
CS 526 Information Security: Assignment 4

John Ross Wallrabenstein (jwallrab)

October 1, 2010



×

6

6
∩ 6 ∪ { } ∼

2 Problem 2

2.1 (a)

True.

2.2 (b)

We assume that ”in order to support verification
of” refers to the ability to ascertain whether or
not the integrity and confidentiality of the sys-
tem still hold. We are not addressing whether
or not availability is more important than in-
tegrity or confidentiality, as that would depend
on the particular system under consideration.
Additionally, we are not addressing whether or
not integrity or confidentiality can be supported
without availability, as the question specifically
pertains to the verification of integrity or con-
fidentiality. Finally, we do not consider ”verifi-
cation” to include the assumption that if there
is no availability whatsoever, and the system’s
integrity/confidentiality was not violated prior
to the loss of all availability, you can ”verify”
they are still in tact because no one could access



them. We consider ”verification” to explicitly
mean that the data is accessed in some way to
verify neither integrity nor confidentiality have
been compromised.
This statement, under the above assumptions,
is clearly true. That is, it is impossible to ver-
ify the integrity or confidentiality of a system if
the system is unavailable. That is, some degree
of availability must be present, or no user can
access the system to verify that its integrity or
confidentiality has not been compromised.

3 Problem 3

3.1 Release-Write

Definition The release-write rule enables a sub-
ject s to request to release the right to write
an object o. Represent this request as r =
(release, s, o, w) ∈ R(1), and let the current
state of the system be v = (b,m, f, h). Then
release− write is the rule ρ1(r, v):

Algorithm 1 Release-Write
if r /∈ ∆(ρ1) then
ρ1(r, v) = (i, v);

else
ρ1(r, v) = (y, (b− (s, o, w),m, f, h));

end if

Theorem 3.1 The release-write rule ρ1 pre-
serves the simple security condition, the *-
property, and the ds-property.

Lemma 3.2 The release-write rule ρ1 preserves
the simple security condition.

Proof Let v satisfy the simple security condi-
tion, and let ρ1(r, v) = (d, v‘). Either v‘ = v or
v‘ = (b − (s, o, w),m, f, h), by the release-write
rule. When v‘ = v, we have that v‘ satisfies the
simple security condition because v does. In the
latter case, we have v‘ = (b − (s, o, w),m, f, h).
For either choice of v‘, we have that b‘ − b = ∅.
That is, if v‘ = v then b‘ − b = ∅ and the simple

security condition is satisfied because v satisfies
the condition. If b‘ 6= b, then {(s, o, w)} /∈ b‘ and
we have that b‘ ⊆ b. As v satisfies the simple
security condition, all rules in b must also satisfy
the simple security condition. Thus, b‘ ⊆ b and
f ‘ = f implies that v‘ will also satisfy the simple
security condition.

Lemma 3.3 The release-write rule ρ1 preserves
the *-property.

Proof Let v satisfy the *-property, and let
ρ1(r, v) = (d, v‘). Either v‘ = v or v‘ =
(b − (s, o, w),m, f, h), by the release-write rule.
When v‘ = v, we have that v‘ satisfies the *-
property because v does. In the latter case, we
have v‘ = (b−(s, o, w),m, f, h). For either choice
of v‘, we have that b‘ − b = ∅. That is, if v‘ = v
then b‘ − b = ∅ and the *-property is satisfied
because v satisfies the property. If b‘ 6= b, then
{(s, o, w)} /∈ b‘ and we have that b‘ ⊆ b. As v
satisfies the *-property, all rules in b must also
satisfy the *-property. Thus, b‘ ⊆ b and f ‘ = f
implies that v‘ will also satisfy the *-property.

Lemma 3.4 The release-write rule ρ1 preserves
the ds-property.

Proof Let v satisfy the ds-property, and let
ρ1(r, v) = (d, v‘). Either v‘ = v or v‘ =
(b − (s, o, w),m, f, h), by the release-write rule.
When v‘ = v, we have that v‘ satisfies the ds-
property because v does. In the latter case, we
have v‘ = (b−(s, o, w),m, f, h). For either choice
of v‘, we have that b‘ − b = ∅. That is, if v‘ = v
then b‘ − b = ∅ and the ds-property is satis-
fied because v satisfies the property. If b‘ 6= b,
then {(s, o, w)} /∈ b‘ and we have that b‘ ⊆ b.
As v satisfies the ds-property, all rules in b must
also satisfy the ds-property. That is, we have
m[s, o] ⊆ m‘[s, o]∀s ∈ S, o ∈ O. Thus, v‘ will
also satisfy the ds-property.

As we have shown that release-write preserves
the simple security condition, *-property and ds-
property, we have proven Theorem 3.1.



