vertical.
Correctness of fragmentation

- Completeness
 - Decomposition of Relation R into $R_1, R_2, ... R_n$ is complete if and only if each data item in R can also be found in some R_i.

- Reconstruction
 - If Relation R is decomposed into $R_1, R_2, ... R_n$, then there should exist some operator, that R can be reconstructed from $R_1, ... R_n$.

- Disjointness
 - If Relation R is decomposed into $R_1, R_2, ... R_n$, and data item d is in R_j, then d should not be in any other fragment R_k, $k <> j$.

Allocation Alternatives

- Non-replicated
 - Partitioned: each fragment resides at only one site

- Replicated
 - Fully replicated
 - Partially replicated

- Rule of thumb:
 - If (read-only queries/update queries) ≥ 1 replication is advantageous
Comparison of alternatives

<table>
<thead>
<tr>
<th></th>
<th>Full Replication</th>
<th>Partial Replication</th>
<th>Partitioning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Query Processing</td>
<td>Easy</td>
<td>Same</td>
<td>Same</td>
</tr>
<tr>
<td>Directory Management</td>
<td>Easy or non-existant</td>
<td>Same</td>
<td>Same</td>
</tr>
<tr>
<td>Concurrency Control</td>
<td>Moderate</td>
<td>Difficult</td>
<td>Easy</td>
</tr>
<tr>
<td>Reliability</td>
<td>Very High</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Reality</td>
<td>Possible Application</td>
<td>Realistic</td>
<td>Possible application</td>
</tr>
</tbody>
</table>

Information Requirements

- Four **categories of information** are required for distributed database design:
 - *Database Information*
 - *Application Information*
 - *Communication network information*
 - *Computer system information*
Horizontal Fragmentation

- There are two types:
 - Primary
 - Based upon values of attributes in the relation being fragmented
 - Derived
 - Based upon values of attributes of some other relation.

Primary Horizontal Fragmentation

- Database Information
 - Relationship
 - SKILL
 - Title, Sal
 - EMP
 - ENO, Ename, Title
 - ASG
 - ENO, PNO, Resp, Dur
 - PROJ
 - PNO, Pname, Budget, Loc
 - Cardinality of each relation, card(R)
PHF - Information Requirements

• Application Information
 – **Simple predicates**: Given \(R[A_1, A_2, \ldots, A_n] \), a simple predicate \(p_j \) is:
 • \(p_j : A_i \theta \) Value
 • where \(\theta \) is a comparison operator, Value is from the domain of attribute \(A_i \)
 – **Minterm predicates**: Given \(R \) and \(P_r = \{p_1, p_2, \ldots, p_m\} \), define \(M = \{m_1, m_2, \ldots, m_z\} \) as
 \[
 M = \{m_i \mid m_i = \wedge_{p_j \in P_r} p_j^* \}, 1 \leq i \leq z
 \]
 where \(p_j^* = p_j \) or \(\text{NOT}(p_j) \).

PHF – Information Requirements

• Examples
 – PNAME = “Maintenance” AND BUDGET <= 200000
 – NOT(PNAME=“Maintenance”) AND BUDGET <= 200000
 – PNAME = “Maintenance” AND NOT(BUDGET <=200000)
 – NOT(PNAME=“Maintenance”) AND NOT(Budget<=200000)
PHF-Information Req.

• Application Information
 – Minterm selectivities: \(sel(m_i) \)
 • The number of tuples of the relation that would be accessed by a user query which is specified according to a given minterm predicate \(m_i \).
 – Access frequencies: \(acc(q_i) \)
 • The frequency with which a query \(q_i \) is accessed
 • Access frequency of a minterm predicate can also be defined.

Primary Horizontal Frag.

• Definition: \(R_j = \sigma_{F_j}(R), 1 \leq j \leq w \)
 – Where \(F_j \) is a selection formula, which is (preferably) a minterm predicate.
• Therefore,
 – A horizontal fragment, \(R_j \) of relation \(R \) consists of all the tuples of \(R \) which satisfy a minterm predicate \(m_j \).
 – Given a minterm of predicates \(M \), there are as many horizontal fragments of relation \(R \) as there are minterm predicates
 – Set of horizontal fragments also referred to as minterm fragments.
PHF - Algorithm

- **GIVEN**: A relation R, the set of simple predicates P_r
- **OUTPUT**: The set of fragments of $R = \{R_1, \ldots, R_w\}$ which obey the fragmentation rules.
- **Preliminaries**:
 - P_r should be complete
 - P_r should be minimal

