
CS54100: Database Systems 4/2/2012

© 2012 Chris Clifton 1

CS54100: Database Systems

Query Optimization

26 March 2012

Prof. Chris Clifton

--> Generating and comparing plans

 Query
Generate Plans

Pruning x x

Estimate Cost

 Cost

Select

Query Optimization

Pick Min

Chris Clifton - CS54100 2

CS54100: Database Systems 4/2/2012

© 2012 Chris Clifton 2

To generate plans consider:

• Transforming relational algebra expression
 (e.g. order of joins)

• Use of existing indexes

• Building indexes or sorting on the fly

Chris Clifton - CS54100 3

• Implementation details:

 e.g. - Join algorithm

 - Memory management

 - Parallel processing

Chris Clifton - CS54100 4

CS54100: Database Systems 4/2/2012

© 2012 Chris Clifton 3

Estimating IOs:

• Count # of disk blocks that must be read

(or written) to execute query plan

Chris Clifton - CS54100 5

To estimate costs, we may have additional

parameters:
B(R) = # of blocks containing R tuples

f(R) = max # of tuples of R per block

M = # memory blocks available

HT(i) = # levels in index i

LB(i) = # of leaf blocks in index i

Chris Clifton - CS54100 6

CS54100: Database Systems 4/2/2012

© 2012 Chris Clifton 4

Clustering index

Index that allows tuples to be read in an

order that corresponds to physical order

 A

A
index

10

15

17

19

35

37

Chris Clifton - CS54100 7

Notions of clustering

• Clustered file organization

 …..

• Clustered relation

 …..

• Clustering index

R1 R2 S1 S2 R3 R4 S3 S4

R1 R2 R3 R4 R5 R5 R7 R8

Chris Clifton - CS54100 8

CS54100: Database Systems 4/2/2012

© 2012 Chris Clifton 5

CS54100: Database Systems

I/O Cost

28 March 2012

Prof. Chris Clifton

Example

R1 R2 over common attribute C

T(R1) = 10,000

T(R2) = 5,000

S(R1) = S(R2) = 1/10 block

Memory available = 101 blocks

Chris Clifton - CS54100 10

 Metric: # of IOs

 (ignoring writing of result)

CS54100: Database Systems 4/2/2012

© 2012 Chris Clifton 6

Caution!

This may not be the best way to compare

• ignoring CPU costs

• ignoring timing

• ignoring double buffering requirements

Chris Clifton - CS54100 11

Options

• Transformations: R1 R2, R2 R1

• Join algorithms:

– Iteration (nested loops)

– Merge join

– Join with index

– Hash join

Chris Clifton - CS54100 12

CS54100: Database Systems 4/2/2012

© 2012 Chris Clifton 7

• Nested Loop join (conceptually)

 for each r R1 do

 for each s R2 do

 if r.C = s.C then output r,s pair

Chris Clifton - CS54100 13

• Merge join (conceptually)

(1) if R1 and R2 not sorted, sort them

(n log n – but I/O cost?)

(2) i 1; j 1;

 While (i T(R1)) (j T(R2)) do

 if R1{ i }.C = R2{ j }.C then outputTuples

 else if R1{ i }.C > R2{ j }.C then j j+1

 else if R1{ i }.C < R2{ j }.C then i i+1

Chris Clifton - CS54100 14

CS54100: Database Systems 4/2/2012

© 2012 Chris Clifton 8

Procedure Output-Tuples

 While (R1{ i }.C = R2{ j }.C) (i T(R1)) do

 [jj j;

 while (R1{ i }.C = R2{ jj }.C) (jj T(R2)) do

 [output pair R1{ i }, R2{ jj };

 jj jj+1]

 i i+1]

Chris Clifton - CS54100 15

Example

i R1{i}.C R2{j}.C j

1 10 5 1

2 20 20 2

3 20 20 3

4 30 30 4

5 40 30 5

 50 6

 52 7

Chris Clifton - CS54100 16

CS54100: Database Systems 4/2/2012

© 2012 Chris Clifton 9

• Join with index (Conceptually)

For each r R1 do

 [X index (R2, C, r.C)

 for each s X do

 output r,s pair]

