Description

- Subjects $S = \{ s_1, \ldots, s_n \}$
- Objects $O = \{ o_1, \ldots, o_m \}$
- Rights $R = \{ r_1, \ldots, r_k \}$
- Entries $A[s_i, o_j] \subseteq R$
- $A[s_i, o_j] = \{ r_{x_1}, \ldots, r_{y} \}$ means subject s_i has rights r_{x_1}, \ldots, r_{y} over object o_j
Example 2

- Procedures *inc_ctr*, *dec_ctr*, *manage*
- Variable *counter*
- Rights +, −, *call*

<table>
<thead>
<tr>
<th></th>
<th>counter</th>
<th>inc_ctr</th>
<th>dec_ctr</th>
<th>manage</th>
</tr>
</thead>
<tbody>
<tr>
<td>inc_ctr</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dec_ctr</td>
<td>−</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>manage</td>
<td>call</td>
<td>call</td>
<td>call</td>
<td></td>
</tr>
</tbody>
</table>

Boolean Expression Evaluation

- ACM controls access to database fields
 - Subjects have attributes
 - Verbs define type of access
 - Rules associated with objects, verb pair
- Subject attempts to access object
 - Rule for object, verb evaluated, grants or denies access
Example

- Subject annie
 - Attributes role (artist), groups (creative)
- Verb paint
 - Default 0 (deny unless explicitly granted)
- Object picture
 - Rule:
 - paint: ‘artist’ in subject.role and
 - ‘creative’ in subject.groups and
 - time.hour >= 0 and time.hour < 5

Protection State Transitions

- State \(X_i = (S_i, O_i, A_i) \)
- Transitions \(\tau_i \)
 - Single transition \(X_i \xrightarrow{\tau_{i+1}} X_{i+1} \)
 - Series of transitions \(X \xrightarrow{*} Y \)
- Access control matrix may change
 - Change command c associated with transition
 - \(X_i \xrightarrow{c_{j+1}(p_{j+1} \ldots p_{i+1})} X_{i+1} \)
- Commands often called transformation procedures
Special Privileges: Copy, Ownership

- Copy (or grant)
 - Possessor can extend privileges to another
- Own right
 - Possessor can change their own privileges
- Principle of Attenuation of Privilege
 - A subject may not give rights it does not possess

Primitive Commands

- Create Object o
 - Adds o to objects with no access
 - $S' = S$, $O' = O \cup \{o\}$, $(\forall x \in S')[a'[x,o] = \emptyset]$, $(\forall x \in S'')(\forall y \in O)[a'[x,y] = a[x,y]]$
- Create Subject s
 - Adds s to objects, subjects, sets relevant access control to \emptyset
- Enter r into $a[s,o]$
- Delete r from $a[s,o]$
- Destroy subject s, destroy object o
Create Subject

- Precondition: $s \notin S$
- Primitive command: `create subject s`
- Postconditions:
 - $S' = S \cup \{s\}$, $O' = O \cup \{s\}$
 - $(\forall y \in O')[a'[s, y] = \emptyset]$, $(\forall x \in S')[a'[x, s] = \emptyset]$
 - $(\forall x \in S)(\forall y \in O)[a'[x, y] = a[x, y]]$

Create Object

- Precondition: $o \notin O$
- Primitive command: `create object o`
- Postconditions:
 - $S' = S$, $O' = O \cup \{o\}$
 - $(\forall x \in S')[a'[x, o] = \emptyset]$
 - $(\forall x \in S)(\forall y \in O)[a'[x, y] = a[x, y]]$
Add Right

- Precondition: \(s \in S, \ o \in O \)
- Primitive command: enter \(r \) into \(a[s, o] \)
- Postconditions:
 - \(S' = S, \ O' = O \)
 - \(a'[s, o] = a[s, o] \cup \{ r \} \)
 - \((\forall x,y \in S \times O - \{ s,o \}) \ [a'(x, y) = a[x, y]] \)

Delete Right

- Precondition: \(s \in S, \ o \in O \)
- Primitive command: delete \(r \) from \(a[s, o] \)
- Postconditions:
 - \(S' = S, \ O' = O \)
 - \(a'[s, o] = a[s, o] - \{ r \} \)
 - \((\forall x,y \in S \times O - \{ s,o \}) \ [a'(x, y) = a[x, y]] \)
Destroy Subject

