CS18000: Programming | 11/15/2010

PURDUE

CS52600:
Information Security

Vulnerability Analysis
15 November 2010
Prof. Chris Clifton

Vulnerability Analysis

L

* Vulnerability: Lapse in enforcement

enabling violation of security policy
— Errors in code

— Human violators

— Mismatch between assumptions

« Exploit: Use of vulnerability to violate
policy

11/15/2010 CS52600 2

© 2010 Chris Clifton 1

CS18000: Programming | 11/15/2010

251 Vulnerability Analysis

*
o {4

» System Verification
— Determine preconditions, postconditions

— Validate that system ensures postconditions
given preconditions

* Penetration testing
— Start with system/environment characteristics
— Try to find vulnerabilities

11/15/2010 CS852600 3

System Verification

e 2

« We've covered a lot
— Formal verification
— Information flow analysis
— Formal reviews

* What are the problems?
— Invalid assumptions
— Limited view of system
— Still an inexact science

11/15/2010 CS52600 4

© 2010 Chris Clifton 2

CS18000: Programming | 11/15/2010

Penetration Testing

Test complete system

— Attempt to violate stated policy

— Works on in-place system

— Framework for evaluating results

Typical approach: Red Team, Blue Team
— Red team attempts to discover vulnerabilities

— Blue team simulates normal administration
* Detect attack, respond

— White team injects workload, captures results

11/15/2010 CS852600 5

Types of Penetration Testing

B |
\ .
7 \ %

ra
i

Black Box
— External attacker has no knowledge of target system
— Attacks often build on human element
System access provided
— Red team provided with limited access to system
* Models external attack
— Goal is to gain normal or elevated access
» Then violate policy
Internal attacker
— Red team provided with authorized user access
— Goal is to elevate privilege / violate policy

11/15/2010 CS52600 6

© 2010 Chris Clifton 3

CS18000: Programming | 11/15/2010

Red Team Approach
H,‘.-"“
Information gathering

— Examine design, environment

Flaw hypothesis

— Predict likely vulnerabilities

Flaw testing

— Determine where vulnerabilities exist

Flaw generalization

— Attempt to broaden discovered flaws

Flaw elimination

— Suggest means to eliminate flaw

= M
\ .
7 -

11/15/2010 CS852600 7

Problems with
4 Penetration Testing

Nonrigorous

— Dependent on insight (and whim) of testers
— No good way of evaluating when “complete”
How do we make it systematic?

— Try all classes of likely flaws

— But what are these?

Vulnerability Classification!

11/15/2010 CS52600 8

© 2010 Chris Clifton 4

CS18000: Programming | 11/15/2010

Vulnerability Classification

*
o {4

» Goal: describe spectrum of possible flaws
— Enables design to avoid flaws
— Improves coverage of penetration testing

— Helps design/develop intrusion detection
* How do we classify?

— By how they are exploited?

— By where they are found?

— By the nature of the vulnerability?

11/15/2010 CS852600 9

Example flaw: xterm log

ra
i

xterm runs as root
— Generates a log file
— Appends to log file if file exists
Problem: In /etc/passwd log file
Solution
if (access(“log_file”, W_OK) == 0)
fd = open(“log_file”, O_WRONLY|O_APPEND)
What can go wrong?

11/15/2010 CS52600 10

© 2010 Chris Clifton 5

CS18000: Programming |

Example: Finger Daemon

(exploited by Morris worm)

finger sends name to fingerd

— fingerd allocates 512 byte buffer on stack

— Places name in buffer

— Retrieves information (local finger) and returns

Problem: If name > 512 bytes, overwrites return
address

Exploit: Put code in “name”, pointer to code in
bytes 513+

— Overwrites return address

11/15/2010 CS852600 1"

Vulnerability Classification:

Generalize

xterm: race condition between validation

and use
fingerd: buffer overflow on the stack

Can we generalize to cover all possible
vulnerabilities?

