
CS542:  Distributed Database Systems 1/23/2009

Prof. Chris Clifton 1

CS54200:  Distributed 

Database Systems

Two-Phase Locking

January 23, 2009

Prof. Chris Clifton

How do we ensure 

Serializability
• This is the task of the scheduler.

• There are two basic techniques:
– Locking

– Time-Stamp Ordering

• Locking enforces serializability by ensuring 
that no two txns access conflicting objects in 
an “incorrect” order.

• Time-Stamp ordering assigns a fixed order 
for every pair of txns and ensures that 
conflicting accesses are made in that order.
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Two Phase Locking

• Basic 2PL

• Each object has associated with it a lock.

• An appropriate lock must be acquired before a 
txn accesses the object.

• There are 2 basic types of locks: shared (read) 
and exclusive (write).

• Two locks, pli[x] and qlj[y], conflict if x=y and i<>j; 
and p and q are conflicting operations.

• 2PL is defined by 3 rules
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2 Phase Locking

1. To grant a lock, the scheduler checks if a 

conflicting lock has already been assigned, if 

so, delay, otherwise set lock and grant it.

2. A lock cannot be released at least until the DM 

acknowledges that the operation has been 

performed.

3. Once the scheduler releases a lock for a txn, it 

may not subsequently acquire any more locks

(on any item) for that txn.
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Example

• T1 = r1[x] w1[y] c1

• T2 = w2[x] w2[y] c2

• rl1[x] r1[x] ru1[x] wl2[x] w2[x] wl2[y] w2[y] 

wu2[x] wu2[y] c2 wl1[y] w1[y] wu1[y] c1

• This is not SR (r1[x]<w2[x] and w2[y] < 

w1[y]).

• This is prevented by rule 3.
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Deadlocks

• 2PL suffers from the problem of deadlocks.

• rl1[x] r1[x] wl2[y] w2[y] followed by TM receiving 

w2[x] and w1[y].

• Also due to lock conversion: changing a read 

lock to a write lock – can’t release the lock. 

– Why?

– What if two txns try to convert at the same time?
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2PL ensures Serializability

• Add the lock and unlock operations to the notion 

of histories.

• Proposition 1: Let H be a history produced by a 

2PL scheduler. If oi[x] is in C(H), then oli[x] and 

oui[x] are in C(H), and oli[x] < oi[x] < oui[x].

• Proposition 2: Let H be a history produced by a 

2PL scheduler. If pi[x] and qj[x] (i<>j) are 

conflicting operation in C(H), then either pui[x] < 

qlj[x] or quj[x] < pli[x].
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Correctness of 2PL

• Proposition 3: Let H be a complete history 
produced by a 2PL scheduler. If pi[x] and 
qi[y] are in C(H), then pli[x] < qui[y].

• Lemma 4: Let H be a 2PL history, and 
suppose Ti Tj is in SG(H). Then, for 
some data item x, and some conflicting 
operations pi[x] and qj[x] in H, pui[x] < qlj[x]

• Proof: trivial.
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Correctness of 2PL

• Lemma 5: Let H be a 2PL history, and let T1 T2

…  Tn be a path in SG(H), where  n > 1.  Then, for 
some data items x and y, and some operations p1[x]
and qn[y] in H, pu1[x] < qln[y].

• Proof: by induction on n. 
• Base Case, n=2.  Follows from Lemma 4.
• Induction Step.  Assume true for n=k for k>=2. By 

the induction hypothesis, there exist data items x
and z, and operations pl[x] and ok[z] in H, such that 
pu1[x] < olk[z]. 

• By Tk Tk+1 and Lemma 4, there exists y and 
conflicting operations o’k[y] and qk+1[y] in H, such 
that o’uk[y] < qlk+1[y].
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Correctness of 2PL

• By proposition 3, olk[z] < o’uk[y]. Thus by 
transitivity, pu1[x] < qlk+1[y].

• Theorem: Every 2PL history H is serializable.

• Proof: Suppose, by contradiction, that SG(H) 
contains a cycle T1 T2…  Tn, where n> 1.

• By Lemma 5, for some data items x and y, and 
some operations p1[x] and q1[y] in H, pu1[x] < 
ql1[y].

• This contradicts Prop 3. Thus SG(H) is acyclic.
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Deadlocks

• 2PL suffers from deadlocks

• Timeouts

• Waits-for-graph

– nodes are transactions 

– add edge Ti Tj whenever Ti waits for a lock held by 

Tj

– remove an edge when last blocking lock is released

– a cycle implies a deadlock 

– all cycles need to be broken by choosing a victim txn
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Types of Schedulers

• Schedulers can delay, reject, or immediately 
schedule the operations.