Assume R2.C index

Note: X index(rel, attr, value)

 then X = set of rel tuples with attr = value

Chris Clifton - CS54100 17

• Hash join (conceptual)

– Hash function h, range 0 k

– Buckets for R1: G0, G1, ... Gk

– Buckets for R2: H0, H1, ... Hk

Algorithm

(1) Hash R1 tuples into G buckets

(2) Hash R2 tuples into H buckets

(3) For i = 0 to k do

 match tuples in Gi, Hi buckets

Chris Clifton - CS54100 18

CS54100: Database Systems 4/2/2012

© 2012 Chris Clifton 10

Simple example hash: even/odd

R1 R2 Buckets

2 5 Even

4 4 R1 R2

3 12 Odd:

5 3

8 13

9 8
 11
 14

Chris Clifton - CS54100 19

2 4 8 4 12 8 14

3 5 9 5 3 13 11

Factors that affect performance

(1) Tuples of relation stored

 physically together?

(2) Relations sorted by join attribute?

(3) Indexes exist?

Chris Clifton - CS54100 20

CS54100: Database Systems 4/2/2012

© 2012 Chris Clifton 11

Example 1(a) Iteration Join R1 R2

• Relations not contiguous

• Recall T(R1) = 10,000 T(R2) = 5,000

 S(R1) = S(R2) =1/10 block

 MEM=101 blocks

Chris Clifton - CS54100 21

Cost: for each R1 tuple:

 [Read tuple + Read R2]

Total =10,000 [1+5000]=50,010,000 IOs

Can we do better?

Use our memory

(1) Read 100 blocks of R1

(2) Read all of R2 (using 1 block) + join

(3) Repeat until done

Chris Clifton - CS54100 22

CS54100: Database Systems 4/2/2012

© 2012 Chris Clifton 12

Cost: for each R1 chunk:

 Read chunk: 1000 IOs

 Read R2 5000 IOs

 6000

Total = 10,000 x 6000 = 60,000 IOs
 1,000

Chris Clifton - CS54100 23

• Can we do better?

Chris Clifton - CS54100 24

 Reverse join order: R2 R1

Total = 5000 x (1000 + 10,000) =
 1000

 5 x 11,000 = 55,000 IOs

CS54100: Database Systems 4/2/2012

© 2012 Chris Clifton 13

Example 1(b) Iteration Join R2 R1

• Relations contiguous

Chris Clifton - CS54100 25

Cost
For each R2 chunk:
 Read chunk: 100 IOs
 Read R1: 1000 IOs
 1,100
Total= 5 chunks x 1,100 = 5,500 IOs

Example 1(c) Merge Join

• Both R1, R2 ordered by C; relations contiguous

Chris Clifton - CS54100 26

Memory

R1

R2

…..

…..

R1

R2

Total cost: Read R1 cost + read R2 cost

 = 1000 + 500 = 1,500 IOs

CS54100: Database Systems 4/2/2012

© 2012 Chris Clifton 14

Example 1(d) Merge Join

• R1, R2 not ordered, but contiguous

--> Need to sort R1, R2 first…. HOW?

Chris Clifton - CS54100 27

One way to sort: Merge Sort

(i) For each 100 block chunk of R:

 - Read chunk

 - Sort in memory

 - Write to disk

 sorted

 chunks

 Memory

Chris Clifton - CS54100 28

R1

R2

..
.

CS54100: Database Systems 4/2/2012

© 2012 Chris Clifton 15

(ii) Read all chunks + merge + write out

Sorted file Memory Sorted

 Chunks

..
. ..
.

Chris Clifton - CS54100 29

Cost: Sort

 Each tuple is read,written,

 read, written

so...

Sort cost R1: 4 x 1,000 = 4,000

Sort cost R2: 4 x 500 = 2,000

Chris Clifton - CS54100 30

CS54100: Database Systems 4/2/2012

© 2012 Chris Clifton 16

Example 1(d) Merge Join (continued)

R1,R2 contiguous, but unordered

Total cost = sort cost + join cost

 = 6,000 + 1,500 = 7,500 IOs

Chris Clifton - CS54100 31

But: Iteration cost = 5,500
 so merge joint does not pay off!

