
CS542: Distributed Database Systems 1/23/2009

Prof. Chris Clifton 1

CS54200: Distributed

Database Systems

Two-Phase Locking

January 23, 2009

Prof. Chris Clifton

How do we ensure

Serializability
• This is the task of the scheduler.

• There are two basic techniques:
– Locking

– Time-Stamp Ordering

• Locking enforces serializability by ensuring
that no two txns access conflicting objects in
an “incorrect” order.

• Time-Stamp ordering assigns a fixed order
for every pair of txns and ensures that
conflicting accesses are made in that order.

12

CS542: Distributed Database Systems 1/23/2009

Prof. Chris Clifton 2

Two Phase Locking

• Basic 2PL

• Each object has associated with it a lock.

• An appropriate lock must be acquired before a
txn accesses the object.

• There are 2 basic types of locks: shared (read)
and exclusive (write).

• Two locks, pli[x] and qlj[y], conflict if x=y and i<>j;
and p and q are conflicting operations.

• 2PL is defined by 3 rules

13

2 Phase Locking

1. To grant a lock, the scheduler checks if a

conflicting lock has already been assigned, if

so, delay, otherwise set lock and grant it.

2. A lock cannot be released at least until the DM

acknowledges that the operation has been

performed.

3. Once the scheduler releases a lock for a txn, it

may not subsequently acquire any more locks

(on any item) for that txn.

14

CS542: Distributed Database Systems 1/23/2009

Prof. Chris Clifton 3

Example

• T1 = r1[x] w1[y] c1

• T2 = w2[x] w2[y] c2

• rl1[x] r1[x] ru1[x] wl2[x] w2[x] wl2[y] w2[y]

wu2[x] wu2[y] c2 wl1[y] w1[y] wu1[y] c1

• This is not SR (r1[x]<w2[x] and w2[y] <

w1[y]).

• This is prevented by rule 3.

15

Deadlocks

• 2PL suffers from the problem of deadlocks.

• rl1[x] r1[x] wl2[y] w2[y] followed by TM receiving

w2[x] and w1[y].

• Also due to lock conversion: changing a read

lock to a write lock – can’t release the lock.

– Why?

– What if two txns try to convert at the same time?

16

CS542: Distributed Database Systems 1/23/2009

Prof. Chris Clifton 4

2PL ensures Serializability

• Add the lock and unlock operations to the notion

of histories.

• Proposition 1: Let H be a history produced by a

2PL scheduler. If oi[x] is in C(H), then oli[x] and

oui[x] are in C(H), and oli[x] < oi[x] < oui[x].

• Proposition 2: Let H be a history produced by a

2PL scheduler. If pi[x] and qj[x] (i<>j) are

conflicting operation in C(H), then either pui[x] <

qlj[x] or quj[x] < pli[x].

17

Correctness of 2PL

• Proposition 3: Let H be a complete history
produced by a 2PL scheduler. If pi[x] and
qi[y] are in C(H), then pli[x] < qui[y].

• Lemma 4: Let H be a 2PL history, and
suppose Ti Tj is in SG(H). Then, for
some data item x, and some conflicting
operations pi[x] and qj[x] in H, pui[x] < qlj[x]

• Proof: trivial.

18

CS542: Distributed Database Systems 1/23/2009

Prof. Chris Clifton 5

Correctness of 2PL

• Lemma 5: Let H be a 2PL history, and let T1 T2

… Tn be a path in SG(H), where n > 1. Then, for
some data items x and y, and some operations p1[x]
and qn[y] in H, pu1[x] < qln[y].

• Proof: by induction on n.
• Base Case, n=2. Follows from Lemma 4.
• Induction Step. Assume true for n=k for k>=2. By

the induction hypothesis, there exist data items x
and z, and operations pl[x] and ok[z] in H, such that
pu1[x] < olk[z].

• By Tk Tk+1 and Lemma 4, there exists y and
conflicting operations o’k[y] and qk+1[y] in H, such
that o’uk[y] < qlk+1[y].

19

Correctness of 2PL

• By proposition 3, olk[z] < o’uk[y]. Thus by
transitivity, pu1[x] < qlk+1[y].

• Theorem: Every 2PL history H is serializable.

• Proof: Suppose, by contradiction, that SG(H)
contains a cycle T1 T2… Tn, where n> 1.

• By Lemma 5, for some data items x and y, and
some operations p1[x] and q1[y] in H, pu1[x] <
ql1[y].

• This contradicts Prop 3. Thus SG(H) is acyclic.

20

CS542: Distributed Database Systems 1/23/2009

Prof. Chris Clifton 6

Deadlocks

• 2PL suffers from deadlocks

• Timeouts

• Waits-for-graph

– nodes are transactions

– add edge Ti Tj whenever Ti waits for a lock held by

Tj

– remove an edge when last blocking lock is released

– a cycle implies a deadlock

– all cycles need to be broken by choosing a victim txn

21

Types of Schedulers

• Schedulers can delay, reject, or immediately
schedule the operations.