3.2 Rescind-Execute

Definition The rescind-execute rule enables a
subject sα to request to rescind subject sβ ’s right
to execute an object o. Represent this request as
r = (sα, r, sβ , o, e), and let the current state of
the system be v = (b,m, f, h). Then rescind −
execute is the rule ρ2(r, v):

Algorithm 2 Rescind-Execute
if r /∈ ∆(ρ2) then
ρ2(r, v) = (i, v);

else if r ∈ ∆(ρ2)∧((o 6= root(o)∧parent(o) 6=
root(o)∧parent(o) ∈ b(sα : w))∨(parent(o) =
root(o)∧ canrescind(sα, o, v))∨ (o = root(o)∧
canrescind(sα, root(o), v))) then
ρ2(r, v) = (y, (b − (sβ , o, e),m ∧ m[sβ , o] −
e, f, h));

else
ρ2(r, v) = (n, v)

end if

Theorem 3.5 The rescind-execute rule ρ2 pre-
serves the simple security condition, the *-
property, and the ds-property.

Lemma 3.6 The rescind-execute rule ρ2 pre-
serves the simple security condition.

Proof Let v satisfy the simple security condi-
tion, and let ρ2(r, v) = (d, v‘). Either v‘ = v
or v‘ = (b − {sβ , o, e},m[sβ , o] − e, f, h), by the
rescind-execute rule. When v‘ = v, we have that
v‘ satisfies the *-property because v does. In the
latter case, we have v‘ = (b−{sβ , o, e},m[sβ , o]−
e, f, h). Either b− b‘ = ∅ or b− b‘ = {(sβ , o, e)}.
If b−b‘ = ∅, then b‘ = b and f ′ = f so v‘ satisfies
the simple security condition because v satisfies
the condition. If b‘ 6= b, then b−b‘ = {(sβ , o, e)}.
This implies that b‘ ⊆ b and f ‘ = f so v‘ satisfies
the simple security condition because v satisfies
the condition.

Lemma 3.7 The rescind-execute rule ρ2 pre-
serves the *-property.

Proof Let v satisfy the *-property, and let
ρ2(r, v) = (d, v‘). Either v‘ = v or v‘ =
(b− {sβ , o, e},m[sβ , o]− e, f, h), by the rescind-
execute rule. When v‘ = v, we have that v‘ sat-
isfies the *-property because v does. In the lat-
ter case, we have v‘ = (b − {sβ , o, e},m[sβ , o] −
e, f, h). Either b− b‘ = ∅ or b− b‘ = {(sβ , o, e)}.
If b−b‘ = ∅, then b‘ = b and f ′ = f so v‘ satisfies
the *-property because v satisfies the property.
If b‘ 6= b, then b − b‘ = {(sβ , o, e)}. This im-
plies that b‘ ⊆ b and f ‘ = f so v‘ satisfies the
*-property because v satisfies the property.

Lemma 3.8 The rescind-execute rule ρ2 pre-
serves the ds-property.

Proof Let v satisfy the ds-property, and let
ρ2(r, v) = (d, v‘). Either v‘ = v or v‘ =
(b− {sβ , o, e},m[sβ , o]− e, f, h), by the rescind-
execute rule. When v‘ = v, we have that v‘ sat-
isfies the ds-property because v does. In the lat-
ter case, we have v‘ = (b − {sβ , o, e},m[sβ , o] −
e, f, h). For either choice of v‘, we have that
b‘− b = ∅. That is, if v‘ = v then b‘− b = ∅ and
the ds-property is satisfied because v satisfies the
property. If b‘ 6= b, then {(sβ , o, e)} /∈ b‘ and we
have that b‘ ⊆ b. As v satisfies the ds-property,
all rules in b must also satisfy the ds-property.
That is, we have m[s, o] ⊆ m‘[s, o]∀s ∈ S, o ∈ O.
Thus, v‘ will also satisfy the ds-property.

As we have shown that rescind-execute pre-
serves the simple security condition, *-property
and ds-property, we have proven Theorem 3.5.

3.3 Write Rules

The get-write rule would only require that
fo(o) dom fs(s) in addition to the require-
ments of the get-append rule. All of the
other rules (release,give,rescind) could eas-
ily be generalized to accept any right r ∈
{read, append, execute, write}. It is trivial to see
why release and rescind can be generalized, as
the type of right being deleted does not affect
the rule. We have already addressed the neces-
sary restrictions for a get-write rule derived from



the get-append rule, and the book clearly states
that the give rule can be generalized to accept
an arbitrary right.

4 Problem 4

4.2 (b)

Consider a stock price ticker system T where any
state that prevents the system from returning
the correct price of the stock is unauthorized.
That is, the only authorized state is R, where
the system reports the current and correct price
of a given stock. Letting S represent the set of all
states that T may enter, the unauthorized states
are U = S − R. Here, the time window w is
useful in that it provides time for the system to
aggregate new buy/sell offers and compute the
updated price. At the beginning and end of each
time window w, the policy requires that T be
in state R. Unauthorized states may be entered
during the middle of the window to compute the
value of the stock for the upcoming R state.




