
CS18000:  Programming I 11/15/2010

© 2010 Chris Clifton 1

CS52600:

Information Security

Vulnerability Analysis

15 November 2010

Prof. Chris Clifton

CS52600 2

Vulnerability Analysis

• Vulnerability:  Lapse in enforcement 

enabling violation of security policy

– Errors in code

– Human violators

– Mismatch between assumptions

• Exploit:  Use of vulnerability to violate 

policy

11/15/2010



CS18000:  Programming I 11/15/2010

© 2010 Chris Clifton 2

CS52600 3

Vulnerability Analysis

• System Verification

– Determine preconditions, postconditions

– Validate that system ensures postconditions 

given preconditions

• Penetration testing

– Start with system/environment characteristics

– Try to find vulnerabilities

11/15/2010

CS52600 4

System Verification

• We’ve covered a lot

– Formal verification

– Information flow analysis

– Formal reviews

• What are the problems?

– Invalid assumptions

– Limited view of system

– Still an inexact science

11/15/2010



CS18000:  Programming I 11/15/2010

© 2010 Chris Clifton 3

CS52600 5

Penetration Testing

• Test complete system

– Attempt to violate stated policy

– Works on in-place system

– Framework for evaluating results

• Typical approach: Red Team, Blue Team

– Red team attempts to discover vulnerabilities

– Blue team simulates normal administration
• Detect attack, respond

– White team injects workload, captures results

11/15/2010

CS52600 6

Types of Penetration Testing

• Black Box
– External attacker has no knowledge of target system

– Attacks often build on human element

• System access provided
– Red team provided with limited access to system

• Models external attack

– Goal is to gain normal or elevated access
• Then violate policy

• Internal attacker
– Red team provided with authorized user access

– Goal is to elevate privilege / violate policy

11/15/2010



CS18000:  Programming I 11/15/2010

© 2010 Chris Clifton 4

CS52600 7

Red Team Approach

• Information gathering
– Examine design, environment

• Flaw hypothesis
– Predict likely vulnerabilities

• Flaw testing
– Determine where vulnerabilities exist

• Flaw generalization
– Attempt to broaden discovered flaws

• Flaw elimination
– Suggest means to eliminate flaw

11/15/2010

CS52600 8

Problems with

Penetration Testing

• Nonrigorous

– Dependent on insight (and whim) of testers

– No good way of evaluating when “complete”

• How do we make it systematic?

– Try all classes of likely flaws

– But what are these?

• Vulnerability Classification!

11/15/2010



CS18000:  Programming I 11/15/2010

© 2010 Chris Clifton 5

CS52600 9

Vulnerability Classification

• Goal:  describe spectrum of possible flaws

– Enables design to avoid flaws

– Improves coverage of penetration testing

– Helps design/develop intrusion detection

• How do we classify?

– By how they are exploited?

– By where they are found?

– By the nature of the vulnerability?

11/15/2010

CS52600 10

Example flaw:  xterm log

• xterm runs as root

– Generates a log file

– Appends to log file if file exists

• Problem:  ln /etc/passwd log_file

• Solution

if (access(“log_file”, W_OK) == 0)

fd = open(“log_file”, O_WRONLY|O_APPEND)

• What can go wrong?

11/15/2010



CS18000:  Programming I 11/15/2010

© 2010 Chris Clifton 6

CS52600 11

Example:  Finger Daemon

(exploited by Morris worm)

• finger sends name to fingerd

– fingerd allocates 512 byte buffer on stack

– Places name in buffer

– Retrieves information (local finger) and returns

• Problem:  If name > 512 bytes, overwrites return 

address

• Exploit:  Put code in “name”, pointer to code in 

bytes 513+

– Overwrites return address

11/15/2010

CS52600 12

Vulnerability Classification:

Generalize

• xterm:  race condition between validation 

and use

• fingerd:  buffer overflow on the stack

• Can we generalize to cover all possible 

vulnerabilities?

11/15/2010



CS18000:  Programming I 11/15/2010

© 2010 Chris Clifton 7

CS52600 13

Research Into Secure Operating 

Systems (RISOS)

• Seven Classes

1. Incomplete parameter validation

2. Inconsistent parameter validation

3. Implicit sharing of privileged / confidential data

4. Asynchronous validation / inadequate serialization

5. Inadequate identification / authentication / 

authorization

6. Violable prohibition / limit

7. Exploitable logic error

• Evaluated several operating systems

11/15/2010

CS52600 14

Protection Analysis Model

• Pattern-directed protection evaluation

– Methodology for finding vulnerabilities

• Applied to several operating systems

– Discovered previously unknown vulnerabilities

• Resulted in two-level hierarchy of 

vulnerability classes

– Ten classes in all

11/15/2010



CS18000:  Programming I 11/15/2010

© 2010 Chris Clifton 8

CS52600 15

PA flaw classes

1. Improper protection domain initialization and enforcement
a. domain: Improper choice of initial protection domain

b. exposed representations: Improper isolation of implementation detail

c. consistency of data over time:  Improper change

d. naming:  Improper naming

e. residuals:  Improper deallocation or deletion

2. validation of operands, queue management dependencies:  
Improper validation

3. Improper synchronization
a. interrupted atomic operations:  Improper indivisibility

b. serialization:  Improper sequencing

4. critical operator selection errors:  Improper choice of operand or 
operation

11/15/2010

CS52600 17

NRL Taxonomy

• Three classification schemes
– Type of flaw

– When was it “created”

