
Homework 3

CS526

Joel Pfeiffer

Problem 1

T = {doctor, nurse, patient, healthcarerecord}
TS = {doctor, nurse, patient}
TO = {healthcarerecord}
RI = {r:c, w:c, publish:c}
RC = ∅

link1(doctor, nurse) = true
f1(doctor, nurse) = {healthcarerecord} × {r:c, w:c}
link2(patient, nurse) = true
f2(patient, nurse) = {healthcarerecord} × {publish}
link3(patient, doctor) = true
f3(patient, nurse) = {healthcarerecord} × {publish}

A ticket X/r : c ∈ dom(Y) can be copied from dom(Y) to dom(Z) ifff, for some i, the following are true:

1. X/rc ∈ dom(Y)

2. linki(Y,Z)

3. τ(X)/r:c ∈ fi(τ(Y), τ(Z))

Here, we can see that the subjects are TS. There are no restrictions on when record transfers are allowed,
or needing a specific right to do so, other than the implicit condition that we have the right to begin with.
As such all of the link functions are inherently true. We then simply use the filter function to strip down
which rights are allowed, and over which entities (healthcarerecord).

Problem 2

I denote the beginning and ending time of the right with X/ze
b , where b represents the beginning time, and

e represents the ending time for the right z over X, where b ≤ e and 0 and ∞ are acceptable values.

Link Function

From definition 3-13, we know that a link predicate linki(X,Y) is a conjunction or disjunction of the follow-
ing rules r, for any z ∈ RC :

1. X/z ∈ dom(X)

2. X/z ∈ dom(Y)

3. Y/z ∈ dom(X)

1



4. Y/z ∈ dom(Y)

5. true

In order to extend this, first, I expand the function inputs to include a time input, line ti(X,Y, T ). T
represents the precise timing of the link predicate. I then modify the rules r to create r t such that r t =
r ∧ b ≤ C ≤ e. The new rules r t, for a z ∈ RC and given time C are:

1. X/ze
b ∈ dom(X) ∧ b ≤ C ≤ e

2. X/ze
b ∈ dom(Y) ∧ b ≤ C ≤ e

3. Y/ze
b ∈ dom(X) ∧ b ≤ C ≤ e

4. Y/ze
b ∈ dom(Y) ∧ b ≤ C ≤ e

5. b ≤ T ≤ e

6. true

Note the b and e found in rule 5. This is similar to rule 6, with the addition of being able to restrict the
linkages to solely during specified times, without requiring an explicit right. Rule 6, as with the original r,
simply allows linkage between two subjects.

Filter Function

A filter function is a function fi: TS × TS → 2T×R, which has as its range the set of copyable tickets. With
the time addition, our function will now take an additional parameter C, while giving out additional results,
the start and end times of rights that have permissions where b ≤ C ≤ e. As such, the new filter function
becomes f ti: TS × TS × C → 2T×R×B×E .

Previously, a filter function was defined in terms of T̃ and R̃, where T̃ represented the types over which
the rights R̃ were allowed to be transferred, per the link function linki. This is represented via the notation
fi(τ(Y), τ(Z)) = T̃ × R̃. Now, however, T̃ × R̃ has the additional time constraint. We represent this as[
T̃ × R̃

]e

b
, or the tickets for the rights R̃ over the types T̃ that begin at time b and end at time e. Our filter

function can now use these values and incorporate a constraint based on time C:

f ti (τ(Y), τ(Z), C) =
{[
T̃ × R̃

]e

b
: b ≤ C ≤ e

}
We can see that this formalism allows for choosing types T̃ and rights R̃, then constraining them so they

are solely allowed if the time Ti is between the start and end time of the ticket.