- Precondition: \(s \in S \)
- Primitive command: destroy subject \(s \)
- Postconditions:
 - \(S' = S - \{ s \} \), \(O' = O - \{ s \} \)
 - \((\forall y \in O')[a'[s, y] = \emptyset] \)
 - \((\forall x \in S')[a'[x, s] = \emptyset] \)
 - \((\forall x \in S')(\forall y \in O')[a'[x, y] = a[x, y]] \)

Destroy Object

- Precondition: \(o \in o \)
- Primitive command: destroy object \(o \)
- Postconditions:
 - \(S' = S, O' = O - \{ o \} \)
 - \((\forall x \in S')[a'[x, o] = \emptyset] \)
 - \((\forall x \in S')(\forall y \in O')[a'[x, y] = a[x, y]] \)
Creating File

- Process p creates file f with r and w permission

```plaintext
command create\_file($p, f$)
  create object $f$;
  enter own into $A[p, f]$;
  enter $r$ into $A[p, f]$;
  enter $w$ into $A[p, f]$;
end
```

Mono-Operational Commands

- Make process p the owner of file g

```plaintext
command make\_owner($p, g$)
  enter own into $A[p, g]$;
end
```

- Mono-operational command
 - Single primitive operation in this command
Conditional Commands

- Let p give q r rights over f, if p owns f

  ```
  command grant•read•file•1(p, f, q)
  if own in A[p, f]
  then
    enter $r$ into A[q, f];
  end
  ```

- Mono-conditional command
 - Single condition in this command

Multiple Conditions

- Let p give q r and w rights over f, if p owns f and p has c rights over q

  ```
  command grant•read•file•2(p, f, q)
  if own in A[p, f] and c in A[p, q]
  then
    enter $r$ into A[q, f];
    enter $w$ into A[q, f];
  end
  ```
Copy Right

• Allows possessor to give rights to another
• Often attached to a right, so only applies to that right
 – r is read right that cannot be copied
 – rc is read right that can be copied
• Is copy flag copied when giving r rights?
 – Depends on model, instantiation of model

Own Right

• Usually allows possessor to change entries in ACM column
 – So owner of object can add, delete rights for others
 – May depend on what system allows
 • Can’t give rights to specific (set of) users
 • Can’t pass copy flag to specific (set of) users
Attenuation of Privilege

- Principle says you can’t give rights you do not possess
 - Restricts addition of rights within a system
 - Usually *ignored* for owner
 - Why? Owner gives herself rights, gives them to others, deletes her rights.

Key Points

- Access control matrix simplest abstraction mechanism for representing protection state
- Transitions alter protection state
- 6 primitive operations alter matrix
 - Transitions can be expressed as commands composed of these operations and, possibly, conditions
What is Secure?

- A secure system doesn’t allow violations of policy
 - Is this a good definition?
 - Can we use it?
- Alternative view: based on rights
 - Start with access control matrix A
 - $Leak$: commands can add right r to an element of A not containing r
 - $Safe$: System is safe with respect to r if r cannot be leaked
Formally:

- Given
 - initial state $X_0 = (S_0, O_0, A_0)$
 - Set of primitive commands c
- Can we reach a state X_n where $\exists s, o$ such that $A_n[s, o]$ includes a right r not in $A_0[s, o]$?
 - If so, the system is not safe
 - But is “safe” secure?
 Are commands correctly implemented?

Example: Unix File System

- Access Control Matrix
 - Root has access to all files
 - Owner has access to their own files
- Safe with respect to file access right?
 - No chmod/chown command
 - Only “root” can get root privileges
 - Only user can authenticate as themselves
 Is “Safe” definition useful?
Solution: Trust

- Safety doesn’t distinguish leak from authorized transfer of rights
- Subjects authorized to receive transfer of rights deemed “trusted”
 - Eliminate trusted subjects from matrix

Decidability Result

Harrison, Ruzzo, Ullman

- Given a system where each command consists of a single *primitive* command, There exists an algorithm that will determine if a protection system with initial state X_0 is safe with respect to right r.
- Proof: determine minimum commands k to leak
 - Delete/destroy: Can’t leak (or be detected)
 - Create/enter: new subjects/objects “equal”, so treat all new subjects as one
 - If n rights, leak possible, must be able to leak $n(|S_0|+1)(|O_0|+1)+1$ commands
- Enumerate all possible to decide
Decidability: Non-Primitive Commands