Completeness of Simple Predicates

- A set of simple predicates P_r is said to be **complete** iff the accesses to the tuples of the minterm fragments defined on P_r requires that two tuples of the same minterm fragment have the same probability of being accessed by the application.
- **Example**:
 - Assume `PROJ[PNO, PNAME, BUDGET, LOC]` has two applications defined on it.
 - Find the budgets of projects at each location. (1)
 - Find projects with budgets less than 200000. (2)
Completeness of Simple Predicates

- According to (1),
 - \(P_r = \{\text{LOC}="\text{Montreal}", \text{LOC}="\text{New York}", \text{LOC}="\text{Paris}\} \)
- Which is not complete with respect to (2).
- Modify
 - \(P_r = \{\text{LOC}="\text{Montreal}", \text{LOC}="\text{New York}", \text{LOC}="\text{Paris}\}, \text{BUDGET} \leq 200000, \text{BUDGET} > 200000 \} \)
- Which is complete.

Minimality of Simple Predicates

- If a predicate influences how fragmentation is performed, (i.e. causes a fragment \(f \) to be further fragmented into, say \(f_i \) and \(f_j \)) then there should be at least one application that accesses \(f_i \) and \(f_j \) differently.
- In other words, the simple predicate should be relevant in determining a fragmentation.
- If all the predicates of a set \(P_r \) are relevant, then \(P_r \) is minimal.
 \[
 \frac{\text{acc}(m_i)}{\text{card}(f_i)} \neq \frac{\text{acc}(m_j)}{\text{card}(f_j)}
 \]
COM-MIN Algorithm

• **Given:** a relation R and a set of simple predicates P_r.
• **Output:** a complete and minimal set of simple predicates P_r' for P_r.

• **Rule 1:** a relation or fragment is partitioned into at least two parts which are accessed differently by at least one application.

PHORizontal Algorithm

• **Makes use of COM-MIN** to perform fragmentation.
• **Input:** a relation R and a set of simple predicates P_r
• **Output:** a set of minterm predicates M according to which R is to be fragmented.

1. $P_r' \leftarrow \text{COM-MIN}(R, P_r)$
2. Determine the set M of minterm predicates
3. Determine the set I of implications among p_i from P_r.
4. Eliminate the contradictory minterms from M
PHF - Example

- Two candidate relations: PAY and PROJ.
- Fragmentation of relation PAY
 - Application: check the salary info and determine raise.
 - Employee records kept at two sites ➔ application run at two sites
 - Simple predicates
 - $p_1 : \text{SAL} \leq 30000$
 - $p_2 : \text{SAL} > 30000$
 - $P_r = \{p_1, p_2\}$ which is complete and minimal $P_r = P_r$
 - Minterm predicates
 - $m_1 : (\text{SAL} \leq 30000)$
 - $m_2 : \text{NOT}(\text{SAL} \leq 30000) = (\text{SAL} > 30000)$

<table>
<thead>
<tr>
<th>TITLE</th>
<th>SAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mech. Eng.</td>
<td>27000</td>
</tr>
<tr>
<td>Programmer</td>
<td>24000</td>
</tr>
<tr>
<td>Elect. Eng.</td>
<td>40000</td>
</tr>
<tr>
<td>Syst. Anal.</td>
<td>34000</td>
</tr>
</tbody>
</table>
Fragmentation of PROJ

- **Applications:**
 - Find the name and budget of projects given their no. – issued at three sites
 - Access project information according to budget
 - One site accesses <=200000 another accesses > 200000

- **Simple Predicates**
 - For application 1:
 - \(p_1 \): LOC = "Montreal"
 - \(p_2 \): LOC = "New York"
 - \(p_3 \): LOC = "Paris"
 - For application 2:
 - \(P_4 \): BUDGET <= 200000
 - \(P_5 \): BUDGET > 200000
 - \(P_r = P_r' = \{ p_1, p_2, p_3, p_4, p_5 \} \)

PHF Example

- **Fragmentation of PROJ contd:**
 - Minterm fragments left after elimination
 - \(m_1 \): (LOC = "Montreal") AND (BUDGET <= 200000)
 - \(m_2 \): (LOC = "Montreal") AND (BUDGET > 200000)
 - \(m_3 \): (LOC = "New York") AND (BUDGET <= 200000)
 - \(m_4 \): (LOC = "New York") AND (BUDGET > 200000)
 - \(m_5 \): (LOC = "Paris") AND (BUDGET <= 200000)
 - \(m_6 \): (LOC = "Paris") AND (BUDGET > 200000)
PHF -- Example