Copying Tickets

From pg. 68, we know that SPM only allows transference of a ticket X/r:c from dom(Y) and dom(Z) if three
conditions are met:

1. X/rc ∈ dom(Y)

2. linki(Y,Z)

3. τ(X)/r:c ∈ fi(τ(Y), τ(Z))

Now, we want to copy a right X/r:c from dom(Y) to dom(Z). Additionally, the time Y is able to have
a right is not necessarily the time Z should be allowed to have access. For this, I denote the times that
Y has access to a right by and ey, while Z wants access to the right at from time bz to time ez. Here,
I make an additional restriction - Y cannot assign a right to Z for times which Y does not have the ac-
cess. If this was not enforced, then Y could get timed access to a right that was not intended, through using Z.

2



We can now tie this with the link function and filter function definitions. We say a ticket X/r:cey

by
that

Y holds between by and ey can be copied from dom(Y) to dom(Z) where it can be accessed by Z between
times bz and ez (represented by X/r:cez

bz
) during a time C iff, for some i, the following are true:

1. X/rcey

by
∈ dom(Y) ∧ by ≤ bz ∧ ey ≥ ez

2. link ti(Y,Z, C)

3. τ(X)/r:cey

by
∈ fi(τ(Y), τ(Z), C)

Here, we have stated that a) we have the ticket, and the time we are transferring for is during the time we
are allowed the ticket, b) we are allowed to link from Y to Z at time C, and c) the right we are trying to
copy is allowed to be copied at this specific instance in time. As such, we have effectively constrained SPM
to only allow the transfer of tickets during allowed times.

Creation

Now, we need to be able to allow people to create items. In the original SPM, we simply declared:

cc(a, b)

and that implicitly allowed subjects of type a to create an entity of type b. With the time-based model,
we might want to only allow the creation of a new entity at a specific time. To deal with this, I use the
approach the linkage uses, by defining rules which can be combined via conjunction or disjunction. So, for a
function cc(a, b, C), where C is the time, we only have two rules:

1. b ≤ C ≤ e

2. true

b and e are times which can be set. Note that this allows us to join multiple times together, such as
b1 ≤ C ≤ e1 ∨ b2 ≤ C ≤ e2, meaning we can create during one time, or another.

Lastly, we have the rules for what permissions are added to both the parent and child when the child is
created. In the non-temporal SPM, we would list a set of tickets that each would get via

crp(a, b) =
{
R̃a

}
crc(a, b) =

{
R̃b

}
Now, however, we need to specify the times which rules are allowed. This results in the addition of the

usual b and e, which need to be specified by the person who writes the rules. The syntax for this would be:

crp(a, b, C) =
{
R̃a

e
b

}
crc(a, b, C) =

{
R̃b

e
b

}
This specifies, for a particular time C, what rules would we like to apply, meaning we have the flexibility

to have different rule sets created at different times.

Problem 3

For this problem, I choose to use the HRU model. This involves the use of people being the subjects, and
the individual problems, group problems, individual results and group results all being objects. In order to
distinguish between the types of objects, the objects are given a right corresponding to its type. For instance
if we take the Individual Problem 1, this corresponds to the column IP1 in our ACM, and the right ip1 is then
present in every row under that column for the initial matrix M0. In addition to the Individual Problem type,

3



I S1 S2 . . . Sn IP1 . . . IP5 GP1 GP2

I t t . . . t ip1, rw . . . ip5, rw gp1, rw gp2, rw

S1 t
ir1, ir2, ir3, ir4, ip1, r . . . ip5, r gp1, r gp2, rir5, gr1, gr2

S2 t
ir1, ir2, ir3, ir4, ip1, r . . . ip5, r gp1, r gp2, rir5, gr1, gr2

...
...

. . .
...

. . .
...

...
...

Sn t
ir1, ir2, ir3, ir4, ip1, r . . . ip5, r gp1, r gp2, rir5, gr1, gr2

Table 1: Our initial ACM for determining a test with 5 individual problems and 2 group problems. Note
that each student is given ir and gr for each problem initially.

we can also have Individual Response (for the student’s answer to individual problems), Group Problem and
Group Response, with the corresponding rights ir, gp, and gr (with a subscript indicating which problem it
is associated with).

