
CS18000: Programming I 10/22/2010

© 2010 Chris Clifton 1

CS526: Information Security

Chris Clifton

October 22, 2010

Systems: Design Principles

2

Building Real Systems

• Theory allows formal proof of known

security policies

– For components

– And collections of components

• What should the security policies be?

• Design principles:

– Guiding standards that are relatively

independent of policy

CS18000: Programming I 10/22/2010

© 2010 Chris Clifton 2

3

Principle of Least Privilege

• A subject should be given only those

privileges needed to complete its task

4

Fail-Safe Defaults

• Unless a subject is given explicit access to

an object, it should be denied access

CS18000: Programming I 10/22/2010

© 2010 Chris Clifton 3

5

Economy of Mechanism

• Security mechanisms should be as simple

as possible

– But no simpler

6

Complete Mediation

• All accesses to an object must be checked

to ensure they are allowed

CS18000: Programming I 10/22/2010

© 2010 Chris Clifton 4

7

Open Design

• Security of a mechanism should not

depend on secrecy of the

design/implementation

8

Separation of Privilege

• A system should not grant permission

based on a single condition

CS18000: Programming I 10/22/2010

© 2010 Chris Clifton 5

9

Least Common Mechanism

• Mechanisms used to access resources

should not be shared

10

Psychological Acceptability

• Security mechanisms should not make the

resource more difficult to access than if

security mechanisms were not present

CS18000: Programming I 10/22/2010

© 2010 Chris Clifton 6

11

Secure Systems in Practice

• Formal verifications of entire systems not yet a
practice
– So what do we mean by secure?

• Trustworthy: Sufficient evidence to believe
system will meet requirements
– How do we measure this?

• Assurance: Confidence a system meets security
requirements
– Often based on development processes

• Trusted System: Evaluated / passed in terms of
well-defined requirements, evaluation methods

12

High-Assurance Development

Methodologies Control:

• Requirements definitions, omissions, mistakes

• System design flaws

• Hardware implementation flaws

• Software implementation errors

• system use/operation errors

• Willful system misuse

• Hardware malfunction

• Natural / environmental effects

• Evolution/maintenance/upgrades/decommission

CS18000: Programming I 10/22/2010

© 2010 Chris Clifton 7

13

Requirements

• Statement of Goals that must be satisfied

• Security Policy is a requirement

• Security Model is a means of

detecting/preventing errors, omissions in

security policy

• Policy Assurance: Evidence that security

policy is complete/consistent/sound

– Achieved through use of model

14

Design Assurance

• Evidence that Design meets Security

Policy

– Validation / verification techniques

– We’ll discuss these later

CS18000: Programming I 10/22/2010

© 2010 Chris Clifton 8

15

Implementation Assurance

• Evidence that the implementation meets

the design

• Primarily based on standard software

engineering practice

16

Operational / Administrative

Assurance

• Evidence that policy requirements

maintained in operation

– Best: evidence that system can’t enter non-

secure state

• Least Privilege, Separation of Privilege

• Training, documentation

CS18000: Programming I 10/22/2010

© 2010 Chris Clifton 9

17

Software Engineering

• Without adequate design/implementation,
all our work for naught

• In reality, what we’ve studied shows how
to get good requirements

• Turning these into good systems beyond
the realm of security expert

• Solution: insist on use of appropriate
software engineering methodologies

– Take CS510, ECE574 for more

18

Assurance in the Face of

Imperfection

• Mistakes will be made

– Must they lead to security violations?

• Solution: Risk Mitigation

• Definitions:

– Threat: Potential occurrence leading to undesirable

consequences

– Vulnerability: Weakness enabling threat

– Exploit: Method for Threat to use Vulnerability

• All must occur for a violation to happen

CS18000: Programming I 10/22/2010

© 2010 Chris Clifton 10

19

Risk Mitigation

• Threat-based

– Enumerate threats

– For each threat, eliminate possibility of
exploitable vulnerability

• Vulnerability-based

– Formal verification

– Testing

– Architecture / design

• Exploit-based

20

Security in Layered Architectures

• Systems built in

layers

• “Perfect” mechanism

at high layer doesn’t

prevent vulnerabilities

beneath

– Limits threats to lower

layers

– Simpler security

abstractions

Application

Services /

Middleware

OS

Hardware

CS18000: Programming I 10/22/2010

© 2010 Chris Clifton 11

21

Add-On Security

• Implement security in separate module
– Easier to validate

– But may be hard to enforce

• Reference Monitor
– Abstract machine that mediates all accesses

– Implement with Reference Validation Mechanism

• Security Kernel: Implements reference Monitor

• Trusted Computing Base: subset of system that
enforces security policy
– Demands extra protection

22

Evaluating Assurance

• How do we gather evidence that system meets
security requirements?