– Where is it

Type of Flaw

Intentional

Malicious

Trapdoor Trojan horse

Nonreplicating Replicating

Logic/time bomb

Nonmalicious

Covert channel

Timing Storage

Other

11/15/2010



CS18000:  Programming I 11/15/2010

© 2010 Chris Clifton 9

CS52600 18

NRL Taxonomy:

Time

Time of
introduction

Development

Requirement
specification

design
Source code Object code

Maintenance Operation

11/15/2010

CS52600 19

NRL Taxonomy:

Location

Location

Software

Operating
System

System
initialization

Memory Management

Process management
/ scheduling

Device management

File Management
Identification /
Authentication

Other /
Unknown

Application Support

Privileged
Utilities

Unprivileged
Utilities

Hardware

11/15/2010



CS18000:  Programming I 11/15/2010

© 2010 Chris Clifton 10

CS52600 20

Aslam’s Model

• Attempts to classify faults 
unambiguously
– Decision procedure to 

classify faults

• Coding Faults
– Synchronization errors

• Timing window

• Improper serialization

– Condition validation errors

• Bounds not checked

• Access rights ignored

• Input not validated

• Authentication / 
Identification failure

• Emergent Faults
– Configuration errors

• Wrong install location

• Wrong configuration 
information

• Wrong permissions

– Environment Faults

11/15/2010

CS52600 21

Common Vulnerabilities and 

Exposures (cve.mitre.org)

• Captures specific

vulnerabilities

– Standard name

– Cross-reference to 

CERT, etc.

• Entry has three parts

– Unique ID

– Description

– References

Name CVE-1999-

0965

Description Race condition 

in xterm allows 

local users to 

modify arbitrary 

files via the 

logging option. 

References

•CERT:CA-93.17 

•XF:xterm 

11/15/2010

http://cve.mitre.org/


CS18000:  Programming I 11/15/2010

© 2010 Chris Clifton 11

CS52600 23

Flow-based Penetration Analysis 

(Gupta and Gligor ’91)

• Goal:  Systematic approach to penetration 

analysis

– Verifiable properties

– Amenable to automation

• Assumes set of design properties will produce 

secure system

• Captures properties using state-transition model

– Entity may be altered/viewed/invoked only if 

preconditions validated in atomic sequence

11/15/2010

CS52600 24

Assumptions

• Security Objective:  Provide Controlled 

Access

– Penetration:  Obtain access outside controls

• Penetration Goals:

– Gain unauthorized access

– Denial of service to authorized users

– Bypass system accountability

11/15/2010



CS18000:  Programming I 11/15/2010

© 2010 Chris Clifton 12

CS52600 25

Hypothesis of Penetration-

Resistant Systems

• System secure if it adheres to design properties
– System Isolation (Tamperproof)

• Parameter checking at system interface

• User/system address space separation

• System cell selection and transfer of control

– System Noncircumventability
• All references mediated

– Consistency of Validation Checks
• Invariant assertions

• Timing consistency of checks

– Elimination of Undesirable System/User 
Dependencies

• Inter-user dependencies or system depends on user

11/15/2010

CS52600 26

Noncircumventability, Timing, 

Dependency examples

11/15/2010



CS18000:  Programming I 11/15/2010

© 2010 Chris Clifton 13

CS52600 27

Panic example

11/15/2010

CS52600 28

Hypothesis of Penetration 

Patterns

• Flaws can be identified in source code

– Patterns of incorrect/absent validation-check 

statements

– Integrated flows that violate design/code 

specifications

11/15/2010



CS18000:  Programming I 11/15/2010

© 2010 Chris Clifton 14

CS52600 29

It’s Real:  Implementation

• Implemented for C to analyze Unix-style 
OS

• Source code converted to PROLOG facts

• Flow-based integration tool generates all 
possible execution path

– records information flows

– function calls/returns

– validation conditions

• Passed to flaw detection module

11/15/2010

CS52600 30

System Overview

11/15/2010



CS18000:  Programming I 11/15/2010

© 2010 Chris Clifton 15

CS52600 31

Code to Execution Tree example

11/15/2010

CS52600 32

Flow Checking

11/15/2010



CS18000:  Programming I 11/15/2010

© 2010 Chris Clifton 16

CS52600 33

Modeling

• Abstract cell set
– system entities that hold information

• Function set
– All user-invokable functions

– Includes subset involving time delays

• System condition set
– All parameter checks

• Information flow set
– All possible flows between pairs of cells

• Alter set, View set
– Set of cell, condition pairs

– Also critical function set, entry point set

• Altered, Viewed, invoked sets
– condition, entry point, sequence of flows/conditions

11/15/2010

CS52600 34

Penetration Resistant Definition

• For all states (c,e,p) in altered (viewed invoked) 
set:
– Conditions associated with e are subset of conditions 

checked in p

– Conditions associated with c are subset of those 
checked in p

– There is a subsequence of p leading to the end of p
that covers conditions of c and does not contain (f,g)
where f and g are in “time delay” set

• State transitions:  alter, view cell; invoke function
– Adds (c,e,p) to altered cell set if conditions met

11/15/2010