In addition to the rights used to explicitly define available problems and solutions, we also have the rights
t for talk, r for read and w for write. I allow the students to converse with the professor, but not with each
other. Additionally, the professor is allowed to read and write each of the problems, but students are only
allowed to read the problems. This is so we don’t have a student modifying what the question is. In order to
get the students’ responses to the questions, we use the ir and gr rights, creating new objects (which contain
the students answers). Overall, our set of rights is:

Rights = {t, r, w, ip1, ip2, ip3, ip4, ip5, gp1, gp2, ir1, ir2, ir3, ir4, ir5, gr1, gr2}

We can now look at Table 1, which is our initial access control matrix. We see that the the instructor
is allowed to speak with any student, as they are allowed to speak with the instructor. Additionally, the
instructor and read and write each of the problems, while the students are only given read access. Finally,
we have given an ‘indicator’ right to each problem for each student, so we can be aware of which problem
they are doing.

Next, we need to allow students to answer the individual problems. For this, we create 5 similar functions,
which ensure the student is a) answering the correct problem and b) has not answered the problem previously.
We do not want a student to be able to submit many answers to a single problem.

// Answering individual problem 1, we take the student, instructor, problem, and response
Command Answer Ind Problem One(subject1, subject2, object1, object2)
if ir1 in a[subject1, subject1] // Have we already answered problem 1?
and t in a[subject1, subject2] // Is the other person the instructor?
and ip1 in a[subject1, object1] // Are we answering the right problem?
and r in a[subject1, object1] // Can we read the test?
then

create object object2; // Create the answer
enter r into a[subject1, object2]; // Give student permissions to the answer
enter w into a[subject1, object2];
enter r into a[subject2, object2]; // Give instructor permission to read the answer
enter ir1 into a[subject1, object2]; // ‘Label’ the answer
enter ir1 into a[subject2, object2]; // ‘Label’ the answer
delete ir1 from a[subject1, subject1]; // Remove student’s permission to create a new answer

end

// Answering individual problem 2, we take the student, instructor, problem, and response
Command Answer Ind Problem Two(subject1, subject2, object1, object2)

4



if ir2 in a[subject1, subject1] // Have we already answered problem 2?
and t in a[subject1, subject2] // Is the other person the instructor?
and ip2 in a[subject1, object1] // Are we answering the right problem?
and r in a[subject1, object1] // Can we read the test?
then

create object object2; // Create the answer
enter r into a[subject1, object2]; // Give student permissions to the answer
enter w into a[subject1, object2];
enter r into a[subject2, object2]; // Give instructor permission to read the answer
enter ir2 into a[subject1, object2]; // ‘Label’ the answer
enter ir2 into a[subject2, object2]; // ‘Label’ the answer
delete ir2 from a[subject1, subject1]; // Remove student’s permission to create a new answer

end

// Answering individual problem 3, we take the student, instructor, problem, and response
Command Answer Ind Problem Three(subject1, subject2, object1, object2)
if ir3 in a[subject1, subject1] // Have we already answered problem 3?
and t in a[subject1, subject2] // Is the other person the instructor?
and ip3 in a[subject1, object1] // Are we answering the right problem?
and r in a[subject1, object1] // Can we read the test?
then

create object object2; // Create the answer
enter r into a[subject1, object2]; // Give student permissions to the answer
enter w into a[subject1, object2];
enter r into a[subject2, object2]; // Give instructor permission to read the answer
enter ir3 into a[subject1, object2]; // ‘Label’ the answer
enter ir3 into a[subject2, object2]; // ‘Label’ the answer
delete ir3 from a[subject1, subject1]; // Remove student’s permission to create a new answer

end

// Answering individual problem 4, we take the student, instructor, problem, and response
Command Answer Ind Problem Four(subject1, subject2, object1, object2)
if ir4 in a[subject1, subject1] // Have we already answered problem 4?
and t in a[subject1, subject2] // Is the other person the instructor?
and ip4 in a[subject1, object1] // Are we answering the right problem?
and r in a[subject1, object1] // Can we read the test?
then

