Functional Dependencies

\[X \rightarrow A = \text{assertion about a relation } R \text{ that whenever two tuples agree on all the attributes of } X, \text{ then they must also agree on attribute } A \]

Why do we care?

Knowing functional dependencies provides a formal mechanism to divide up relations (normalization)

- Saves space
- Prevents storing data that violates dependencies
Example

Drinkers\(\text{name, addr, beersLiked, manf, favoriteBeer}\)

<table>
<thead>
<tr>
<th>name</th>
<th>addr</th>
<th>beersLiked</th>
<th>manf</th>
<th>favoriteBeer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Janeway</td>
<td>Voyager</td>
<td>Bud</td>
<td>A.B.</td>
<td>WickedAle</td>
</tr>
<tr>
<td>Janeway</td>
<td>Voyager</td>
<td>WickedAle</td>
<td>Pete's</td>
<td>WickedAle</td>
</tr>
<tr>
<td>Spock</td>
<td>Enterprise</td>
<td>Bud</td>
<td>A.B.</td>
<td>Bud</td>
</tr>
</tbody>
</table>

- **Reasonable FD's to assert:**
 1. **name** \(\rightarrow\) **addr**
 2. **name** \(\rightarrow\) **favoriteBeer**
 3. **beersLiked** \(\rightarrow\) **manf**

- **Shorthand:** combine FD's with common left side by concatenating their right sides.
- Sometimes, several attributes jointly determine another attribute, although neither does by itself. Example:

 beer bar \(\rightarrow\) price
Keys of Relations

\(K \) is a key for relation \(R \) if:
1. \(K \rightarrow \) all attributes of \(R \). **(Uniqueness)**
2. For no proper subset of \(K \) is (1) true. **(Minimality)**
 - If \(K \) at least satisfies (1), then \(K \) is a superkey.

Conventions
- Pick one key; underline key attributes in the relation schema.
- \(X \), etc., represent sets of attributes; \(A \) etc., represent single attributes.
- No set formers in FD’s, e.g., \(ABC \) instead of \(\{A, B, C\} \).

Example

Drinker (name, addr, beersLiked, manf, favoriteBeer)
- \{name, beersLiked\} FD’s all attributes, as seen.
 - Shows \{name, beersLiked\} is a superkey.
- name \(\rightarrow \) beersLiked is false, so name not a superkey.
- beersLiked \(\rightarrow \) name also false, so beersLiked not a superkey.
- Thus, \{name, beersLiked\} is a key.
- No other keys in this example.
 - Neither name nor beersLiked is on the right of any observed FD, so they must be part of any superkey.
- Important point: “key” in a relation refers to tuples, not the entities they represent. If an entity is represented by several tuples, then entity-key will not be the same as relation-key.
Example 2

- Keys are \{Lastname, Firstname\} and \{StudentID\}

Who Determines Keys/FD’s?

- We could assert a key \(K\).
 - Then the only FD’s asserted are that \(K \rightarrow A\) for every attribute \(A\).
 - No surprise: \(K\) is then the only key for those FD’s, according to the formal definition of “key.”
- Or, we could assert some FD’s and deduce one or more keys by the formal definition.
 - E/R diagram implies FD’s by key declarations and many-one relationship declarations.
- Rule of thumb: FD’s either come from keyness, many-1 relationship, or from physics.
 - *E.g.*, “no two courses can meet in the same room at the same time” yields room time \(\rightarrow\) course.
Functional Dependencies (FD’s) and Many-One Relationships

- Consider $R(A_1,\ldots, A_n)$ and X is a key then $X \rightarrow Y$ for any attributes Y in A_1,\ldots, A_n even if they overlap with X. Why?
- Suppose R is used to represent a many \rightarrow one relationship:
 - E_1 entity set $\rightarrow E_2$ entity set
 - where X key for E_1, Y key for E_2,
 - Then, $X \rightarrow Y$ holds,
 - And $Y \rightarrow X$ does not hold unless the relationship is one-one.
- What about many-many relationships?
Inferring FD’s

And this is important because …

- When we talk about improving relational designs, we often need to ask “does this FD hold in this relation?”

Given FD’s $X_1 \rightarrow A_1$, $X_2 \rightarrow A_2$, ..., $X_n \rightarrow A_n$, does FD $Y \rightarrow B$ necessarily hold in the same relation?

- Start by assuming two tuples agree in Y. Use given FD’s to infer other attributes on which they must agree. If B is among them, then yes, else no.