• Aggressive schedulers try to avoid delaying
operations -- may have to abort later

• Conservative schedulers try to avoid aborting
by delaying and reordering operations

• Trade-off: depends upon degree of conflict
between transactions.

• Conservative schedulers try to anticipate
future access of transactions.

22

CS542: Distributed Database Systems 1/23/2009

Prof. Chris Clifton 7

Conservative 2PL

• 2PL aborts txns only because of deadlocks.

• Conservative 2PL eliminates deadlocks.

• Each txn predeclares all its operations.

• The scheduler sets all locks of a txn in one step,
if it cannot (because there is some conflicting
lock), the txn is put in a queue.

• When a lock is released the scheduler checks to
see which txns can now acquire all their locks.

• Predeclaring may be difficult or even impossible.

23

Strict 2PL

• A transaction’s locks are all released
together after the DM acknowledges the
processing of the transaction’s commit or
abort.

• Why?

– To ensure a strict execution

– Earliest time at which the scheduler is certain
that no more locks will be required by the
transaction. Why?

24

CS542: Distributed Database Systems 1/23/2009

Prof. Chris Clifton 8

Timing of Lock Release

• Let H be a history produced by a strict
2PL scheduler.

• Suppose wi[x] < oj[x].

• By rule 1 of 2PL we must have

1. wli[x] < wi[x] < wui[x], and

2. olj[x] < oj[x] < ouj[x]

• Because wli[x] and olj[x] conflict we must
have either wui[x] < olj[x] or ouj[x] < wli[x]
(Prop. 2)

25

Timing of Lock Release

• ouj[x] < wli[x] with above two is impossible,

so we must have: 3. wui[x] < olj[x].

• Since H is produced by a strict 2PL

scheduler, we must have: 4. Either ai<wui[x]

or ci < wui[x]

• From 2, 3, & 4: either ai < oj[x] or ci < oj[x],

proving that H is strict.

• Note that read locks can be released upon

termination.

26

CS542: Distributed Database Systems 1/23/2009

Prof. Chris Clifton 9

Phantoms

• Consider a banking application with two files:
Accounts (number, location, balance); and Assets
(branch, total).

• Two txns: T1 – checks total for some location. T2–
add an account and update total.

• Consider: Accounts at Lafayette;
– R1(Accounts[222],Accounts[213],Accounts[444])

– Insert2(Accounts[111],Lafayette,100)

– R2(Assets[Lafayette]) (reads old value)

– W2(Assets[Lafayette])

– R1(Assets[Lafayette]) – INCONSISTENT!

27

Phantoms

• This is clearly not an SR execution, however according
to 2PL this is acceptable!

• The problem is that T1 doesn’t just touch the accounts
222, 213, 444 – but rather ALL accounts in the Accounts
table.

• Account 111 appears in between T1 – like a phantom.

• This is a problem of dynamic databases – where data
items are created and deleted.

• How can 2PL handle this?

• The two txns interfere with each other because they both
access control information.

• We require 2PL to appropriately lock such information.

• We can improve by performing index locking.

28

CS542: Distributed Database Systems 1/23/2009

Prof. Chris Clifton 10

Multigranularity Locking

• Granularity of data is unimportant for
correctness of locking, but not for performance.

• Finer granularity allows greater concurrency.

• Coarser granularity reduces locking overhead.

• We can increase flexibility by allowing multiple
granularity locks.

• This is complex in general, but if we follow a
simple hierarchical structure for the locks.
– E.g. Table Page Record

29

Multigranularity Locking

• E.g. long transactions could lock a page,
whereas short transactions could lock
records.

• Must ensure that conflicts are
appropriately captured: (e.g. a page
cannot be read locked if any of its records
is write locked)

• How can such tests be efficiently made
(e.g. by not having the transaction check
for locks on every record within a page)?

30

CS542: Distributed Database Systems 1/23/2009

Prof. Chris Clifton 11

Multigranularity Locking

• Represent the relationships as a lock type graph.
– Database Area File Record

• A set of data items that follow this structure is called a
lock instance graph (assume that it is a tree).

• A lock on a coarse granule x explicitly locks x, and
implicitly locks all of x’s proper descendants.

• Each type of lock also has an associated intention lock
type. Before locking x, the scheduler ensures that there
are no locks on its ancestors that implicitly conflict.

• This is done by setting intention locks on the ancestors.

• Compatibility of locks and intention locks is important.

31

Example

• Before rl[x], set ir locks on x’s database, area,

and file ancestors (in that order).

• irl[y] and wl[y] conflict for any object y.

• Thus we are sure that if we get rl[x], then no txn

can have a write lock on a parent of x.

• A special lock type: riw is defined to represent

txns that read a higher granularity and also may

intend to write some lower granularity objects.