create object object2; // Create the answer
enter r into a[subject1, object2]; // Give student permissions to the answer
enter w into a[subject1, object2];
enter r into a[subject2, object2]; // Give instructor permission to read the answer
enter ir4 into a[subject1, object2]; // ‘Label’ the answer
enter ir4 into a[subject2, object2]; // ‘Label’ the answer
delete ir4 from a[subject1, subject1]; // Remove student’s permission to create a new answer

end

// Answering individual problem 5, we take the student, instructor, problem, and response
Command Answer Ind Problem Four(subject1, subject2, object1, object2)
if ir5 in a[subject1, subject1] // Have we already answered problem 5?
and t in a[subject1, subject2] // Is the other person the instructor?
and ip5 in a[subject1, object1] // Are we answering the right problem?

5



and r in a[subject1, object1] // Can we read the test?
then

create object object2; // Create the answer
enter r into a[subject1, object2]; // Give student permissions to the answer
enter w into a[subject1, object2];
enter r into a[subject2, object2]; // Give instructor permission to read the answer
enter ir5 into a[subject1, object2]; // ‘Label’ the answer
enter ir5 into a[subject2, object2]; // ‘Label’ the answer
delete ir5 from a[subject1, subject1]; // Remove student’s permission to create a new answer

end

Walking through each of the individual functions, we can see that four comparisons happen. First, we
check whether or not we have already answered the problem. Second, we check whether the other subject
passed in was the instructor, leveraging the fact that only the instructor can talk to the student. Next, we
check that we are answering the correct problem (which won’t affect the problem), and finally, we check
whether or not we can actually read the problem (maybe the test has ended).

After these checks are done, the creation is straightforward, we just create the object, giving the student
r/w permissions, as well as giving the instructor read permissions (for grading). We then remove the student’s
ability to create a new answer. This means that should we ever call this function again with the same
parameters, it will fail, because the student has already answered the question. Note that the student is still
free to modify the actual answer, they just cannot create a new one.

For the next section, we use similar logic to extend how many students are allowed to edit a problem.

// Answering group problem 1, we take the student, instructor, problem, and response
Command Answer Grp Problem One(subject1, subject2, subject3, object1, object2)
if gr1 in a[subject1, subject1] // Has student 1 already answered group problem
and gr1 in a[subject2, subject2] // Has student 2 already answered group problem
and t in a[subject1, subject3] // Is the other person the instructor
and t in a[subject2, subject3] // Is the other person the instructor
and gp1 in a[subject1, object1] // Are we answering the right problem
and gp1 in a[subject2, object1] // Are we answering the right problem
and r in a[subject1, object1] // Can student 1 read the test?
and r in a[subject2, object1] // Can student 2 read the test?
then

create object object2; // Create the answer
enter r into a[subject1, object2]; // Give student 1 permissions to the answer
enter w into a[subject1, object2];
enter r into a[subject2, object2]; // Give student 2 permissions to the answer
enter w into a[subject2, object2];
enter r into a[subject2, object2]; // Give instructor permission to read the answer
enter gr1 into a[subject1, object2]; // ‘Label’ the answer
enter gr1 into a[subject2, object2]; // ‘Label’ the answer
enter gr1 into a[subject3, object2]; // ‘Label’ the answer
delete gr1 from a[subject1, subject1]; // Remove student 1’s permission to create a new group answer
delete gr2 from a[subject1, subject1]; // Remove student 1’s permission to create a new answer (for

group problem 2)
delete gr1 from a[subject2, subject2]; // Remove student 2’s permission to create a new group answer
delete gr2 from a[subject2, subject2]; // Remove student 2’s permission to create a new answer (for

group problem 2)
end

// Answering group problem 2, we take the student, instructor, problem, and response

6



I S1 S2 . . . Sn IP1 . . . GP2 IRS1
1 GRS1,S2

2

I t t . . . t ip1, r, w . . . ip2, r, w ir1, r gr2, r

S1 t
ir2, ir3, ip1, r . . . gp2, r ir1, r, w gr2, r, wir4, ir5,

S2 t
ir1, ir2, ir3, ip1, r . . . gp2, r gr2, r, wir4, ir5,

...
...