Algorithm

Define $Y^+ =$ closure of Y = set of attributes functionally determined by Y:

- Basis: $Y^+ := Y$.
- Induction: If $X \subseteq Y^+$, and $X \rightarrow A$ is a given FD, then add A to Y^+.

- End when Y^+ cannot be changed.
Example

\[A \rightarrow B, \ BC \rightarrow D. \]
- \[A^+ = AB. \]
- \[C^+ = C. \]
- \[(AC)^+ = ABCD. \]

Given Versus Implied FD’s

Typically, we state a few FD’s that are known to hold for a relation \(R \).
- Other FD’s may follow logically from the given FD’s; these are implied FD’s.
- We are free to choose any basis for the FD’s of \(R \) – a set of FD’s that imply all the FD’s that hold for \(R \).
Finding All Implied FD’s

Motivation: Suppose we have a relation $ABCD$ with some FD’s F. If we decide to decompose $ABCD$ into ABC and AD, what are the FD’s for ABC, AD?

- Example: $F = AB \rightarrow C$, $C \rightarrow D$, $D \rightarrow A$. It looks like just $AB \rightarrow C$ holds in ABC, but in fact $C \rightarrow A$ follows from F and applies to relation ABC.
- Problem is exponential in worst case.

Algorithm

- For each set of attributes X compute X^+.
 - But skip $X = \emptyset$, $X = \text{all attributes}$.
 - Add $X \rightarrow A$ for each A in $X^+ - X$.
- Drop $XY \rightarrow A$ if $X \rightarrow A$ holds.
 - Consequence: If X^+ is all attributes, then there is no point in computing closure of supersets of X.
- Finally, project the FD’s by selecting only those FD’s that involve only the attributes of the projection.
 - Notice that after we project the discovered FD’s onto some relation, the eliminated FD’s can be inferred in the projected relation.
Example

$F = AB \rightarrow C, C \rightarrow D, D \rightarrow A$. What FD's follow?

- $A^+ = A$; $B^+ = B$ (nothing).
- $C^+ = ACD$ (add $C \rightarrow A$).
- $D^+ = AD$ (nothing new).
- $(AB)^+ = ABCD$ (add $AB \rightarrow D$; skip all supersets of AB).
- $(BC)^+ = ABCD$ (nothing new; skip all supersets of BC).
- $(BD)^+ = ABCD$ (add $BD \rightarrow C$; skip all supersets of BD).
- $(AC)^+ = ACD$; $(AD)^+ = AD$; $(CD)^+ = ACD$ (nothing new).
- $(ACD)^+ = ACD$ (nothing new).
- All other sets contain AB, BC, or BD, so skip.
- Thus, the only interesting FD's that follow from F are: $C \rightarrow A$, $AB \rightarrow D$, $BD \rightarrow C$.

Example 2

- Set of FD's in $ABCGHI$:

 \[
 \begin{align*}
 A & \rightarrow B \\
 A & \rightarrow C \\
 CG & \rightarrow H \\
 CG & \rightarrow I \\
 B & \rightarrow H
 \end{align*}
 \]

- Compute $(CG)^+$, $(BG)^+$, $(AG)^+$
Example 3

In ABC with FD’s $A \rightarrow B$, $B \rightarrow C$, project onto AC.

1. $A^+ = ABC$; yields $A \rightarrow B$, $A \rightarrow C$.
2. $B^+ = BC$; yields $B \rightarrow C$.
3. $AB^+ = ABC$; yields $AB \rightarrow C$;
 • drop in favor of $A \rightarrow C$
4. $AC^+ = ABC$ yields $AC \rightarrow B$;
 • drop in favor of $A \rightarrow B$
5. $C^+ = C$ and $BC^+ = BC$; adds nothing.
 • Resulting FD’s: $A \rightarrow B$, $A \rightarrow C$, $B \rightarrow C$.
 • Projection onto AC: $A \rightarrow C$.