32

CS542: Distributed Database Systems 1/23/2009

Prof. Chris Clifton 12

Compatibility Matrix

33

R W IR IW RIW

R Y N Y N N

W N N N N N

IR Y N Y Y Y

IW N N Y Y N

RIW N N Y N N

MGL Rules

For a given lock instance graph G, that is a tree, the
scheduler follows these rules:

1. If x is not the root of G, then to set rli[x] or irli[x], Ti
must have an ir or iw lock on x’s parent.

2. If x is not the root of G, then to set wli[x] or iwli[x],
Ti must have an iw lock on x’s parent.

3. To read (or write) x, Ti must own an r or w (or w)
lock on some ancestor of x. A lock on x itself is an
explicit lock for x; a lock on a proper ancestor of x
is an implicit lock for x

4. A txn may not release an intention lock on a data
item x, if it is currently holding a lock on any child
of x.

34

CS542: Distributed Database Systems 1/23/2009

Prof. Chris Clifton 13

MGL Rules

• Rule 1, 2 ensure intention locks are
acquired

• Rule 3 implies that by locking x, all its
descendants are also locked. No need to
set these locks explicitly.

• Rule 4 ensure that no lock is held without
holding an intention lock on all ancestors
too.

35

Example

36

DB1

A1 A2

F1 F2 F3 F4 F5

R1.1 R1.2 R3.1 R3.2

CS542: Distributed Database Systems 1/23/2009

Prof. Chris Clifton 14

Example

• T1 wants to set rl1[F3].

• It must first set irl1[DB1], then irl1[A1], and finally
rl1[F3].

• If T2 wants to set wl2[R3.2].

• It must set iwl2[DB1], iwl2[A1], but can’t get iwl2[F3].

• After T1 releases rl1[F3], T2 can set iwl2[F3] and
wl2[R3.2].

• If T3 tries to set rl3[A1].

• It must set irl3[DB1], but it can’t get rl3[A1] until T2

releases iwl2[A1].

37

MGL

• Correctness: The 5 rules ensure that if a txn
owns an explicit or implicit lock on an object,
no other txn owns a conflicting explicit or
implicit lock.

• At what granularity should a txn lock? Difficult
to determine in general.

• Lock Escalation: adjust the granularity
dynamically. Can lead to deadlocks.

• Other than trees: Allow rooted dags for
indexes. Modify to obtain appropriate locks
on ALL parents.

38

CS542: Distributed Database Systems 1/23/2009

Prof. Chris Clifton 15

Distributed CC

• How to handle the distributed database

case?

• Data items are not located at a central site.

• For now, assume NO REPLICATION.

• Can centralize the scheduler (lock manager).

• Each site has a TM and a scheduler. This

scheduler is responsible for controlling

access to all items stored at this site.

40

Distributed CC

• Each TM submits operations to the
appropriate scheduler. Commit and Abort
operations are sent to every site where the
txn operated.

• How do we ensure that the global
execution is serializable based upon the
processing of local schedulers?

41

CS542: Distributed Database Systems 1/23/2009

Prof. Chris Clifton 16

Distributed 2PL

• 2PL easily extends to the distributed case.

• Each scheduler follows the same rules as before – if
a lock can be acquired, process the operation.

• No communication needed – good.

• Tricky issue: releasing locks!

• In general would require communication.

• However, if STRICT 2PL is followed everywhere,
then no communication is needed.

• Distributed, Strict 2PL is correct (assuming that
abort and commit operations are carried out
atomically – important issue that we will address
later).

42

Distributed Deadlocks

• As with centralized 2PL, distributed 2PL
suffers from deadlocks. Moreover, these can
be distributed deadlocks! E.g. if x and y are at
different sites.

• Solutions:
– Timeouts

– Deadlock Detection

– Deadlock Prevention

• Timeouts are easy – local decision, but may
be overreacting.

43

CS542: Distributed Database Systems 1/23/2009

Prof. Chris Clifton 17

Deadlock Detection

• Again, we can use the Waits-for-Graph idea;
however, we need to have a global WFG.

• Each site maintains its local WFG, and we
periodically compute the global WFG.

• The global graph can be computed at
– Centralized site – bottleneck

– Hierarchical fashion

– Distributed – add edges due to waits for non local objects.

• Phantom deadlocks – those not really present but
show up due to the asynchronous nature of
detection. Can only occur due to spontaneous
abortions!

44

Deadlock Prevention

• Timestamp based – each txn is assigned a
unique timestamp, in ascending order.

• When a txn Ti cannot obtain a lock because it
is held by Tj, then:
– Wait-Die: if ts(Ti) < ts(Tj) then Ti waits else abort

Ti.
– Wound-Wait: if ts(Ti) < ts(Tj) then abort Tj else Ti

waits.
– Aborted txn is automatically restarted.

• Upon Restart – use the SAME timestamp.
• Both give preference to the older txn. Note

that there is no starvation in either scheme.

45