• Aggressive schedulers try to avoid delaying 
operations -- may have to abort later

• Conservative schedulers try to avoid aborting 
by delaying and reordering operations 

• Trade-off: depends upon degree of conflict 
between transactions.

• Conservative schedulers try to anticipate 
future access of transactions. 
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Conservative 2PL

• 2PL aborts txns only because of deadlocks.

• Conservative 2PL eliminates deadlocks.

• Each txn predeclares all its operations.

• The scheduler sets all locks of a txn in one step, 
if it cannot (because there is some conflicting 
lock), the txn is put in a queue.

• When a lock is released the scheduler checks to 
see which txns can now acquire all their locks.

• Predeclaring may be difficult or even impossible.
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Strict 2PL

• A transaction’s locks are all released 
together after the DM acknowledges the 
processing of the transaction’s commit or 
abort.

• Why?

– To ensure a strict execution

– Earliest time at which the scheduler is certain 
that no more locks will be required by the 
transaction. Why?
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Timing of Lock Release

• Let H be a history produced by a strict 
2PL scheduler.

• Suppose wi[x] < oj[x].

• By rule 1 of 2PL we must have

1. wli[x] < wi[x] < wui[x], and 

2. olj[x] < oj[x] < ouj[x]

• Because wli[x] and olj[x] conflict we must 
have either wui[x] < olj[x] or ouj[x] < wli[x]
(Prop. 2)
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Timing of Lock Release

• ouj[x] < wli[x] with above two is impossible, 

so we must have: 3. wui[x]  < olj[x].

• Since H is produced by a strict 2PL 

scheduler, we must have: 4. Either ai<wui[x]

or ci < wui[x]

• From 2, 3,  & 4: either ai < oj[x] or ci < oj[x], 

proving that H is strict.

• Note that read locks can be released upon 

termination.
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Phantoms

• Consider a banking application with two files: 
Accounts (number, location, balance); and Assets
(branch, total).

• Two txns: T1 – checks total for some location. T2–
add an account and update total.

• Consider: Accounts at Lafayette;
– R1(Accounts[222],Accounts[213],Accounts[444])

– Insert2(Accounts[111],Lafayette,100)

– R2(Assets[Lafayette]) (reads old value)

– W2(Assets[Lafayette]) 

– R1(Assets[Lafayette]) – INCONSISTENT!
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Phantoms

• This is clearly not an SR execution, however according 
to 2PL this is acceptable!

• The problem is that T1 doesn’t just touch the accounts 
222, 213, 444 – but rather ALL accounts in the Accounts 
table.

• Account 111 appears in between T1 – like a phantom.

• This is a problem of dynamic databases – where data 
items are created and deleted.

• How can 2PL handle this?

• The two txns interfere with each other because they both 
access control information.

• We require 2PL to  appropriately lock such information.

• We can improve by performing index locking.
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Multigranularity Locking

• Granularity of data is unimportant for 
correctness of locking, but not for performance. 

• Finer granularity allows greater concurrency.

• Coarser granularity reduces locking overhead.

• We can increase flexibility by allowing multiple 
granularity locks.

• This is complex in general, but if we follow a 
simple hierarchical structure for the locks.
– E.g. Table  Page  Record
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Multigranularity Locking

• E.g. long transactions could lock a page, 
whereas short transactions could lock 
records.

• Must ensure that conflicts are 
appropriately captured: (e.g. a page 
cannot be read locked if any of its records 
is write locked)

• How can such tests be efficiently made 
(e.g. by not having the transaction check 
for locks on every record within a page)?

30



CS542:  Distributed Database Systems 1/23/2009

Prof. Chris Clifton 11

Multigranularity Locking

• Represent the relationships as a lock type graph.
– Database  Area  File  Record

• A set of data items that follow this structure is called a 
lock instance graph (assume that it is a tree).

• A lock on a coarse granule x explicitly locks x, and 
implicitly locks all of x’s proper descendants.

• Each type of lock also has an associated intention lock
type. Before locking x, the scheduler ensures that there 
are no locks on its ancestors that implicitly conflict.

• This is done by setting intention locks on the ancestors.

• Compatibility of locks and intention locks is important.
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Example

• Before rl[x], set ir locks on x’s database, area, 

and file ancestors (in that order).

• irl[y] and wl[y] conflict for any object y.

• Thus we are sure that if we get rl[x], then no txn 

can have a write lock on a parent of x.