FDs: Armstrong’s Axioms

• Reflexivity:
 – If $\{B_1, B_2, \ldots, B_m\} \subseteq \{A_1, A_2, \ldots, A_n\} \Rightarrow A_1A_2\cdots A_n \rightarrow B_1B_2\cdots B_m$
 – Also called “trivial FDs”

• Augmentation:
 – $A_1A_2\cdots A_n \rightarrow B_1B_2\cdots B_m \Rightarrow$
 $A_1A_2\cdots A_n C_1C_2\cdots C_k \rightarrow B_1B_2\cdots B_mC_1C_2\cdots C_k$

• Transitivity:
 – $A_1A_2\cdots A_n \rightarrow B_1B_2\cdots B_m$ and $B_1B_2\cdots B_m \rightarrow C_1C_2\cdots C_k \Rightarrow$
 $A_1A_2\cdots A_n \rightarrow C_1C_2\cdots C_k$
Normalization

Goal = BCNF = Boyce-Codd Normal Form = all FD’s follow from the fact “key \rightarrow everything.”

- Formally, R is in BCNF if for every nontrivial FD for R, say $X \rightarrow A$, then X is a superkey.
 - “Nontrivial” = right-side attribute not in left side.

Why?

1. Guarantees no redundancy due to FD’s.
2. Guarantees no update anomalies = one occurrence of a fact is updated, not all.
3. Guarantees no deletion anomalies = valid fact is lost when tuple is deleted.
Example of Problems

Drinkers (name, addr, beersLike**d**, manf, favori**t**Beer)

<table>
<thead>
<tr>
<th>name</th>
<th>addr</th>
<th>beersLiked</th>
<th>manf</th>
<th>favoritBeer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Janeway</td>
<td>Voyager</td>
<td>Bud</td>
<td>A.B.</td>
<td>WickedAle</td>
</tr>
<tr>
<td>Janeway</td>
<td>???</td>
<td>WickedAle</td>
<td>Pete's</td>
<td>???</td>
</tr>
<tr>
<td>Spock</td>
<td>Enterprise</td>
<td>Bud</td>
<td>???</td>
<td>Bud</td>
</tr>
</tbody>
</table>

FD’s:
1. name → addr
2. name → favoriteBeer
3. beersLike**d** → manf
 - ???’s are redundant, since we can figure them out from the FD’s.
 - Update anomalies: If Janeway gets transferred to the Intrepid, will we change addr in each of her tuples?
 - Deletion anomalies: If nobody likes Bud, we lose track of Bud’s manufacturer.

Why are these problems?

Each of the given FD’s is a BCNF violation:
- **Key** = {name, beersLike**d**}
 - Each of the given FD’s has a left side that is a proper subset of the key.

Another Example

Beers (name, manf, manfAddr).
- **FD’s** = name → manf, manf → manfAddr.
- Only key is name.
 - Manf → manfAddr violates BCNF with a left side unrelated to any key.
Lossless Join

- Goal: All legal values can be stored in relations
 - Recover originals through join
- Formally: X, Y is a lossless join decomposition of R w.r.t. F if \(\forall r \in R \) satisfying dependencies in F, \(\pi_X(r) \bowtie \pi_Y(r) = r \)

Decomposition to Reach BCNF

Setting: relation \(R \), given FD’s \(F \).
Suppose relation \(R \) has BCNF violation \(X \rightarrow B \).
- We need only look among FD’s of \(F \) for a BCNF violation, not those that follow from \(F \).
- Proof: If \(Y \rightarrow A \) is a BCNF violation and follows from \(F \), then the computation of \(Y^* \) used at least one FD \(X \rightarrow B \) from \(F \).
 - \(X \) must be a subset of \(Y \).
 - Thus, if \(Y \) is not a superkey, \(X \) cannot be a superkey either, and \(X \rightarrow B \) is also a BCNF violation.
1. Compute X^+.
 - Cannot be all attributes – why?

2. Decompose R into X^+ and $(R - X^+) \cup X$.

3. Find the FD’s for the decomposed relations.
 - Project the FD’s from $F = \text{calculate all}
 \text{consequents of } F \text{ that involve only attributes from}
 X^+ \text{ or only from } (R - X^+) \cup X$.

Example

$R = \text{Drinkers(name, addr, beersLiked, manf, favoriteBeer)}$

$F = \begin{align*}
1. \text{name } & \rightarrow \text{ addr} \\
2. \text{name } & \rightarrow \text{ favoriteBeer} \\
3. \text{beersLiked } & \rightarrow \text{ manf}
\end{align*}$

Pick BCNF violation $\text{name } \rightarrow \text{ addr}$.