• Process-based techniques: Was system
constructed using proper methods?
– SEI CMM

– ISO 9000

• System Evaluation
– Requirements Tracing

– Representation Correspondence

– Reviews

– Formal Methods

CS18000: Programming I 10/22/2010

© 2010 Chris Clifton 12

23

Process Based Techniques

• Software Engineering Institute Capability
Maturity Model (SEI CMM)
– Specifies levels of process maturity

– Criteria to evaluate level of an organization

• ISO 900[0-?] similar
– More directed to manufacturing than software

• Configuration Management
– Log/track changes

– Ensure process followed

– Regression testing / update, release control

24

System Evaluation

• Requirements Tracing
– Track requirement to mechanism

– Ensures nothing forgotten

– Doesn’t ensure it is correct

• Representation Correspondence
– Requirements tracing between levels

• Validating Correctness:
– Informal arguments

– Formal verification
• May use automated tools

CS18000: Programming I 10/22/2010

© 2010 Chris Clifton 13

25

System Evaluation:

Reviews

• Formal Process of “passing” on specification /
design / implementation
– Team evaluates component

– Provides independent evidence that component
meets requirements

• Review is a structured process
– Materials presented to reviewers

– Reviewers evaluate using agreed on methods

– Review meeting: collect comments and discuss

– Report: List of comments, reviewer
agreement/disagreement

26

Implementation Management

• Assume a secure design

– How to ensure implementation will be secure?

• Constrained Implementation Environment

– Strong typing

– Built-in buffer checks

– Virtual machines

• Coding Standards

– Restrict how language is used

– Meeting standards eliminates use of “unsafe” features

CS18000: Programming I 10/22/2010

© 2010 Chris Clifton 14

27

Implementation Management:

Configuration Management

• Control changes made

– Development

– Production / operation

• Version control and tracking

– Audit

• Change Authorization

• Enforce integration procedures

• Automated production tools

28

Configuration Management:

CVS

• Concurrent Versions System (CVS)
– Commonly used in DoD, elsewhere?

– Client-Server / network approach

• CVS tree: “official” versions at server

• Check-out: Get a local copy of a version

• Check-in: merges your updates into tree
– Creates new version

– Forces you to comment why changed

– Flags conflicts

– Ignores files you’ve created that aren’t in official tree

http://www.cvshome.org

http://www.cvshome.org/

CS18000: Programming I 10/22/2010

© 2010 Chris Clifton 15

29

Testing

• Functional (specification based) vs.

Structural (code based) testing

• Levels: Unit, System, Independent

• Security Testing:

– Functional

– Structural

– Requirements (separate from functional?)

• Automated Test Suites

30

Process Guidance Working

Group Test Model

• Test Matrix: Maps requirements to lower levels
– At lowest level, test assertion

– Used to develop test cases

• Divides checks into six areas
– Discretionary Access Control

– Privileges

– Identification and Authorization

– Object Reuse

– Audit

– System Architecture Constraints

CS18000: Programming I 10/22/2010

© 2010 Chris Clifton 16

31

Top-Level Matrix:

OS Example
Component DAC PRIV I&A OR Audit Arch

Process

Management



Process Control     

File Management     

Audit     

I/O interfaces     

I/O device drivers    

IPC management     

Memory

management

    

32

PGWG Test Model

• Each row generates lower level matrix

• Continue until test assertions possible
– Verify only root can use stime successfully

– Verify audit record generated for call to stime

• Develop test case specification for each
assertion
– Call stime as root: time should change, audit

generated

– Call stime as non-root: no change, fail, audit
generated

• Develop test for each specification

CS18000: Programming I 10/22/2010

© 2010 Chris Clifton 17

33

Operation/Maintenance

• Fixes / maintenance

– Hot fix: quick solution

• Possibly security testing only

• May limit functionality

– Regular fix: more thorough testing

• Reintroduce functionality while maintaining security

• Procedures to track flaws

– Reporting

– Test to detect flaw

– Regression test: ensure flaw not “unfixed”

34

Next: Formal Methods

• Software verification beyond scope of

course

– But important to achieve security

• Limited software verification

– Verify the security subsystems

– Confine the rest