- It is undecidable if a given state of a given protection system is safe for a given generic right
- Proof: Reduction from halting problem
 - Symbols, states ⇒ rights
 - Tape cell ⇒ subject (can create new subjects)
 - Right own: s_i owns s_{i+1} for $1 \leq i < k$
 - Cell $s_i A \Rightarrow s_i$ has A rights on itself
 - Cell $s_k \Rightarrow s_k$ has end rights on itself
 - State p, head at $s_i \Rightarrow s_i$ has p rights on itself

Example:

<table>
<thead>
<tr>
<th>Turing Machine</th>
<th>Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>A B C D ...</td>
<td>s_1 s_2 s_3 s_4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>s_1</th>
<th>s_2</th>
<th>s_3</th>
<th>s_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>own</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C, p</td>
<td>own</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D, end</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Mapping

After $\delta(k, C) = (k_1, X, R)$ where k is the current state and k_1 the next state

Command Mapping

$\delta(k, C) = (k_1, X, R)$ at intermediate becomes

command $c_{k, C}(s_3, s_4)$
if own in $A[s_3, s_4]$ and k in $A[s_3, s_3]$ and C in $A[s_3, s_3]$ then
 delete k from $A[s_3, s_3]$;
 delete C from $A[s_3, s_3]$;
 enter X into $A[s_3, s_3]$;
 enter k_1 into $A[s_4, s_4]$;
end
Commands:

- Halting problem Turing Machine: Symbols A, B; states p, q
- $C_{p,A}(s_i,s_{i-1})$ (move left)
 - if $own \in a[s_{i-1},s_i]$ and $p \in a[s_i,s']$ and $A \in a[s_i,s']$
 - Delete p from $a[s_i,s']$, A from $a[s_i,s']$
 - Enter B into $a[s_i,s']$, q into $a[s_{i-1},s_{i-1}]$
- Similar commands for move right, move right at end of tape
- Simulates Turing machine
 - Leaks halting state \Rightarrow halting state in the matrix \Rightarrow Halting state reached

This is undecidable!

Mapping

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>X</td>
<td>Y</td>
<td>b</td>
</tr>
</tbody>
</table>

After $\delta(k_1, D) = (k_2, Y, R)$
where k_1 is the current state and k_2 the next state

<table>
<thead>
<tr>
<th></th>
<th>s_1</th>
<th>s_2</th>
<th>s_3</th>
<th>s_4</th>
<th>s_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>A</td>
<td>own</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_2</td>
<td>B</td>
<td>own</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_3</td>
<td>X</td>
<td>own</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_4</td>
<td>Y</td>
<td>own</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_5</td>
<td></td>
<td></td>
<td></td>
<td>b</td>
<td>k_2 end</td>
</tr>
</tbody>
</table>

35

36
Command Mapping

\[\delta(k_1, D) = (k_2, Y, R) \text{ at end becomes} \]

command crightmost_{k,c}(s_4, s_5)

if end in A[s_4, s_4] and k_1 in A[s_4, s_4] and D in A[s_4, s_4] then

- delete end from A[s_4, s_4];
- create subject s_5;
- enter own into A[s_4, s_5];
- enter end into A[s_5, s_5];
- delete k_1 from A[s_4, s_4];
- delete D from A[s_4, s_4];
- enter Y into A[s_4, s_4];
- enter k_2 into A[s_5, s_5];

end

Rest of Proof

- Protection system exactly simulates a TM
 - Exactly 1 *end* right in ACM
 - 1 right in entries corresponds to state
 - Thus, at most 1 applicable command
- If TM enters state \(q_n \) then right has leaked
- If safety question decidable, then represent TM as above and determine if \(q_f \) leaks
 - Implies halting problem decidable
- Conclusion: safety question undecidable
Other Results (most from the same authors)

- Set of unsafe systems recursively enumerable
- Without create primitive, safety in P-SPACE
 - Like halting problem reduction, but no unlimited tape
- Without delete/destroy, still undecidable
 - Decidable if at most one condition allowed per command
 - Still holds if delete allowed

Where does this leave us?

- Safety decidable for some models
 - Are they practical?
- Safety only works if maximum rights known in advance
 - Policy must specify all rights someone could get, not just what they have
 - Where might this make sense?
- Next: Example of a decidable model
 - Take-Grant Protection Model
Mono-Operational Commands

- Answer: yes
- Sketch of proof:
 Consider minimal sequence of commands \(c_1, \ldots, c_k \) to leak the right.
 - Can omit delete, destroy
 - Can merge all creates into one
 Worst case: insert every right into every entry; with \(s \) subjects and \(o \) objects initially, and \(n \) rights, upper bound is \(k \leq n(s+1)(o+1) \)