- Close the left side: $name^+ = \text{name addr favoriteBeer}$.
- Decomposed relations:
 - $Drinkers1(name, addr, favoriteBeer)$
 - $Drinkers2(name, beersLiked, manf)$

- Projected FD’s (skipping a lot of work that leads nowhere interesting):
 - For $Drinkers1$: $\text{name } \rightarrow \text{ addr and name } \rightarrow \text{ favoriteBeer}$.
 - For $Drinkers2$: $\text{beersLiked } \rightarrow \text{ manf}$.
Decomposed relations:
- Drinkers1(name, addr, favoriteBeer)
- Drinkers2(name, beersLiked, manf)

Projected FD’s:
- For Drinkers1: name \(\rightarrow \) addr and name \(\rightarrow \) favoriteBeer.
- For Drinkers2: beersLiked \(\rightarrow \) manf.

BCNF violations?
- For Drinkers1, name is key and all left sides of FD’s are superkeys.
- For Drinkers2, \{name, beersLiked\} is the key, and beersLiked \(\rightarrow \) manf violates BCNF.

Decompose Drinkers2

First set of decomposed relations:
- Drinkers1(name, addr, favoriteBeer)
- Drinkers2(name, beersLiked, manf)

Close beersLiked\(^+\) = beersLiked, manf.

Decompose Drinkers2 into:
- Drinkers3(beersLiked, manf)
- Drinkers4(name, beersLiked)

Resulting relations are all in BCNF:
- Drinkers1(name, addr, favoriteBeer)
- Drinkers3(beersLiked, manf)
- Drinkers4(name, beersLiked)
3NF

One FD structure causes problems:
- If you decompose, you can’t check all the FD’s only in the decomposed relations.
- If you don’t decompose, you violate BCNF.

Abstractly: \(AB \rightarrow C \) and \(C \rightarrow B \).

- Example 1: title city \(\rightarrow \) theatre and theatre \(\rightarrow \) city.
- Example 2: street city \(\rightarrow \) zip, zip \(\rightarrow \) city.

Keys: \{A, B\} and \{A, C\}, but \(C \rightarrow B \) has a left side that is not a superkey.
- Suggests decomposition into BC and AC.
 - But you can’t check the FD \(AB \rightarrow C \) in only these relations.

Example

\[A = \text{street}, \ B = \text{city}, \ C = \text{zip}. \]

\[
\begin{array}{c|c}
\text{street} & \text{zip} \\
545 \text{ Tech Sq.} & 02138 \\
545 \text{ Tech Sq.} & 02139 \\
\end{array}
\]

\[
\begin{array}{c|c}
\text{city} & \text{zip} \\
\text{Cambridge} & 02138 \\
\text{Cambridge} & 02139 \\
\end{array}
\]

zip \(\rightarrow \) city

\[
\begin{array}{c|c|c}
\text{city} & \text{street} & \text{zip} \\
\text{Cambridge} & 545 \text{ Tech Sq.} & 02138 \\
\text{Cambridge} & 545 \text{ Tech Sq.} & 02139 \\
\end{array}
\]

street city \(\rightarrow \) zip
“Elegant” Workaround

Define the problem away.

- A relation R is in 3NF iff (if and only if) for every nontrivial FD $X \rightarrow A$, either:
 1. X is a superkey, or
 2. A is prime = member of at least one key.

- Thus, the canonical problem goes away: you don’t have to decompose because all attributes are prime.

What 3NF Gives You

There are two important properties of a decomposition:

1. We should be able to recover from the decomposed relations the data of the original.
 - Recovery involves projection and join, which we shall defer until we’ve discussed relational algebra.

2. We should be able to check that the FD’s for the original relation are satisfied by checking the projections of those FD’s in the decomposed relations.
 - Without proof, we assert that it is always possible to decompose into BCNF and satisfy (1).
 - Also without proof, we can decompose into 3NF and satisfy both (1) and (2).
 - But it is not possible to decompose into BNCF and get both (1) and (2).
 - Street-city-zip is an example of this point.
3NF Synthesis

- Given a canonical cover F_c for F
- Schema $S = \emptyset$
- $\forall A \rightarrow B \in F_c$
 - If there is no $R_i \in S$ such that $AB \subseteq R_i$
 - $S = S + AB$
- If there is no $R_i \in S$ containing a candidate key for R
 - $S = S + (\text{any candidate key for } R)$
Multivalued Dependencies

The multivalued dependency \(X \multimap Y \) holds in a relation \(R \) if whenever we have two tuples of \(R \) that agree in all the attributes of \(X \), then we can swap their \(Y \) components and get two new tuples that are also in \(R \).