• A special lock type: riw is defined to represent 

txns that read a higher granularity and also may 

intend to write some lower granularity objects.
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Compatibility Matrix

33

R W IR IW RIW

R Y N Y N N

W N N N N N

IR Y N Y Y Y

IW N N Y Y N

RIW N N Y N N

MGL Rules

For a given lock instance graph G, that is a tree, the 
scheduler follows these rules:

1. If x is not the root of G, then to set rli[x] or irli[x], Ti
must have an ir or iw lock on x’s parent.

2. If x is not the root of G, then to set wli[x] or iwli[x], 
Ti must have an iw lock on x’s parent.

3. To read (or write) x, Ti must own an r or w (or w) 
lock on some ancestor of x. A lock on x itself is an 
explicit lock for x; a lock on a proper ancestor of x
is an implicit lock for x

4. A txn may not release an intention lock on a data 
item x, if it is currently holding a lock on any child 
of x.
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MGL Rules

• Rule 1, 2 ensure intention locks are 
acquired

• Rule 3 implies that by locking x, all its 
descendants are also locked. No need to 
set these locks explicitly.

• Rule 4 ensure that no lock is held without 
holding an intention lock on all ancestors 
too.
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Example

36

DB1

A1 A2

F1 F2 F3 F4 F5

R1.1 R1.2 R3.1 R3.2 
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Example

• T1 wants to set rl1[F3].

• It must first set irl1[DB1], then irl1[A1], and finally 
rl1[F3].

• If T2 wants to set wl2[R3.2].

• It must set iwl2[DB1], iwl2[A1], but can’t get iwl2[F3].

• After T1 releases rl1[F3], T2 can set iwl2[F3] and 
wl2[R3.2].

• If T3 tries to set rl3[A1].

• It must set irl3[DB1], but it can’t get rl3[A1] until T2

releases iwl2[A1].
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MGL

• Correctness: The 5 rules ensure that if a txn 
owns an explicit or implicit lock on an object, 
no other txn owns a conflicting explicit or 
implicit lock.

• At what granularity should a txn lock? Difficult 
to determine in general. 

• Lock Escalation: adjust the granularity 
dynamically. Can lead to deadlocks.

• Other than trees: Allow rooted dags for 
indexes. Modify to obtain appropriate locks 
on ALL parents. 
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Distributed CC

• How to handle the distributed database 

case?

• Data items are not located at a central site. 

• For now, assume NO REPLICATION.

• Can centralize the scheduler (lock manager).

• Each site has a TM and a scheduler. This 

scheduler is responsible for controlling 

access to all items stored at this site.
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Distributed CC

• Each TM submits operations to the 
appropriate scheduler. Commit and Abort 
operations are sent to every site where the 
txn operated.

• How do we ensure that the global 
execution is serializable based upon the 
processing of local schedulers?
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Distributed 2PL

• 2PL easily extends to the distributed case.

• Each scheduler follows the same rules as before – if 
a lock can be acquired, process the operation.

• No communication needed – good.

• Tricky issue: releasing locks!

• In general would require communication.

• However, if STRICT 2PL is followed everywhere, 
then no communication is needed.

• Distributed, Strict 2PL is correct (assuming that 
abort and commit operations are carried out 
atomically – important issue that we will address 
later).
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Distributed Deadlocks

• As with centralized 2PL, distributed 2PL 
suffers from deadlocks. Moreover, these can 
be distributed deadlocks! E.g. if x and y are at 
different sites.

• Solutions: 
– Timeouts

– Deadlock Detection

– Deadlock Prevention

• Timeouts are easy – local decision, but may 
be overreacting.
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Deadlock Detection

• Again, we can use the Waits-for-Graph idea; 
however, we need to have a global WFG.

• Each site maintains its local WFG, and we 
periodically compute the global WFG.

• The global graph can be computed at
– Centralized site – bottleneck

– Hierarchical fashion 

– Distributed – add edges due to waits for non local objects.

• Phantom deadlocks – those not really present but 
show up due to the asynchronous nature of 
detection. Can only occur due to spontaneous 
abortions!
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Deadlock Prevention

• Timestamp based – each txn is assigned a 
unique timestamp, in ascending order.

• When a txn Ti cannot obtain a lock because it 
is held by Tj, then:
– Wait-Die: if ts(Ti ) < ts(Tj ) then Ti waits else abort 

Ti.
– Wound-Wait: if ts(Ti ) < ts(Tj ) then abort Tj else Ti

waits.
– Aborted txn  is automatically restarted.

• Upon Restart – use the SAME timestamp.
• Both give preference to the older txn. Note 

that there is no starvation in either scheme.
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