But say R1 = 10,000 blocks contiguous

 R2 = 5,000 blocks not ordered

Iterate: 5000 x (100+10,000) = 50 x 10,100
 100
 = 505,000 IOs

Merge join: 5(10,000+5,000) = 75,000 IOs

 Merge Join (with sort) WINS!

Chris Clifton - CS54100 32

CS54100: Database Systems 4/2/2012

© 2012 Chris Clifton 17

How much memory do we need for

 merge sort?

E.g: Say I have 10 memory blocks

 10

Chris Clifton - CS54100 33

..
.

100 chunks to merge, need
 100 blocks! R1

In general:

Say k blocks in memory

 x blocks for relation sort

chunks = (x/k) size of chunk = k

Chris Clifton - CS54100 34

chunks < buffers available for merge

so... (x/k) k

 or k2 x or k x

CS54100: Database Systems 4/2/2012

© 2012 Chris Clifton 18

In our example

R1 is 1000 blocks, k 31.62

R2 is 500 blocks, k 22.36

 Need at least 32 buffers

Chris Clifton - CS54100 35

Can we improve on merge join?

Hint: do we really need the fully sorted files?

R1

R2

Join?

sorted runs

Chris Clifton - CS54100 36

CS54100: Database Systems 4/2/2012

© 2012 Chris Clifton 19

Cost of improved merge join:

C = Read R1 + write R1 into runs

 + read R2 + write R2 into runs

 + join

 = 2000 + 1000 + 1500 = 4500

--> Memory requirement?

Chris Clifton - CS54100 37

Example 1(e) Index Join

• Assume R1.C index exists; 2 levels

• Assume R2 contiguous, unordered

• Assume R1.C index fits in memory

Chris Clifton - CS54100 39

CS54100: Database Systems 4/2/2012

© 2012 Chris Clifton 20

Cost: Reads: 500 IOs

 for each R2 tuple:

 - probe index - free

 - if match, read R1 tuple: 1 IO

Chris Clifton - CS54100 40

What is expected # of matching

tuples?

(a) say R1.C is key, R2.C is foreign key

 then expect = 1

Chris Clifton - CS54100 41

(b) say V(R1,C) = 5000, T(R1) = 10,000
 with uniform assumption
 expect = 10,000/5,000 = 2

CS54100: Database Systems 4/2/2012

© 2012 Chris Clifton 21

What is expected # of matching

tuples?

(c) Say DOM(R1, C)=1,000,000

 T(R1) = 10,000

 with alternate assumption

 Expect = 10,000 = 1
 1,000,000 100

Chris Clifton - CS54100 42

Total cost with index join

(a) Total cost = 500+5000(1)1 = 5,500

(b) Total cost = 500+5000(2)1 = 10,500

(c) Total cost = 500+5000(1/100)1=550

Chris Clifton - CS54100 43

CS54100: Database Systems 4/2/2012

© 2012 Chris Clifton 22

What if index does not fit in memory?

Example: say R1.C index is 201 blocks

• Keep root + 99 leaf nodes in memory

• Expected cost of each probe is

 E = (0)99 + (1)101 0.5
 200 200

Chris Clifton - CS54100 44

Total cost (including probes)

 = 500+5000 [Probe + get records]

 = 500+5000 [0.5+2] uniform assumption

 = 500+12,500 = 13,000 (case b)

For case (c):

= 500+5000[0.5 1 + (1/100) 1]

= 500+2500+50 = 3050 IOs

Chris Clifton - CS54100 45

CS54100: Database Systems 4/2/2012

© 2012 Chris Clifton 23

CS54100: Database Systems

Hash Join

30 March 2012

Prof. Chris Clifton

So far

 Iterate R2 R1 55,000 (best)
 Merge Join _______
 Sort+ Merge Join _______
 R1.C Index _______
 R2.C Index _______

 Iterate R2 R1 5500
 Merge join 1500
 Sort+Merge Join 7500 4500
 R1.C Index 5500 3050 550
 R2.C Index ________ co

n
ti
g
u
o
u
s

n
o
t

co
n
ti
g
u
o
u
s

Chris Clifton - CS54100 47

CS54100: Database Systems 4/2/2012

© 2012 Chris Clifton 24

Example 1(f) Hash Join

• R1, R2 contiguous (un-ordered)

 Use 100 buckets

 Read R1, hash, + write buckets

R1
..
.