<table>
<thead>
<tr>
<th>PROJ₁</th>
<th>PROJ₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>PNO</td>
<td>PNO</td>
</tr>
<tr>
<td>PNAME</td>
<td>PNAME</td>
</tr>
<tr>
<td>BUDGET</td>
<td>BUDGET</td>
</tr>
<tr>
<td>LOC</td>
<td>LOC</td>
</tr>
<tr>
<td>P1</td>
<td>P2</td>
</tr>
<tr>
<td>Instr.</td>
<td>Database Develop.</td>
</tr>
<tr>
<td>150000</td>
<td>135000</td>
</tr>
<tr>
<td>Montreal</td>
<td>New York</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROJ₄</th>
<th>PROJ₅</th>
</tr>
</thead>
<tbody>
<tr>
<td>PNO</td>
<td>PNO</td>
</tr>
<tr>
<td>PNAME</td>
<td>PNAME</td>
</tr>
<tr>
<td>BUDGET</td>
<td>BUDGET</td>
</tr>
<tr>
<td>LOC</td>
<td>LOC</td>
</tr>
<tr>
<td>P3</td>
<td>P4</td>
</tr>
<tr>
<td>CAD/CA M</td>
<td>Maint.</td>
</tr>
<tr>
<td>250000</td>
<td>310000</td>
</tr>
<tr>
<td>New York</td>
<td>Paris</td>
</tr>
</tbody>
</table>

PHF – Correctness

• **Completeness**
 – Since P_r' is complete and minimal, the selection predicates are complete

• **Reconstruction**
 – If relation R is fragmented into $F_R=\{R_1, R_2, \ldots R_d\}$

• **Disjointness** $R = \bigcup_{\forall R_i \in F_R} R_i$
 – Minterm predicates that form the basis of fragmentation should be mutually exclusive.
Derived Horizontal Fragmentation

- Defined on a member relation of a link according to a selection operation specified on its owner.
 - Each link is an **equijoin**
 - Equijoin can be implemented by means of **semijoins**.
DHF -- Definition

- Given a link L where owner(L) = S and member(L) = R, the derived horizontal fragments of R are defined as

\[R_i = R \bowtie_{F_i} S_i, 1 \leq i \leq w \]

where \(w \) is the maximum number of fragments that will be defined on R and

\[S_i = \sigma_{F_i}(S) \]

where \(F_i \) is the formula according to which the primary horizontal fragment \(S_i \) is defined.

DHF -- Example

- Given link L1 where owner(L1) = SKILL and member(L1) = EMP

\[EMP_1 = EMP \bowtie SKILL_1 \]
\[EMP_2 = EMP \bowtie SKILL_2 \]

where

\[SKILL_1 = \sigma_{SAL\leq30000}(SKILL) \]
\[SKILL_2 = \sigma_{SAL>30000}(SKILL) \]
DHF – Example

<table>
<thead>
<tr>
<th>ENO</th>
<th>ENAME</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>E4</td>
<td>J. Miller</td>
<td>Programmer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ENO</th>
<th>ENAME</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>J. Doe</td>
<td>Elect. Eng.</td>
</tr>
<tr>
<td>E2</td>
<td>M. Smith</td>
<td>Syst. Anal.</td>
</tr>
<tr>
<td>E5</td>
<td>B. Casey</td>
<td>Syst. Anal.</td>
</tr>
<tr>
<td>E8</td>
<td>J. Jones</td>
<td>Syst. Anal.</td>
</tr>
</tbody>
</table>

DHF – Correctness

- **Completeness**
 - Referential Integrity
 - Let R be the member relation of a link whose owner is relation S which is fragmented as $Fs=\{S1, S2, \ldots, Sn\}$. Furthermore, let A be the join attribute between R and S. Then, for each tuple t of R, there should be a tuple t' of S such that $t[A]=t'[A]$

- **Reconstruction**
 - Same as primary HF

- **Disjointness**
 - Simple join graphs between the owner and member fragments
Vertical Fragmentation

• Has been studied within the centralized context
 – Design methodology
 – Physical clustering
• More difficult than horizontal, because more alternatives exist. Two approaches:
 – Grouping
 • Attributes to fragments
 – Splitting
 • relation to fragments

