
CS542: Distributed Database Systems 1/16/2009

Prof. Chris Clifton 1

What’s

New?
• Query Compiler?

– DDL Compiler?

• Transaction
Manager?

• Execution Engine?

• Logging/Recovery?

• Concurrency
Control?

• Index/File/Record?

• Buffer Manager?

• Storage Manager?

CS542: Distributed Database

Concurrency Control

16 January 2009

Chris Clifton

3

CS542: Distributed Database Systems 1/16/2009

Prof. Chris Clifton 2

Concurrency Control

• To improve performance, we want to
allow (maximize) concurrent access to
data

• If there are no updates, there is no
problem,

• However, in the presence of updates
there are potential problems:

– Lost Update

– Inconsistent Retrieval

4

Examples of Incorrect

Behavior

5

TRANSFER

Read Acc1

Read Acc2

Adjust balances

Write Acc1

Write Acc2

WITHDRAW

Read Acc1

Adjust Balance

Write Acc1

CS542: Distributed Database Systems 1/16/2009

Prof. Chris Clifton 3

Examples of Incorrect

Behavior

6

TRANSFER

Read Acc1

Read Acc2

Adjust balances

Write Acc1

Write Acc2

WITHDRAW

Read Acc1

Adjust Balance

Write Acc1

($100)

($100)

($100)

($150)

($50)

($80)

Initially:

Both accounts have

$100

Finally: Acc1 has $150,

Acc2 has $50 – FREE MONEY!!!

LOST UPDATE!!

Examples of Incorrect

Behavior

7

TRANSFER

Read Acc1

Write Acc1

Read Acc2

Write Acc2

CHECK BALANCE

Read Acc1

Read Acc2

CS542: Distributed Database Systems 1/16/2009

Prof. Chris Clifton 4

Examples of Incorrect

Behavior

8

TRANSFER

Read Acc1

Write Acc1

Read Acc2

Write Acc2

CHECK BALANCE

Read Acc1

Read Acc2

($100)

($150)

($150)

($100)

($50)

($100)

Initially:

Both accounts have

$100

Check Balance Finds $250 in all

Accounts: CREATING MONEY!!

INCONSISTENT

RETRIEVAL!!

How to Allow CORRECT

interleaving?

• It is difficult to judge each interleaving to

decide whether something has gone

wrong for the given application (depends

too heavily on application semantics).

• SOLUTION: Transaction Model.

– The DBMS guarantees the correct

interleaving of transactions.

9

CS542: Distributed Database Systems 1/16/2009

Prof. Chris Clifton 5

TRANSACTIONS

• A Transaction is an execution of a
program that accesses a shared database.
The goal of concurrency control and
recovery is to ensure that transactions
execute Atomically:

– Each txn accesses shared data without
interfering with other transaction, and

– If a txn terminates normally, then all of its
effects are made permanent; otherwise it has
no effect at all.

10

Database Systems

• A database consists of a set of named
data items.

• The database state is the set of values of
these data items.

• The DBMS supports operations (e.g., read
and write of data items).

• DBMS executes txns atomically, I.e.
behaves as though it were sequential
(may or may not be).

11

CS542: Distributed Database Systems 1/16/2009

Prof. Chris Clifton 6

Database Systems (contd.)

• The DBMS also supports transaction operations:
Start, Commit, Abort.

• Transactions must end with a Commit or Abort.
(the Start may be implicit).

• Assume that the DBMS begins in a consistent
state.

• The correct atomic, execution of a transaction
takes the DBMS from one consistent state to
another. (May be inconsistent during the txn
execution).

12

Transaction

13

Procedure TRANSFER begin

Start;

input(from, to, amount0;

temp Read(Accounts[from]);

if temp < amount then begin

output(“insufficient funds”)

Abort;

end

else begin

Write(Accounts[from], temp-amount);

temp Read(Accounts[to]);

Write(Accounts[to], temp+amount);

Commit;

output(“Transfer Completed”);

end;

return;

end

CS542: Distributed Database Systems 1/16/2009

Prof. Chris Clifton 7

Transactions

• Active txn – one that has not yet committed or
aborted.