. . .
...

. . .
...

Sn t
ir1, ir2, ir3,

ip1, r . . . gp2, rir4, ir5,
gr1, gr2

Table 2: Our ACM after student 1 has created an answer for problem 1, and after student 1 and student 2
together have created an answer for group problem 2.

Command Answer Grp Problem Two(subject1, subject2, subject3, object1, object2)
if gr2 in a[subject1, subject1] // Has student 1 already answered group problem
and gr2 in a[subject2, subject2] // Has student 2 already answered group problem
and t in a[subject1, subject3] // Is the other person the instructor
and t in a[subject2, subject3] // Is the other person the instructor
and gp2 in a[subject1, object1] // Are we answering the right problem
and gp2 in a[subject2, object1] // Are we answering the right problem
and r in a[subject1, object1] // Can student 1 read the test?
and r in a[subject2, object1] // Can student 2 read the test?
then

create object object2; // Create the answer
enter r into a[subject1, object2]; // Give student 1 permissions to the answer
enter w into a[subject1, object2];
enter r into a[subject2, object2]; // Give student 2 permissions to the answer
enter w into a[subject2, object2];
enter r into a[subject2, object2]; // Give instructor permission to read the answer
enter gr2 into a[subject1, object2]; // ‘Label’ the answer
enter gr2 into a[subject2, object2]; // ‘Label’ the answer
enter gr2 into a[subject3, object2]; // ‘Label’ the answer
delete gr1 from a[subject1, subject1]; // Remove student 1’s permission to create a new answer (for

group problem 1)
delete gr2 from a[subject1, subject1]; // Remove student 1’s permission to create a new answer gr2
delete gr1 from a[subject2, subject2]; // Remove student 2’s permission to create a new answer (for

group problem 1)
delete gr2 from a[subject2, subject2]; // Remove student 2’s permission to create a new answer gr2

end

Looking at these group problems, we can see that (again) there is a list of requirements. Both students
must have not previously answered a group problem, both students must have the instructor available for
communication, both students must be answering the correct problem, and both students must be able to
read the test. After these requirements are met, the answer is created, with both students being able to r/w
the answer, while the instructor can read it. Additionally, the students are not allowed to answer any more
group problems after this (either 1 or 2). So, if they are ever called to pair with another student, it will be
denied.

We can see that the usage of these rules, along with the initial starting matrix, allows each student to
create one result for each individual problem. Creation of an answer prevents removes the right that allowed
the creation, so only one will ever be created. r/w rights on the answer are given to the student, while

7



the instructor gets read rights. Additionally, for the group problem, a student can participate in one group
problem, which results in permissions being taken away from both, disallowing them to work with each
another student. We note that at no point does t change, so we know that no one can cheat by speaking
with another person.

In Table 2, we see the effects after student 1 creates an assignment response for problem 1, then teams
with student 2 to answer group problem 2. We see that student 1 has lost ir1 in a[S1, S1], while both have
lost gr2. Two additional objects have been created, which is their group answer.

I chose the HRU model for its flexibility in removing a right. Specifically, I was able to define a function
which deleted the right as part of the function. This restricted any student from creating multiple copies,
and from working with multiple students. The SPM does not allow this deletion – once a right is given, it is
assumed to be there forever. SPM also requires the link function to be in terms of concatenation of rights
present via conjunction or disjunction, not is explicitly forbidden, so we can not add a right that restricts the
actions. The Extended SPM allows for mutual creation, but HRU also allows this. Additionally, TG does
not have the kind of restrictive capabilities necessary – once a grant is given, it cannot be taken away, and
students can grant permission to read their problems to anyone else. While it is true that TG can have the
‘overload’, or instructor, grant permissions to students to share a homework (see the buffer example) this
implies that the instructor chooses who is working with who, and on what project. With HRU, students
answering the group problems lies in their domain, rather than being granted access.

8