11/15/2010 CS52600 12

© 2010 Chris Clifton

11/15/2010

CS18000: Programming | 11/15/2010

1 4

#=% Research Into Secure Operating
Systems (RISOS)

-

» Seven Classes

Incomplete parameter validation

Inconsistent parameter validation

Implicit sharing of privileged / confidential data
Asynchronous validation / inadequate serialization

Inadequate identification / authentication /
authorization

Violable prohibition / limit
7. Exploitable logic error

« Evaluated several operating systems

O 0ON =

o

11/15/2010 CS852600 13

=: Protection Analysis Model
Pattern-directed protection evaluation =
— Methodology for finding vulnerabilities

Applied to several operating systems

— Discovered previously unknown vulnerabilities
Resulted in two-level hierarchy of
vulnerability classes

— Ten classes in all

B |
\ .
7 \ %

11/15/2010 CS52600 14

© 2010 Chris Clifton 7

CS18000: Programming |

PA flaw classes

et |"
L__ ,')
:
1. Improper protection domain initialization and enforcement
a. domain: Improper choice of initial protection domain
b. exposed representations: Improper isolation of implementation detail
c. consistency of data over time: Improper change
d. naming: Improper naming
e. residuals: Improper deallocation or deletion
2. validation of operands, queue management dependencies:
Improper validation
3. Improper synchronization
a. Interrupted atomic operations: Improper indivisibility
b. serialization: Improper sequencing
4. critical operator selection errors: Improper choice of operand or

operation

11/15/2010 CS852600 15

NRL Taxonomy

Three classification schemes

— Type of flaw

— When was it “created”

— Whereis it

Type of Flaw
Intentional
Malicious Nonmalicious
Trapdoor Trojan horse Logic/time bomb Covert channel Other
Nonreplicating Replicating Timing Storage

11/15/2010 CS52600 17

© 2010 Chris Clifton

11/15/2010

CS18000: Programming |

NRL Taxonomy:
Time

Time of
introduction

Development Maintenance Operation
Requirement
specification Source code Object code
design
11/15/2010 CS52600 18
Ft NRL Taxonomy:
:, I'_. Mg &]
e Location
Location
Software Hardware
Operating I
System Application Support
System Privileged
initialization TR EE I EHS Utilities
Process management Device management Unprivileged
/ scheduling 9 Utilities
. Identification /
Al EREEEme! Authentication
Other/
Unknown
11/15/2010 CS52600 19

© 2010 Chris Clifton

11/15/2010

CS18000: Programming | 11/15/2010

Aslam’s Model

=

» Attempts to classify faults + Emergent Faults

unambiguously — Configuration errors
— Decision procedure to « Wrong install location
classify faults + Wrong configuration

information
* Wrong permissions
— Environment Faults

» Coding Faults

— Synchronization errors
» Timing window
» Improper serialization

— Condition validation errors
» Bounds not checked
* Access rights ignored
* Input not validated

» Authentication /
Identification failure

11/15/2010 CS52600 20
Common Vulnerabilities and
(D Exposures (cve.mitre.orq) _
- Captures specific Name CVE-1999- |
vulnerabilities 0965
— Standard name Description | Race condition
— Cross-reference to in xterm allows
CERT, etc. local users to
. modify arbitrary
EntrY has three parts files via the
— Unique ID logging option.
— Description
References
— References -CERT:CA-93.17
*XF:xterm
11/15/2010 CS52600 21

© 2010 Chris Clifton 10

http://cve.mitre.org/

CS18000: Programming |

:"'.f?_f"f:.: Flow-based Penetration Analysis

(Gupta and Gligor 91)

Goal: Systematic approach to penetration
analysis

— Verifiable properties

— Amenable to automation

Assumes set of design properties will produce
secure system

Captures properties using state-transition model

— Entity may be altered/viewed/invoked only if
preconditions validated in atomic sequence

=

11/15/2010 CS852600 23

= N s

Assumptions

Security Objective: Provide Controlled
Access

— Penetration: Obtain access outside controls
Penetration Goals:

— Gain unauthorized access

— Denial of service to authorized users

— Bypass system accountability

11/15/2010 CS52600 24

ra
i

© 2010 Chris Clifton

11/15/2010

11

CS18000: Programming |

:-E.',Q(J

L

~

ahy

b L

"L__'\\)v

-4

b
"

Hypothesis of Penetration-
Resistant Systems

L
J..;L'l

» System secure if it adheres to design properties

— System lIsolation (Tamperproof)
» Parameter checking at system interface
» User/system address space separation
» System cell selection and transfer of control
— System Noncircumventability
* All references mediated
— Consistency of Validation Checks
* Invariant assertions
» Timing consistency of checks
— Elimination of Undesirable System/User
Dependencies
* Inter-user dependencies or system depends on user

11/15/2010 CS852600 25

& L . oy . .
T
#=~% Noncircumventability, Timin
N Y ! W I)
3 — 3
~ A
< D m
¥ ependency exa esS
4B P
TCB ENTRY FOINT <> MSGSHD (MSQID, MSGP, MEGS?, MSGFG) TCB ENTRY PO = SOFREE (4008) 0T FROM "
310
HSED 08 BT FROM
I w0 HSESI
WRTE CES5 w0
T 0P HESANT?
EXIT FROM
330 WSESND
BT FROM
SOFREE
BT
3 HSGSHD
1T FROM
50
s
HEADER EXISTS?
3
)
150
NI
s 8 i c .
1
1/ 1 e 390 M 1?5
/ 5/20 0 INCREASE THE SIZE OF 0P BY MSESZ BYTES 0352600 “ - 26
' 6T B Fig. 1