Vertical Fragmentation

• Overlapping Fragments
 – Grouping
• Non-overlapping Fragments
 – Splitting
• We do not consider the replicated key attributes to be overlapping.
• Advantage:
 – Easier to enforce functional dependencies
VF – Information Requirements

- Application Information
 - Attribute affinities
 - A measure that indicates how closely related the attributes are
 - This is obtained from more primitive usage data
 - Attribute usage values
 - Given a set of queries \(Q = \{ q_1, q_2, ..., q_k \} \) that will run on the relation \(R[A_1, A_2, ..., A_n] \),
 - Use \((q_i, A_j) = 1 \) if \(A_j \) is referenced by \(q_i \), 0 otherwise
 - Use \((q_i, ___)\) can be defined accordingly

VF – Definition of use(qi,Aj)

- Consider the following 4 queries for PROJ

<table>
<thead>
<tr>
<th>Query 1</th>
<th>Query 2</th>
<th>Query 3</th>
<th>Query 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>SELECT BUDGET FROM PROJ WHERE PNO=Value</td>
<td>SELECT PNAME, BUDGET FROM PROJ</td>
<td>SELECT PNAME FROM PROJ WHERE LOC=Value</td>
<td>SELECT SUM(BUDGET) FROM PROJ WHERE LOC=Value</td>
</tr>
</tbody>
</table>

- Let \(A_1=PNO, A_2=PNAME, A_3=BUDGET, A_4=LOC \)

\[
\begin{array}{cccc}
A_1 & A_2 & A_3 & A_4 \\
q_1 & 1 & 0 & 1 & 0 \\
q_2 & 0 & 1 & 1 & 0 \\
q_3 & 0 & 1 & 0 & 1 \\
q_4 & 0 & 0 & 1 & 1 \\
\end{array}
\]
VF – Affinity Measure $\text{aff}(A_i, A_j)$

- The attribute affinity measure between two attributes A_i and A_j of a relation R with respect to the set of applications $Q=\{q_1, q_2, \ldots, q_k\}$ is defined as follows:

$$\text{aff}(A_i, A_j) = \sum_{\text{all queries that access } A_i \text{ and } A_j} (\text{query access})$$

$$\text{query access} = \sum_{\text{allsites}} \text{access freq of a query} \times \frac{\text{access}}{\text{execution}}$$

VF – Clustering Algorithm

- Take the attribute affinity matrix AA and reorganize the attribute orders to form clusters where the attributes in each cluster have high affinity for each other.
- Bond Energy Algorithm (BEA) has been used for clustering of attributes. This algorithm finds clustering such that the global affinity measure

$$AM = \sum_i \sum_j (\text{affinity of } A_i \text{ and } A_j \text{ with their neighbors})$$

is maximized.
Bond Energy Algorithm

- **Input**: the AA matrix
- **Output**: the clustered affinity matrix CA (a perturbation of AA)

1. **Initialization**: Place and fix one of the columns of AA in CA
2. **Iteration**: Place the remaining n-1 columns in the remaining I+1 positions in the CA matrix. For each column, chose the placement that makes the most contribution to the global affinity measure.
3. **Row Order**: Order the rows according to the columns.

VF Algorithm

- How can you divide a set of clustered attributes \{A_1, A_2, \ldots, A_n\} into two (or more) sets \{A_1, \ldots, A_i\} and \{A_{i+1}, \ldots, A_n\} such that there are no (or minimal) applications that access both (or more than one) of the sets?
VF -- Algorithm

• Define
 – TQ – set of applications that access only TA
 – BQ – set of applications that access only BA
 – CQ – set of applications that access both
• And
 – CTQ – total number of accesses to attributes by applications that access only TA
 – CBQ – total number of accesses to attributes by applications that access only TB
 – COQ – total number of accesses to attributes by applications that access both TA and TB
• Then find the point along the diagonal that maximizes $CTQ \times CBQ - COQ^2$

VF – Algorithms

• Two problems:
 1. Cluster forming in the middle of CA
 1. Shift a row up, and a column left and apply the algorithm to find the “best” partitioning point
 2. Do this for all possible shifts
 3. Cost $O(m^2)$
 2. More than two clusters
 1. M-way partitioning
 2. Try 1, 2, … m-1 split points along the diagonal and try to find the best point for each of these
 3. Cost $O(2^m)$
VF -- Correctness

- A relation R, defined over attribute set A, and key K, generates the vertical partitioning $F_R = \{R_1, R_2, \ldots, R_r\}$.
- Completeness: $A = \bigcup A_{R_i}$
- Reconstruction: $R = \bigotimes_K R_i$, $\forall R_i \in F_R$
- Disjointness:
 - TIDs are not considered to be overlapping since they are maintained by the system
 - Duplicated keys are not considered to be overlapping

Hybrid Fragmentation

![Diagram of Hybrid Fragmentation]
Fragment Allocation

- **Problem:**
 - Given
 - \{F_1, F_2, \ldots, F_n\} Fragments
 - \{S_1, S_2, \ldots, S_m\} Sites
 - \{Q_1, Q_2, \ldots, Q_q\} Applications
 - Find the “optimal” distribution of F to S.