• Abort – may be from application semantics, or
system imposed.

• Commit: effects must persist forever.
– Also important for read-only transactions!

• Abort: Completely undo any effect.

• Messages: txns communicate only via data
stored in the DBMS!!

14

ACID properties

• Atomicity: All or nothing

• Consistency: defined by the execution of

the txn

• Isolation: txn should see a consistent state

at all times

• Durability: permanence of committed txn

actions.

15

CS542: Distributed Database Systems 1/16/2009

Prof. Chris Clifton 8

Recoverability

• Ensure: ALL the effects of committed txns
and NONE of aborted txns

• Easy if there are no aborts.

• Aborting requires: undoing the effects of
the txn: I.e. updates and effects on others.

• Cascading aborts: aborting a txn implies
that all those that read the data it wrote
should also be aborted.

16

17

Recoverability

• Committing a txn means it can NEVER be
aborted.

• Thus we shouldn’t commit if we could
have a cascading abort!

• A Recoverable execution is one which
allows commits only when all txns that
wrote data items read by the committing
txn have committed.

CS542: Distributed Database Systems 1/16/2009

Prof. Chris Clifton 9

Recoverability

• A txn Tj reads data item x from txn Ti, if

– Tj reads x after Ti has written to it;

– Ti does not abort before Tj reads x; and

– Every txn (if any) that writes x between the time Ti

writes it and Tj reads it, abort before Tj reads it.

• An execution is recoverable if, for every txn T

that commits, T’s commit follows the commit of

every txn from which T read.

18

Avoid Cascading Aborts

• Recoverability may require cascading
aborts.

• These are expensive operations – should
be avoided.

• A DBMS Avoids Cascading Aborts (ACA)
if it does not allow a txn to read a data
item that has been modified by an
uncommitted transaction.

19

CS542: Distributed Database Systems 1/16/2009

Prof. Chris Clifton 10

Before Images

• Undo is typically done using before-
images, e.g.

Write1(x,1)

Write1(y,3)

Write2(y,1)

Commit1
Read2(x)

Abort2

20

Strict Execution

• However, if we have:

Write1(x,2); Write2(x,3); Abort1; Abort2;

• To avoid the corruption of before images,

we enforce Strict executions:

• A DBMS that does not read or overwrite a

data item that has been modified by an

uncommitted transaction is STRICT.

21

CS542: Distributed Database Systems 1/16/2009

Prof. Chris Clifton 11

SERIALIZABILITY

• By the definition of transactions, the
sequential (SERIAL) execution of
transactions is correct.

• A SERIAL execution is one with no
interleaving of transactions.

• How can we interleave txns while ensuring
that the result (effect) is the same as some
acceptable sequential execution – such an
execution is called SERIALIZABLE.

22

DBMS Model

23

Transaction

Manager

Scheduler

Recovery

Manager

Cache

Manager

Database

Data

Manager

Transactions

CS542: Distributed Database Systems 1/16/2009

Prof. Chris Clifton 12

DBMS Model

• Abstract Model.

• Centralized system (For NOW).

• Cache Manager: manages the cache and

stable storage. Fetch, Flush.

• Recovery Manager: ensures atomicity and

durability. Handles system failures, media

failures – restores after crash.

24

Scheduler

• Ensures concurrency control.

• By controlling the order of execution of
operations submitted to it. Ensure that
ordering is serializable and recoverable.

• Execute, Reject, Delay operations.

• Sees only operations:

– type of operation,

– data object being operated upon,

– ID of the executing transaction.

25

CS542: Distributed Database Systems 1/16/2009

Prof. Chris Clifton 13

DBMS Model

• The Transaction Manager assigns txn Ids,

passes operation onto scheduler.

• There is no guarantee of order of

execution of operations at any level: must

be ensured through checks at txn

submission, scheduler, and the recovery

manager.

26