© 2010 Chris Clifton

11/15/2010

12

CS18000: Programming | 11/15/2010

TCB BOUN DARY\\

I
TRUSTED
PROCESS
F

TPs
E = |

KERMNEL

70— wRmE—
o
3 WRITE TNVOKE RAAM
=
z WRIT]
e
N1

CALLOUT TABLE

AAAAANNAN

KEY

E==3 UNPRIVILEGED ENTRY POINT
C——3 PRIVILEGED ENTRY POINT
FAULTY ENTRY POINT
—————>= EXECUTION PATH
———=—"—=— INVOCATION OF TCE PRIMITIVE
— — — I |NFORMATION FLOW

11/15/2010 CS852600 27

Hypothesis of Penetration
Patterns

* Flaws can be identified in source code
— Patterns of incorrect/absent validation-check

statements
— Integrated flows that violate design/code
specifications
11/15/2010 CS52600 28

© 2010 Chris Clifton 13

CS18000: Programming |

|
\ .
4 LT

It's Real: Implementation

11/15/2010

Implemented for C to analyze Unix-style
OS

Source code converted to PROLOG facts

Flow-based integration tool generates all
possible execution path

—records information flows

— function calls/returns

— validation conditions

Passed to flaw detection module

CS852600

29

System Overview

11/15/2010

Dronouse
545 Rl 547

N EGRATED
FUN[TIUN FLOWS

ercs s |
ruua ON FLOW nmms e
VAUDATIUN CHECKER sm
vwmnon kot

CORRECT FUcWEU CORRECI FI.AWED CORRECT FLAWED CORRECT
FLOWS FI.OWS FlOWS FIJDWS FLOWS FLOWS FLOWS

SPECS
INFORMATION FLOW
VALIDATION CHECKER

550

CS52600

30

© 2010 Chris Clifton

11/15/2010

14

CS18000: Programming |

i245: Code to Execution Tree example
. L__ \1')
SYSTEM CALLS: IF1 IF1, KEY
I ¥ — N b INFORMATION
IF ?FIZ (£ 101 4 10 FLOW
y ‘ S—>F Sif s if A->B FUNCTION FLOW
¢ VL ¢ FROMATO B
f l[",'f‘g"’" k IFé IF6 IF6
Fe2 o ,(2 N
RETURN; 2 (2 2 102
FLSE { ¥y ¢
IF7; IF7
RETURN; =S IF7 F=$ IF7
}’ F—>3
¢ IF5 F=$ IF5 F=$
IF5
()} ® IF5 /s (©
11/15/2010 CS52600 31
Flow Checking
. L \])
{ INTEGRATED INFORIMATIN FLOWS | [INTEGRATED FUNCTION FLOWS | '
\ \
WA Gy WTERECE DN B> —
My iy
CONDTIONAL NESRAATON LW HECKER— LMD CONDTONAL FNCTONFLOW CHECKR— MED
o e
THANG CONSISTENY CECER HAHD THING CONSTERCY CECIR D
VﬂJRRECI Y Y (ORRECT Y
) FLAWED
[owanoms | Lt [owoms | b
11/15/2010 CS52600 32
© 2010 Chris Clifton

11/15/2010

15

CS18000: Programming | 11/15/2010

Modeling

* Abstract cell set

— system entities that hold information
* Function set

— All user-invokable functions

— Includes subset involving time delays
» System condition set

— All parameter checks
* Information flow set

— All possible flows between pairs of cells
« Alter set, View set

— Set of cell, condition pairs

— Also critical function set, entry point set
« Altered, Viewed, invoked sets

— condition, entry point, sequence of flows/conditions

11/15/2010 CS852600 33

=i Penetration Resistant Definition

.
33

L |

» For all states (c,e,p) in altered (viewed invoked)
set:

— Conditions associated with e are subset of conditions
checked in p

— Conditions associated with ¢ are subset of those
checked in p

— There is a subsequence of p leading to the end of p
that covers conditions of ¢ and does not contain (f,g)
where fand g are in “time delay” set

» State transitions: alter, view cell; invoke function
— Adds (c,e,p) to altered cell set if conditions met

11/15/2010 CS52600 34

© 2010 Chris Clifton 16