- **Optimality**
 - Minimal cost
 - Communication + Storage + processing
 - Cost is usually in terms of time
 - Performance
 - Response time and/or throughput
 - Constraints
 - Per site constraints (storage and processing)

Information Requirements

- **Database information**
 - Selectivity of fragments
 - Size of fragments
- **Application information**
 - Access types and numbers
 - Access localities
- **Communication information**
 - Unit cost of storing data at a site
 - Unit cost of processing at a site
- **Computer system information**
 - Bandwidth
 - Latency
 - Communication overhead
Allocation

- File Allocation (FAP) vs. Database Allocation (DAP)
 - Fragments are not individual files
 - Relationships have to be maintained
 - Access to database is more complicated
 - Remote file access model is not applicable
 - Relationship between allocation and query processing
 - Cost of integrity enforcement should be considered
 - Cost of concurrency control should be considered

Allocation – information requirements

- Database information
 - Selectivity of fragments, size of a fragment
- Application information
 - Number of read (update) accesses of a query to a fragment
 - A matrix of which queries update which fragments
 - A similar matrix for retrievals
 - Originating site of each query
- Site information
 - Unit cost of storing (processing) data
- Network information
 - Communication cost/frame between two sites
 - Frame size
Allocation Model

- **General Form**
 - Min(Total Cost) subject to
 - Response time constraint
 - Storage constraint
 - Processing constraint

- **Decision Variable**
 \[
 x_{ij} = \begin{cases}
 1 & \text{if Fragment } F_i \text{ is stored at Site } S_j \\
 0 & \text{otherwise}
 \end{cases}
 \]

- **Total Cost**
 \[
 \sum_{\text{all queries}} \text{processing cost} + \sum_{\text{all sites}} \sum_{\text{all fragments}} \text{cost of storing a fragment at a site}
 \]

- **Storage Cost** (of Fragment F_j at site S_k)
 \((\text{unit cost of storage at } S_k) \times \text{size of } F_j \times x_{jk}\)

- **Query Processing Cost** (for one query)
 \((\text{processing component}) + (\text{transmission component})\)
Allocation Model

• Query Processing Cost
 – Processing component:
 access cost + integrity enforcement cost + concurrency control cost
 – Access cost:
 \[\sum_{\text{all sites}} \sum_{\text{all fragments}} \left(\text{no. of update accesses} + \text{no. of read accesses} \right) \times x_{ij} \]
 *local processing cost at a site
 – Other costs can be similarly calculated.

Allocation Model

• Query Processing Cost
 – Transmission component:
 cost of processing updates + cost of processing retrievals
 – Cost of updates:
 \[\sum_{\text{all sites}} \sum_{\text{all fragments}} \text{(update message cost)} + \sum_{\text{all sites}} \sum_{\text{all fragments}} \text{(acknowledgement cost)} \]
 – Retrieval cost:
 \[\sum_{\text{all fragments}} \min_{\text{all sites}} \left(\text{cost of retrieval command} + \text{cost of sending back the result} \right) \]
Allocation Model

• Constraints:
 – Response Time: execution time of query <= max allowable response time for that query
 – Storage constraint (for a site):
 \[\sum_{\text{all fragments}} (\text{storage requirements of a fragment at that site}) \leq \text{storage capacity at site} \]
 – Processing constraint (for a site):
 \[\sum_{\text{all queries}} (\text{processing load of a query at that site}) \leq \text{processing capacity at site} \]

Allocation Model

• Solution Methods:
 – FAP is NP-Complete
 – DAP also NP-Complete
• Heuristic based upon
 – Single commodity warehouse location (for FAP)
 – Knapsack problem
 – Branch and bound techniques
 – Network flow
Allocation Model

• Attempts to reduce the solution space
 – Assume all candidate partitionings known; select the “best” one
 – Ignore replication at first
 – Sliding window on fragments.