..
.

10 blocks

100

Chris Clifton - CS54100 48

-> Same for R2

-> Read one R1 bucket; build memory hash table

-> Read corresponding R2 bucket + hash probe

R1

R2

..
.

R1

memory ..
.

 Then repeat for all buckets

Chris Clifton - CS54100 49

CS54100: Database Systems 4/2/2012

© 2012 Chris Clifton 25

Cost:

Chris Clifton - CS54100 50

“Bucketize:” Read R1 + write

 Read R2 + write

Join: Read R1, R2

Total cost = 3 x [1000+500] = 4500

Note: this is an approximation since
buckets will vary in size and
we have to round up to blocks

Minimum memory requirements:

Size of R1 bucket = (x/k)

 k = number of memory buffers

 x = number of R1 blocks

So... (x/k) < k

k > x need: k+1 total memory
 buffers

Chris Clifton - CS54100 51

CS54100: Database Systems 4/2/2012

© 2012 Chris Clifton 26

Trick: keep some buckets in memory

E.g., k’=33 R1 buckets = 31 blocks
 keep 2 in memory

memory

G0

G1

in

..
.

31

33-2=31

R1

Memory use:
G0 31 buffers
G1 31 buffers
Output 33-2 buffers
R1 input 1
Total 94 buffers
 6 buffers to spare!!

called hybrid hash-join

Chris Clifton - CS54100 52

Next: Bucketize R2

• R2 buckets =500/33= 16 blocks

• Two of the R2 buckets joined immediately

with G0,G1

Chris Clifton - CS54100 53

memory

G0

G1

in

..
.

16

33-2=31

R2

..
.

31

33-2=31

R2 buckets R1 buckets

CS54100: Database Systems 4/2/2012

© 2012 Chris Clifton 27

Finally: Join remaining buckets

– for each bucket pair:

• read one of the buckets into memory

• join with second bucket

 memory

Gi

out

..
.

16

33-2=31

ans

..
.

31

33-2=31

R2 buckets R1 buckets
one full R2

bucket

one R1
buffer

Chris Clifton - CS54100 54

Cost

• Bucketize R1 = 1000+3131=1961

• To bucketize R2, only write 31 buckets:

 so, cost = 500+3116=996

• To compare join (2 buckets already done)

 read 3131+3116=1457

Total cost = 1961+996+1457 = 4414

Chris Clifton - CS54100 55

CS54100: Database Systems 4/2/2012

© 2012 Chris Clifton 28

• How many buckets in memory?

memory

G0

G1

in
R1

memory

G0

in
R1

OR... ?

Chris Clifton - CS54100 56

Another hash join trick:

• Only write into buckets

 <val,ptr> pairs

• When we get a match in join phase,

 must fetch tuples

Chris Clifton - CS54100 57

CS54100: Database Systems 4/2/2012

© 2012 Chris Clifton 29

• To illustrate cost computation, assume:

– 100 <val,ptr> pairs/block

– expected number of result tuples is 100

• Build hash table for R2 in memory

 5000 tuples 5000/100 = 50 blocks

• Read R1 and match

• Read ~ 100 R2 tuples

Total cost = Read R2: 500
 Read R1: 1000
 Get tuples: 100
 1600

Chris Clifton - CS54100 58

So far:

 Iterate 5500
 Merge join 1500
 Sort+merge joint 7500
 R1.C index 5500 550
 R2.C index _____
 Build R.C index _____
 Build S.C index _____
 Hash join 4500+
 with trick,R1 first 4414
 with trick,R2 first _____
 Hash join, pointers 1600

co
n
ti
g
u
o
u
s

Chris Clifton - CS54100 59

CS54100: Database Systems 4/2/2012

© 2012 Chris Clifton 30

Summary

• Iteration ok for “small” relations

 (relative to memory size)

• For equi-join, where relations not

 sorted and no indexes exist,

 hash join usually best

Chris Clifton - CS54100 60

• Sort + merge join good for

 non-equi-join (e.g., R1.C > R2.C)

• If relations already sorted, use

 merge join

• If index exists, it could be useful

 (depends on expected result size)

Chris Clifton - CS54100 61