\[
\begin{array}{|c|c|}
\hline
X & Y \\
\hline
\end{array}
\]

Example

\textbf{Drinkers(name, addr, phones, beersLiked)} with MVD \(\text{Name} \multimap \text{phones} \). If \text{Drinkers} has the two tuples:

\begin{tabular}{|l|l|l|l|}
\hline
name & addr & phones & beersLiked \\
\hline
sue & a & p1 & b1 \\
\hline
sue & a & p2 & b2 \\
\hline
\end{tabular}

it must also have the same tuples with phones components swapped:

\begin{tabular}{|l|l|l|l|}
\hline
name & addr & phones & beersLiked \\
\hline
sue & a & p2 & b1 \\
\hline
sue & a & p1 & b2 \\
\hline
\end{tabular}

Note: we must check this condition for all pairs of tuples that agree on \text{name}, not just one pair.
MVD Rules

1. Every FD is an MVD.
 - Because if \(X \rightarrow Y \), then swapping \(Y \)'s between tuples that agree on \(X \) doesn’t create new tuples.
 - Example, in Drinkers: \(\text{name} \rightarrow\rightarrow \text{addr} \).

2. Complementation: if \(X \rightarrow\rightarrow Y \), then \(X \rightarrow\rightarrow Z \), where \(Z \) is all attributes not in \(X \) or \(Y \).
 - Example: since \(\text{name} \rightarrow\rightarrow \text{phones} \) holds in Drinkers, so does \(\text{name} \rightarrow\rightarrow \text{addr} \) \(\text{beersLiked} \).

Splitting Doesn’t Hold

Sometimes you need to have several attributes on the right of an MVD. For example:

\[
\text{Drinkers(name, areaCode, phones, beersLiked, beerManf)}
\]

<table>
<thead>
<tr>
<th>name</th>
<th>areaCode</th>
<th>phones</th>
<th>beersLiked</th>
<th>beerManf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sue</td>
<td>831</td>
<td>555-1111</td>
<td>Bud</td>
<td>A.B.</td>
</tr>
<tr>
<td>Sue</td>
<td>831</td>
<td>555-1111</td>
<td>Wicked Ale</td>
<td>Pete’s</td>
</tr>
<tr>
<td>Sue</td>
<td>408</td>
<td>555-9999</td>
<td>Bud</td>
<td>A.B.</td>
</tr>
<tr>
<td>Sue</td>
<td>408</td>
<td>555-9999</td>
<td>Wicked Ale</td>
<td>Pete’s</td>
</tr>
</tbody>
</table>

- \(\text{name} \rightarrow\rightarrow \text{areaCode} \) \(\text{phones} \) holds, but neither \(\text{name} \rightarrow\rightarrow \text{areaCode} \) nor \(\text{name} \rightarrow\rightarrow \text{phones} \) do.
4NF

Eliminate redundancy due to multiplicative effect of MVD’s.

- Roughly: treat MVD’s as FD's for decomposition, but not for finding keys.
- Formally: R is in Fourth Normal Form if whenever MVD $X \rightarrow \rightarrow Y$ is nontrivial (Y is not a subset of X, and $X \cup Y$ is not all attributes), then X is a superkey.
 - Remember, $X \rightarrow Y$ implies $X \rightarrow \rightarrow Y$, so 4NF is more stringent than BCNF.
- Decompose R, using 4NF violation $X \rightarrow \rightarrow Y$, into XY and $X \cup (R - Y)$.

Example

Drinkers(name, addr, phones, beersLiked)
- FD: name \rightarrow addr
- Nontrivial MVD's: name $\rightarrow \rightarrow$ phones and name $\rightarrow \rightarrow$ beersLiked.
- Only key: \{name, phones, beersLiked\}
- All three dependencies above violate 4NF.
- Successive decomposition yields 4NF relations:

 D1(name, addr)
 D2(name, phones)
 D3(name, beersLiked)
4NF Decomposition

- Schema $S = R, D^+$ be the closure of the functional and multivalued dependencies
- While $\exists R_i \in S$ not in 4NF w.r.t. D^+
 - Choose a nontrivial multivalued dependency $A \rightarrow\rightarrow B$ that holds on R_i, where $A \rightarrow R_i \notin D^+$, and $A \cap B = \emptyset$
 - $S = (S - R_i) \cup (R_i \cdot B) \cup (A,B)$